Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87566
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘敏雄zh_TW
dc.contributor.advisorMin-Hsiung Panen
dc.contributor.author卓立勝zh_TW
dc.contributor.authorDickson Choken
dc.date.accessioned2023-06-20T16:06:00Z-
dc.date.available2023-11-09-
dc.date.copyright2023-06-20-
dc.date.issued2022-
dc.date.submitted2022-11-25-
dc.identifier.citationArai, D.; Kataoka, R.; Otsuka, S.; Kawamura, M.; Maruki-Uchida, H.; Sai, M.; Ito, T.; Nakao, Y. Piceatannol is superior to resveratrol in promoting neural stem cell differentiation into astrocytes. Food Funct. 2016, 7, 4432-4441.
Arkinson, C.; Walden, H. Parkin function in Parkinson's disease. Science. 2018, 360, 267-268.
Ascherio, A.; Schwarzschild, M. A. The epidemiology of Parkinson's disease: risk factors and prevention. Lancet Neurol. 2016, 15, 1257-1272.
Azmi, A. S.; Bhat, S. H.; Hadi, S. M. Resveratrol-Cu(II) induced DNA breakage in human peripheral lymphocytes: implications for anticancer properties. FEBS Lett. 2005, 579, 3131-3135.
Bai, R. K.; Wong, L. J. Simultaneous detection and quantification of mitochondrial DNA deletion(s), depletion, and over-replication in patients with mitochondrial disease. J Mol Diagn. 2005, 7, 613-622.
Balestrino, R.; Schapira, A. H. V. Parkinson disease. Eur J Neurol. 2020, 27, 27-42.
Barger, S. W.; Goodwin, M. E.; Porter, M. M.; Beggs, M. L. Glutamate release from activated microglia requires the oxidative burst and lipid peroxidation. J Neurochem. 2007, 101, 1205-1213.
Beaulieu-Boire, I.; Lang, A. E. Behavioral effects of levodopa. Mov Disord. 2015, 30, 90-102.
Bender, A.; Krishnan, K. J.; Morris, C. M.; Taylor, G. A.; Reeve, A. K.; Perry, R. H.; Jaros, E.; Hersheson, J. S.; Betts, J.; Klopstock, T.; Taylor, R. W.; Turnbull, D. M. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet. 2006, 38, 515-517.
Bido, S.; Soria, F. N.; Fan, R. Z.; Bezard, E.; Tieu, K. Mitochondrial division inhibitor-1 is neuroprotective in the A53T-alpha-synuclein rat model of Parkinson's disease. Sci Rep. 2017, 7, 7495.
Bijwadia, S. R.; Morton, K.; Meyer, J. N. Quantifying levels of dopaminergic neuron morphological alteration and degeneration in Caenorhabditis elegans. J Vis Exp. 2021, 177, e62894.
Blandini, F. An update on the potential role of excitotoxicity in the pathogenesis of Parkinson's disease. Funct Neurol. 2010, 25, 65-71.
Blandini, F.; Porter, R. H.; Greenamyre, J. T. Glutamate and Parkinson's disease. Mol Neurobiol. 1996, 12, 73-94.
Borra, M. T.; Smith, B. C.; Denu, J. M. Mechanism of human SIRT1 activation by resveratrol. J Biol Chem. 2005, 280, 17187-17195.
Brand, M. D. The sites and topology of mitochondrial superoxide production. Exp Gerontol. 2010, 45, 466-472.
Bridges, R. J.; Natale, N. R.; Patel, S. A. System xc(-) cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. Br J Pharmacol. 2012, 165, 20-34.
Canto, C.; Auwerx, J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol. 2009, 20, 98-105.
Chase, D. L.; Koelle, M. R. Biogenic amine neurotransmitters in C. elegans. WormBook. 2007, 1-15.
Chaudhuri, K. R.; Schapira, A. H. Non-motor symptoms of Parkinson's disease: dopaminergic pathophysiology and treatment. Lancet Neurol. 2009, 8, 464-474.
Chen, H.; Detmer, S. A.; Ewald, A. J.; Griffin, E. E.; Fraser, S. E.; Chan, D. C. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 2003, 160, 189-200.
Chu, Q.; Li, Y.; Hua, Z.; Wang, Y.; Yu, X.; Jia, R.; Chen, W.; Zheng, X. Tetrastigma hemsleyanum vine flavone ameliorates glutamic acid-induced neurotoxicity via MAPK pathways. Oxid Med Cell Longev. 2020, 2020, 7509612.
Cipolat, S.; Martins de Brito, O.; Dal Zilio, B.; Scorrano, L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A. 2004, 101, 15927-15932.
Collier, T. J.; Kanaan, N. M.; Kordower, J. H. Ageing as a primary risk factor for Parkinson's disease: evidence from studies of non-human primates. Nat Rev Neurosci. 2011, 12, 359-366.
Corsi, A. K.; Wightman, B.; Chalfie, M. A transparent window into biology: a primer on Caenorhabditis elegans. Genetics. 2015, 200, 387-407.
Dantuma, N. P.; Bott, L. C. The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution. Front Mol Neurosci. 2014, 7, 70.
Dauer, W.; Przedborski, S. Parkinson's disease: mechanisms and models. Neuron. 2003, 39, 889-909.
Deitmer, J. W.; Theparambil, S. M.; Ruminot, I.; Noor, S. I.; Becker, H. M. Energy dynamics in the brain: contributions of astrocytes to metabolism and pH homeostasis. Front Neurosci. 2019, 13, 1301.
Dickson, D. W.; Braak, H.; Duda, J. E.; Duyckaerts, C.; Gasser, T.; Halliday, G. M.; Hardy, J.; Leverenz, J. B.; Del Tredici, K.; Wszolek, Z. K.; Litvan, I. Neuropathological assessment of Parkinson's disease: refining the diagnostic criteria. Lancet Neurol. 2009, 8, 1150-1157.
DiMauro, S. Mitochondrial diseases. Biochim Biophys Acta. 2004, 1658, 80-88.
Ding, H.; Jiang, N.; Liu, H.; Liu, X.; Liu, D.; Zhao, F.; Wen, L.; Liu, S.; Ji, L. L.; Zhang, Y. Response of mitochondrial fusion and fission protein gene expression to exercise in rat skeletal muscle. Biochim Biophys Acta. 2010, 1800, 250-256.
Ding, J.; Zhang, Z.; Roberts, G. J.; Falcone, M.; Miao, Y.; Shao, Y.; Zhang, X. C.; Andrews, D. W.; Lin, J. Bcl-2 and Bax interact via the BH1-3 groove-BH3 motif interface and a novel interface involving the BH4 motif. J Biol Chem. 2010, 285, 28749-28763.
Dong, L.; Cornaglia, M.; Krishnamani, G.; Zhang, J.; Mouchiroud, L.; Lehnert, T.; Auwerx, J.; Gijs, M. A. M. Reversible and long-term immobilization in a hydrogel-microbead matrix for high-resolution imaging of Caenorhabditis elegans and other small organisms. PLoS One. 2018, 13, e0193989.
Dorsey, E. R.; Sherer, T.; Okun, M. S.; Bloem, B. R. The emerging evidence of the Parkinson pandemic. J Parkinsons Dis. 2018, 8, S3-S8.
Druzhyna, N. M.; Wilson, G. L.; LeDoux, S. P. Mitochondrial DNA repair in aging and disease. Mech Ageing Dev. 2008, 129, 383-390.
Ebrahimi-Fakhari, D.; Wahlster, L.; McLean, P. J. Protein degradation pathways in Parkinson's disease: curse or blessing. Acta Neuropathol. 2012, 124, 153-172.
Eisenberg-Lerner, A.; Bialik, S.; Simon, H. U.; Kimchi, A. Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ. 2009, 16, 966-975.
Ekstrand, M. I.; Terzioglu, M.; Galter, D.; Zhu, S.; Hofstetter, C.; Lindqvist, E.; Thams, S.; Bergstrand, A.; Hansson, F. S.; Trifunovic, A.; Hoffer, B.; Cullheim, S.; Mohammed, A. H.; Olson, L.; Larsson, N. G. Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc Natl Acad Sci U S A. 2007, 104, 1325-1330.
El-Hattab, A. W.; Scaglia, F. Mitochondrial cytopathies. Cell Calcium. 2016, 60, 199-206.
Elkouzi, A.; Vedam-Mai, V.; Eisinger, R. S.; Okun, M. S. Emerging therapies in Parkinson disease – repurposed drugs and new approaches. Nat Rev Neurol. 2019, 15, 204-223.
Elmore, S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007, 35, 495-516.
Farrand, L.; Byun, S.; Kim, J. Y.; Im-Aram, A.; Lee, J.; Lim, S.; Lee, K. W.; Suh, J. Y.; Lee, H. J.; Tsang, B. K. Piceatannol enhances cisplatin sensitivity in ovarian cancer via modulation of p53, X-linked inhibitor of apoptosis protein (XIAP), and mitochondrial fission. J Biol Chem. 2013, 288, 23740-23750.
Fedyaeva, A. V.; Stepanov, A. V.; Lyubushkina, I. V.; Pobezhimova, T. P.; Rikhvanov, E. G. Heat shock induces production of reactive oxygen species and increases inner mitochondrial membrane potential in winter wheat cells. Biochemistry (Mosc). 2014, 79, 1202-1210.
Fontana, L.; Partridge, L. Promoting health and longevity through diet: from model organisms to humans. Cell. 2015, 161, 106-118.
Gibson, C. L.; Balbona, J. T.; Niedzwiecki, A.; Rodriguez, P.; Nguyen, K. C. Q.; Hall, D. H.; Blakely, R. D. Glial loss of the metallo beta-lactamase domain containing protein, SWIP-10, induces age- and glutamate-signaling dependent, dopamine neuron degeneration. PLoS Genet. 2018, 14, e1007269.
Greaves, L. C.; Reeve, A. K.; Taylor, R. W.; Turnbull, D. M. Mitochondrial DNA and disease. J Pathol. 2012, 226, 274-286.
Gu, X. L.; Long, C. X.; Sun, L.; Xie, C.; Lin, X.; Cai, H. Astrocytic expression of Parkinson's disease-related A53T alpha-synuclein causes neurodegeneration in mice. Mol Brain. 2010, 3, 12.
Guo, C.; Sun, L.; Chen, X.; Zhang, D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res. 2013, 8, 2003-2014.
Guo, Z.; Hong, Z.; Dong, W.; Deng, C.; Zhao, R.; Xu, J.; Zhuang, G.; Zhang, R. PM2.5-induced oxidative stress and mitochondrial damage in the nasal mucosa of rats. Int J Environ Res Public Health. 2017, 14.
Halliday, G. M.; Holton, J. L.; Revesz, T.; Dickson, D. W. Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathol. 2011, 122, 187-204.
Harris, T. W.; Chen, N.; Cunningham, F.; Tello-Ruiz, M.; Antoshechkin, I.; Bastiani, C.; Bieri, T.; Blasiar, D.; Bradnam, K.; Chan, J.; Chen, C. K.; Chen, W. J.; Davis, P.; Kenny, E.; Kishore, R.; Lawson, D.; Lee, R.; Muller, H. M.; Nakamura, C.; Ozersky, P.; Petcherski, A.; Rogers, A.; Sabo, A.; Schwarz, E. M.; Van Auken, K.; Wang, Q.; Durbin, R.; Spieth, J.; Sternberg, P. W.; Stein, L. D. WormBase: a multi-species resource for nematode biology and genomics. Nucleic Acids Res. 2004, 32, D411-417.
Helley, M. P.; Pinnell, J.; Sportelli, C.; Tieu, K. Mitochondria: a common target for genetic mutations and environmental toxicants in Parkinson's disease. Front Genet. 2017, 8, 177.
Henchcliffe, C.; Beal, M. F. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol. 2008, 4, 600-609.
Ho, M. S. Microglia in Parkinson's disease. Adv Exp Med Biol. 2019, 1175, 335-353.
Hosoda, R.; Hamada, H.; Uesugi, D.; Iwahara, N.; Nojima, I.; Horio, Y.; Kuno, A. Different antioxidative and antiapoptotic effects of piceatannol and resveratrol. J Pharmacol Exp Ther. 2021, 376, 385-396.
Iovino, L.; Tremblay, M. E.; Civiero, L. Glutamate-induced excitotoxicity in Parkinson's disease: The role of glial cells. J Pharmacol Sci. 2020, 144, 151-164.
Jankovic, J. Parkinson's disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008, 79, 368-376.
Jenner, P.; Olanow, C. W. The pathogenesis of cell death in Parkinson's disease. Neurology. 2006, 66, S24-36.
Jesko, H.; Strosznajder, R. P. Sirtuins and their interactions with transcription factors and poly(ADP-ribose) polymerases. Folia Neuropathol. 2016, 54, 212-233.
Kabeya, Y.; Mizushima, N.; Ueno, T.; Yamamoto, A.; Kirisako, T.; Noda, T.; Kominami, E.; Ohsumi, Y.; Yoshimori, T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000, 19, 5720-5728.
Kaletta, T.; Hengartner, M. O. Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov. 2006, 5, 387-398.
Kalia, L. V.; Lang, A. E. Parkinson's disease. The Lancet. 2015, 386, 896-912.
Kann, O.; Kovacs, R. Mitochondria and neuronal activity. Am J Physiol Cell Physiol. 2007, 292, C641-657.
Kashatus, J. A.; Nascimento, A.; Myers, L. J.; Sher, A.; Byrne, F. L.; Hoehn, K. L.; Counter, C. M.; Kashatus, D. F. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol Cell. 2015, 57, 537-551.
Keeney, P. M.; Xie, J.; Capaldi, R. A.; Bennett, J. P., Jr. Parkinson's disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci. 2006, 26, 5256-5264.
Kesidou, E.; Lagoudaki, R.; Touloumi, O.; Poulatsidou, K. N.; Simeonidou, C. Autophagy and neurodegenerative disorders. Neural Regen Res. 2013, 8, 2275-2283.
Kitada, T.; Asakawa, S.; Hattori, N.; Matsumine, H.; Yamamura, Y.; Minoshima, S.; Yokochi, M.; Mizuno, Y.; Shimizu, N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998, 392, 605-608.
Klass, M. R. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev. 1977, 6, 413-429.
Kong, X.; Wang, R.; Xue, Y.; Liu, X.; Zhang, H.; Chen, Y.; Fang, F.; Chang, Y. Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One. 2010, 5, e11707.
Krishnan, K. J.; Ratnaike, T. E.; De Gruyter, H. L.; Jaros, E.; Turnbull, D. M. Mitochondrial DNA deletions cause the biochemical defect observed in Alzheimer's disease. Neurobiol Aging. 2012, 33, 2210-2214.
Kritis, A. A.; Stamoula, E. G.; Paniskaki, K. A.; Vavilis, T. D. Researching glutamate - induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Front Cell Neurosci. 2015, 9, 91.
Kumari, S.; Mehta, S. L.; Li, P. A. Glutamate induces mitochondrial dynamic imbalance and autophagy activation: preventive effects of selenium. PLoS One. 2012, 7, e39382.
Kupis, W.; Palyga, J.; Tomal, E.; Niewiadomska, E. The role of sirtuins in cellular homeostasis. J Physiol Biochem. 2016, 72, 371-380.
Lee, S. Y.; Kang, K. Measuring the effect of chemicals on the growth and reproduction of Caenorhabditis elegans. J Vis Exp. 2017, e56437.
Lewerenz, J.; Maher, P. Chronic glutamate toxicity in neurodegenerative diseases-what is the evidence? Front Neurosci. 2015, 9, 469.
LeWitt, P. A.; Fahn, S. Levodopa therapy for Parkinson disease: a look backward and forward. Neurology. 2016, 86, S3-12.
Li, J.; Wang, Y.; Wang, Y.; Wen, X.; Ma, X. N.; Chen, W.; Huang, F.; Kou, J.; Qi, L. W.; Liu, B.; Liu, K. Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction. J Mol Cell Cardiol. 2015, 86, 62-74.
Liesa, M.; Palacin, M.; Zorzano, A. Mitochondrial dynamics in mammalian health and disease. Physiol Rev. 2009, 89, 799-845.
Lin, K. L.; Lin, K. J.; Wang, P. W.; Chuang, J. H.; Lin, H. Y.; Chen, S. D.; Chuang, Y. C.; Huang, S. T.; Tiao, M. M.; Chen, J. B.; Huang, P. H.; Liou, C. W.; Lin, T. K. Resveratrol provides neuroprotective effects through modulation of mitochondrial dynamics and ERK1/2 regulated autophagy. Free Radic Res. 2018, 52, 1371-1386.
Lin, M. T.; Beal, M. F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006, 443, 787-795.
Lints, R.; Emmons, S. W. Patterning of dopaminergic neurotransmitter identity among Caenorhabditis elegans ray sensory neurons by a TGFbeta family signaling pathway and a Hox gene. Development. 1999, 126, 5819-5831.
Liu, X.; Yamada, N.; Maruyama, W.; Osawa, T. Formation of dopamine adducts derived from brain polyunsaturated fatty acids: mechanism for Parkinson disease. J Biol Chem. 2008, 283, 34887-34895.
Loboda, A.; Damulewicz, M.; Pyza, E.; Jozkowicz, A.; Dulak, J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci. 2016, 73, 3221-3247.
Ma, K.; Chen, G.; Li, W.; Kepp, O.; Zhu, Y.; Chen, Q. Mitophagy, mitochondrial homeostasis, and cell fate. Front Cell Dev Biol. 2020, 8, 467.
MacAskill, A. F.; Kittler, J. T. Control of mitochondrial transport and localization in neurons. Trends Cell Biol. 2010, 20, 102-112.
Maremonti, E.; Brede, D. A.; Olsen, A. K.; Eide, D. M.; Berg, E. S. Ionizing radiation, genotoxic stress, and mitochondrial DNA copy-number variation in Caenorhabditis elegans: droplet digital PCR analysis. Mutat Res Genet Toxicol Environ Mutagen. 2020, 858-860, 503277.
Marier, J. F.; Vachon, P.; Gritsas, A.; Zhang, J.; Moreau, J. P.; Ducharme, M. P. Metabolism and disposition of resveratrol in rats: extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model. J Pharmacol Exp Ther. 2002, 302, 369-373.
Markaki, M.; Tavernarakis, N. Caenorhabditis elegans as a model system for human diseases. Curr Opin Biotechnol. 2020, 63, 118-125.
Mattson, M. P.; Arumugam, T. V. Hallmarks of brain aging: adaptive and pathological modification by metabolic states. Cell Metab. 2018, 27, 1176-1199.
Muller, T. Catechol-O-methyltransferase inhibitors in Parkinson's disease. Drugs. 2015, 75, 157-174.
Murias, M.; Jager, W.; Handler, N.; Erker, T.; Horvath, Z.; Szekeres, T.; Nohl, H.; Gille, L. Antioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: structure-activity relationship. Biochem Pharmacol. 2005, 69, 903-912.
Musgrove, R. E.; Helwig, M.; Bae, E. J.; Aboutalebi, H.; Lee, S. J.; Ulusoy, A.; Di Monte, D. A. Oxidative stress in vagal neurons promotes parkinsonian pathology and intercellular alpha-synuclein transfer. J Clin Invest. 2019, 129, 3738-3753.
Naoi, M.; Wu, Y.; Shamoto-Nagai, M.; Maruyama, W. Mitochondria in neuroprotection by phytochemicals: bioactive polyphenols modulate mitochondrial apoptosis system, function and structure. Int J Mol Sci. 2019, 20, 2451.
Nass, J.; Efferth, T. Ursolic acid ameliorates stress and reactive oxygen species in C. elegans knockout mutants by the dopamine Dop1 and Dop3 receptors. Phytomedicine. 2021, 81, 153439.
Nass, R.; Hall, D. H.; Miller, D. M., III; Blakely, R. D. Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc Natl Acad Sci. 2002, 99, 3264-3269.
Niciu, M. J.; Kelmendi, B.; Sanacora, G. Overview of glutamatergic neurotransmission in the nervous system. Pharmacol Biochem Behav. 2012, 100, 656-664.
Nikoletopoulou, V.; Markaki, M.; Palikaras, K.; Tavernarakis, N. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta. 2013, 1833, 3448-3459.
Noda, M.; Beppu, K. Possible contribution of microglial glutamate receptors to inflammatory response upon neurodegenerative diseases. J Neurol Disord. 2013, 1, 2.
Novelli, A.; Reilly, J. A.; Lysko, P. G.; Henneberry, R. C. Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res. 1988, 451, 205-212.
Olichon, A.; Baricault, L.; Gas, N.; Guillou, E.; Valette, A.; Belenguer, P.; Lenaers, G. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem. 2003, 278, 7743-7746.
Ono, T.; Isobe, K.; Nakada, K.; Hayashi, J. I. Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nat Genet. 2001, 28, 272-275.
Palmeira, C. M.; Teodoro, J. S.; Amorim, J. A.; Steegborn, C.; Sinclair, D. A.; Rolo, A. P. Mitohormesis and metabolic health: the interplay between ROS, cAMP and sirtuins. Free Radic Biol Med. 2019, 141, 483-491.
Pandareesh, M. D.; Mythri, R. B.; Srinivas Bharath, M. M. Bioavailability of dietary polyphenols: factors contributing to their clinical application in CNS diseases. Neurochem Int. 2015, 89, 198-208.
Paraskevaidi, M.; Martin-Hirsch, P. L.; Kyrgiou, M.; Martin, F. L. Underlying role of mitochondrial mutagenesis in the pathogenesis of a disease and current approaches for translational research. Mutagenesis. 2017, 32, 335-342.
Pareyson, D.; Piscosquito, G.; Moroni, I.; Salsano, E.; Zeviani, M. Peripheral neuropathy in mitochondrial disorders. Lancet Neurol. 2013, 12, 1011-1024.
Peng, K.; Tao, Y.; Zhang, J.; Wang, J.; Ye, F.; Dan, G.; Zhao, Y.; Cai, Y.; Zhao, J.; Wu, Q.; Zou, Z.; Cao, J.; Sai, Y. Resveratrol regulates mitochondrial biogenesis and fission/fusion to attenuate rotenone-induced neurotoxicity. Oxid Med Cell Longev. 2016, 2016, 6705621.
Piotrowska, H.; Kucinska, M.; Murias, M. Biological activity of piceatannol: leaving the shadow of resveratrol. Mutat Res. 2012, 750, 60-82.
Piver, B.; Fer, M.; Vitrac, X.; Merillon, J. M.; Dreano, Y.; Berthou, F.; Lucas, D. Involvement of cytochrome P450 1A2 in the biotransformation of trans-resveratrol in human liver microsomes. Biochem Pharmacol. 2004, 68, 773-782.
Pivovarova, N. B.; Andrews, S. B. Calcium-dependent mitochondrial function and dysfunction in neurons. FEBS J. 2010, 277, 3622-3636.
Postuma, R. B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C. W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A. E.; Halliday, G.; Goetz, C. G.; Gasser, T.; Dubois, B.; Chan, P.; Bloem, B. R.; Adler, C. H.; Deuschl, G. MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord. 2015, 30, 1591-1601.
Prasansuklab, A.; Brimson, J. M.; Tencomnao, T. Potential Thai medicinal plants for neurodegenerative diseases: a review focusing on the anti-glutamate toxicity effect. J Tradit Complement Med. 2020, 10, 301-308.
Prediger, R. D.; Bortolanza, M.; de Castro Issy, A. C.; dos Santos, B. L.; Del Bel, E.; Raisman-Vozari, R. Dopaminergic neurons in Parkinson’s disease. In Handbook of Neurotoxicity. Springer New York, NY, 2014, 753-788.
Price, D. L.; Rockenstein, E.; Ubhi, K.; Phung, V.; MacLean-Lewis, N.; Askay, D.; Cartier, A.; Spencer, B.; Patrick, C.; Desplats, P.; Ellisman, M. H.; Masliah, E. Alterations in mGluR5 expression and signaling in Lewy body disease and in transgenic models of alpha-synucleinopathy--implications for excitotoxicity. PLoS One. 2010, 5, e14020.
Price, N. L.; Gomes, A. P.; Ling, A. J.; Duarte, F. V.; Martin-Montalvo, A.; North, B. J.; Agarwal, B.; Ye, L.; Ramadori, G.; Teodoro, J. S.; Hubbard, B. P.; Varela, A. T.; Davis, J. G.; Varamini, B.; Hafner, A.; Moaddel, R.; Rolo, A. P.; Coppari, R.; Palmeira, C. M.; de Cabo, R.; Baur, J. A.; Sinclair, D. A. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012, 15, 675-690.
Pyle, A.; Anugrha, H.; Kurzawa-Akanbi, M.; Yarnall, A.; Burn, D.; Hudson, G. Reduced mitochondrial DNA copy number is a biomarker of Parkinson's disease. Neurobiol Aging. 2016, 38, 216.e7-216.e10.
Quinn, P. M. J.; Moreira, P. I.; Ambrosio, A. F.; Alves, C. H. PINK1/PARKIN signalling in neurodegeneration and neuroinflammation. Acta Neuropathol Commun. 2020, 8, 189.
Raninga, P. V.; Di Trapani, G.; Tonissen, K. F. The multifaceted roles of DJ-1 as an antioxidant. In DJ-1/PARK7 Protein: Parkinson’s Disease, Cancer and Oxidative Stress-Induced Diseases. Springer, Singapore, 2017, 67-87.
Ravichandran, K. S.; Lorenz, U. Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol. 2007, 7, 964-974.
Rege, S. D.; Geetha, T.; Griffin, G. D.; Broderick, T. L.; Babu, J. R. Neuroprotective effects of resveratrol in Alzheimer disease pathology. Front Aging Neurosci. 2014, 6, 218.
Richter, V.; Singh, A. P.; Kvansakul, M.; Ryan, M. T.; Osellame, L. D. Splitting up the powerhouse: structural insights into the mechanism of mitochondrial fission. Cell Mol Life Sci. 2015, 72, 3695-3707.
Risuleo, G.; La Mesa, C. Resveratrol: biological activities and potential use in health and disease. Nutraceuticals in Veterinary Medicine. Springer, Cham, 2019, 215-226.
Rothfuss, O.; Gasser, T.; Patenge, N. Analysis of differential DNA damage in the mitochondrial genome employing a semi-long run real-time PCR approach. Nucleic Acids Res. 2010, 38, e24.
Rubio-Cosials, A.; Sidow, J. F.; Jimenez-Menendez, N.; Fernandez-Millan, P.; Montoya, J.; Jacobs, H. T.; Coll, M.; Bernado, P.; Sola, M. Human mitochondrial transcription factor A induces a U-turn structure in the light strand promoter. Nat Struct Mol Biol. 2011, 18, 1281-1289.
Sacco, R. L.; DeRosa, J. T.; Haley, E. C., Jr.; Levin, B.; Ordronneau, P.; Phillips, S. J.; Rundek, T.; Snipes, R. G.; Thompson, J. L. Glycine antagonist in neuroprotection for patients with acute stroke: GAIN Americas: a randomized controlled trial. JAMA. 2001, 285, 1719-1728.
Samant, S. A.; Zhang, H. J.; Hong, Z.; Pillai, V. B.; Sundaresan, N. R.; Wolfgeher, D.; Archer, S. L.; Chan, D. C.; Gupta, M. P. SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Mol Cell Biol. 2014, 34, 807-819.
Santos, D.; Cardoso, S. M. Mitochondrial dynamics and neuronal fate in Parkinson's disease. Mitochondrion. 2012, 12, 428-437.
Sawin, E. R.; Ranganathan, R.; Horvitz, H. R. C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron. 2000, 26, 619-631.
Scarpulla, R. C. Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene. 2002, 286, 81-89.
Scarpulla, R. C. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev. 2008, 88, 611-638.
Schapira, A. H.; Cooper, J. M.; Dexter, D.; Jenner, P.; Clark, J. B.; Marsden, C. D. Mitochondrial complex I deficiency in Parkinson's disease. Lancet. 1989, 1, 1269.
Schelman, W. R.; Andres, R. D.; Sipe, K. J.; Kang, E.; Weyhenmeyer, J. A. Glutamate mediates cell death and increases the Bax to Bcl-2 ratio in a differentiated neuronal cell line. Brain Res Mol Brain Res. 2004, 128, 160-169.
Schousboe, A.; Scafidi, S.; Bak, L. K.; Waagepetersen, H. S.; McKenna, M. C. Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol. 2014, 11, 13-30.
Setoguchi, Y.; Oritani, Y.; Ito, R.; Inagaki, H.; Maruki-Uchida, H.; Ichiyanagi, T.; Ito, T. Absorption and metabolism of piceatannol in rats. J Agric Food Chem. 2014, 62, 2541-2548.
Sharma, J.; Johnston, M. V.; Hossain, M. A. Sex differences in mitochondrial biogenesis determine neuronal death and survival in response to oxygen glucose deprivation and reoxygenation. BMC Neurosci. 2014, 15, 9.
Shen, P.; Yue, Y.; Sun, Q.; Kasireddy, N.; Kim, K. H.; Park, Y. Piceatannol extends the lifespan of Caenorhabditis elegans via DAF-16. Biofactors. 2017, 43, 379-387.
Shen, T.; Xie, C.-F.; Wang, X.-N.; Lou, H.-X. Stilbenoids. In Natural Products. Springer Berlin, Heidelberg, 2013, 1901-1949.
Sheng, Z. H.; Cai, Q. Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci. 2012, 13, 77-93.
Shi, X.; Zhou, N.; Cheng, J.; Shi, X.; Huang, H.; Zhou, M.; Zhu, H. Chlorogenic acid protects PC12 cells against corticosterone-induced neurotoxicity related to inhibition of autophagy and apoptosis. BMC Pharmacol Toxicol. 2019, 20, 56.
Shin, J. H.; Ko, H. S.; Kang, H.; Lee, Y.; Lee, Y. I.; Pletinkova, O.; Troconso, J. C.; Dawson, V. L.; Dawson, T. M. PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease. Cell. 2011, 144, 689-702.
Sies, H.; Berndt, C.; Jones, D. P. Oxidative stress. Annu Rev Biochem. 2017, 86, 715-748.
Snyder, H.; Mensah, K.; Theisler, C.; Lee, J.; Matouschek, A.; Wolozin, B. Aggregated and monomeric alpha-synuclein bind to the S6' proteasomal protein and inhibit proteasomal function. J Biol Chem. 2003, 278, 11753-11759.
Son, Y.; Byun, S. J.; Pae, H. O. Involvement of heme oxygenase-1 expression in neuroprotection by piceatannol, a natural analog and a metabolite of resveratrol, against glutamate-mediated oxidative injury in HT22 neuronal cells. Amino Acids. 2013, 45, 393-401.
Song, Z.; Ghochani, M.; McCaffery, J. M.; Frey, T. G.; Chan, D. C. Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol Biol Cell. 2009, 20, 3525-3532.
Stein, A. B.; Bolli, R.; Guo, Y.; Wang, O. L.; Tan, W.; Wu, W. J.; Zhu, X.; Zhu, Y.; Xuan, Y. T. The late phase of ischemic preconditioning induces a prosurvival genetic program that results in marked attenuation of apoptosis. J Mol Cell Cardiol. 2007, 42, 1075-1085.
Sulston, J.; Dew, M.; Brenner, S. Dopaminergic neurons in the nematode Caenorhabditis elegans. J Comp Neurol. 1975, 163, 215-226.
Suzuki, N.; Katano, K. Coordination between ROS regulatory systems and other pathways under heat stress and pathogen attack. Front Plant Sci. 2018, 9, 490.
Talati, R.; Baker, W. L.; Patel, A. A.; Reinhart, K.; Coleman, C. I. Adding a dopamine agonist to preexisting levodopa therapy vs. levodopa therapy alone in advanced Parkinson's disease: a meta analysis. Int J Clin Pract. 2009, 63, 613-623.
Tanner, C. M.; Kamel, F.; Ross, G. W.; Hoppin, J. A.; Goldman, S. M.; Korell, M.; Marras, C.; Bhudhikanok, G. S.; Kasten, M.; Chade, A. R.; Comyns, K.; Richards, M. B.; Meng, C.; Priestley, B.; Fernandez, H. H.; Cambi, F.; Umbach, D. M.; Blair, A.; Sandler, D. P.; Langston, J. W. Rotenone, paraquat, and Parkinson's disease. Environ Health Perspect. 2011, 119, 866-872.
Tejeda-Benitez, L.; Olivero-Verbel, J. Caenorhabditis elegans, a biological model for research in toxicology. Rev Environ Contam Toxicol. 2016, 237, 1-35.
Tilokani, L.; Nagashima, S.; Paupe, V.; Prudent, J. Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem. 2018, 62, 341-360.
Torrens-Mas, M.; Hernandez-Lopez, R.; Pons, D. G.; Roca, P.; Oliver, J.; Sastre-Serra, J. Sirtuin 3 silencing impairs mitochondrial biogenesis and metabolism in colon cancer cells. Am J Physiol Cell Physiol. 2019, 317, C398-404.
Tucci, M. L.; Harrington, A. J.; Caldwell, G. A.; Caldwell, K. A. Modeling dopamine neuron degeneration in Caenorhabditis elegans. Methods Mol Biol. 2011, 793, 129-148.
Turrens, J. F. Mitochondrial formation of reactive oxygen species. J Physiol. 2003, 552, 335-344.
Twig, G.; Elorza, A.; Molina, A. J.; Mohamed, H.; Wikstrom, J. D.; Walzer, G.; Stiles, L.; Haigh, S. E.; Katz, S.; Las, G.; Alroy, J.; Wu, M.; Py, B. F.; Yuan, J.; Deeney, J. T.; Corkey, B. E.; Shirihai, O. S. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008, 27, 433-446.
Twig, G.; Hyde, B.; Shirihai, O. S. Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta. 2008, 1777, 1092-1097.
Twig, G.; Shirihai, O. S. The interplay between mitochondrial dynamics and mitophagy. Antioxid Redox Signal. 2011, 14, 1939-1951.
Uittenbogaard, M.; Chiaramello, A. Mitochondrial biogenesis: a therapeutic target for neurodevelopmental disorders and neurodegenerative diseases. Curr Pharm Des. 2014, 20, 5574-5593.
van Ham, T. J.; Thijssen, K. L.; Breitling, R.; Hofstra, R. M.; Plasterk, R. H.; Nollen, E. A. C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet. 2008, 4, e1000027.
Venuto, C. S.; Potter, N. B.; Dorsey, E. R.; Kieburtz, K. A review of disease progression models of Parkinson's disease and applications in clinical trials. Mov Disord. 2016, 31, 947-956.
Verma, M.; Wills, Z.; Chu, C. T. Excitatory dendritic mitochondrial calcium toxicity: implications for Parkinson's and other neurodegenerative diseases. Front Neurosci. 2018, 12, 523.
Viscomi, C. Toward a therapy for mitochondrial disease. Biochem Soc Trans. 2016, 44, 1483-1490.
Walle, T.; Hsieh, F.; DeLegge, M. H.; Oatis, J. E., Jr.; Walle, U. K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos. 2004, 32, 1377-1382.
Wang, J.; Wang, F.; Mai, D.; Qu, S. Molecular mechanisms of glutamate toxicity in Parkinson's disease. Front Neurosci. 2020, 14, 585584.
Wang, W.; Zhang, F.; Li, L.; Tang, F.; Siedlak, S. L.; Fujioka, H.; Liu, Y.; Su, B.; Pi, Y.; Wang, X. MFN2 couples glutamate excitotoxicity and mitochondrial dysfunction in motor neurons. J Biol Chem. 2015, 290, 168-182.
Wang, X.; Li, H.; Ding, S. The effects of NAD+ on apoptotic neuronal death and mitochondrial biogenesis and function after glutamate excitotoxicity. Int J Mol Sci. 2014, 15, 20449-20468.
Wang, X.; Su, B.; Liu, W.; He, X.; Gao, Y.; Castellani, R. J.; Perry, G.; Smith, M. A.; Zhu, X. DLP1-dependent mitochondrial fragmentation mediates 1-methyl-4-phenylpyridinium toxicity in neurons: implications for Parkinson's disease. Aging Cell. 2011, 10, 807-823.
Wang, Y.; Qin, Z. H. Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis. 2010, 15, 1382-1402.
Winter, A. N.; Bickford, P. C. Anthocyanins and their metabolites as therapeutic agents for neurodegenerative disease. Antioxidants. 2019, 8, 333.
Wredenberg, A.; Wibom, R.; Wilhelmsson, H.; Graff, C.; Wiener, H. H.; Burden, S. J.; Oldfors, A.; Westerblad, H.; Larsson, N. G. Increased mitochondrial mass in mitochondrial myopathy mice. Proc Natl Acad Sci U S A. 2002, 99, 15066-15071.
Wung, B. S.; Hsu, M. C.; Wu, C. C.; Hsieh, C. W. Piceatannol upregulates endothelial heme oxygenase-1 expression via novel protein kinase C and tyrosine kinase pathways. Pharmacol Res. 2006, 53, 113-122.
Xiao, J.; Dong, X.; Peng, K.; Ye, F.; Cheng, J.; Dan, G.; Zou, Z.; Cao, J.; Sai, Y. PGC-1a mediated-EXOG, a specific repair enzyme for mitochondrial DNA, plays an essential role in the rotenone-induced neurotoxicity of PC12 cells. J Mol Neurosci. 2021, 71, 2336-2352.
Yang, D.; Ying, J.; Wang, X.; Zhao, T.; Yoon, S.; Fang, Y.; Zheng, Q.; Liu, X.; Yu, W.; Hua, F. Mitochondrial dynamics: a key role in neurodegeneration and a potential target for neurodegenerative disease. Front Neurosci. 2021, 15, 654785.
Yang, J.; Hertz, E.; Zhang, X.; Leinartaite, L.; Lundius, E. G.; Li, J.; Svenningsson, P. Overexpression of alpha-synuclein simultaneously increases glutamate NMDA receptor phosphorylation and reduces glucocerebrosidase activity. Neurosci Lett. 2016, 611, 51-58.
Yang, W.; Wang, Y.; Hao, Y.; Wang, Z.; Liu, J.; Wang, J. Piceatannol alleviate ROS-mediated PC-12 cells damage and mitochondrial dysfunction through SIRT3/FOXO3a signaling pathway. J Food Biochem. 2022, 46, e13820.
Yang, X. R.; Sun, P.; Qin, H. P.; Si, P. P.; Sun, X. F.; Zhang, C. Involvement of MAPK pathways in NMDA-induced apoptosis of rat cortical neurons. Sheng Li Xue Bao. 2012, 64, 609-616.
Yang, Z.; Klionsky, D. J. Eaten alive: a history of macroautophagy. Nat Cell Biol. 2010, 12, 814-822.
Yin, C. F.; Chang, Y. W.; Huang, H. C.; Juan, H. F. Targeting protein interaction networks in mitochondrial dynamics for cancer therapy. Drug Discov Today. 2022, 27, 1077-1087.
Ylikallio, E.; Tyynismaa, H.; Tsutsui, H.; Ide, T.; Suomalainen, A. High mitochondrial DNA copy number has detrimental effects in mice. Hum Mol Genet. 2010, 19, 2695-2705.
Zevian, S. C.; Yanowitz, J. L. Methodological considerations for heat shock of the nematode Caenorhabditis elegans. Methods. 2014, 68, 450-457.
Zhang, Y.; Bhavnani, B. R. Glutamate-induced apoptosis in neuronal cells is mediated via caspase-dependent and independent mechanisms involving calpain and caspase-3 proteases as well as apoptosis inducing factor (AIF) and this process is inhibited by equine estrogens. BMC Neurosci. 2006, 7, 49.
Zhang, Y.; Gliyazova, N. S.; Li, P. A.; Ibeanu, G. Phenoxythiophene sulfonamide compound B355252 protects neuronal cells against glutamate-induced excitotoxicity by attenuating mitochondrial fission and the nuclear translocation of AIF. Exp Ther Med. 2021, 21, 221.
Zhang, Y.; Lu, X.; Bhavnani, B. R. Equine estrogens differentially inhibit DNA fragmentation induced by glutamate in neuronal cells by modulation of regulatory proteins involved in programmed cell death. BMC Neurosci. 2003, 4, 32.
Zhao, F.; Austria, Q.; Wang, W.; Zhu, X. Mfn2 overexpression attenuates MPTP neurotoxicity in vivo. Int J Mol Sci. 2021, 22, 601.
Zheng, B.; Liao, Z.; Locascio, J. J.; Lesniak, K. A.; Roderick, S. S.; Watt, M. L.; Eklund, A. C.; Zhang-James, Y.; Kim, P. D.; Hauser, M. A.; Grunblatt, E.; Moran, L. B.; Mandel, S. A.; Riederer, P.; Miller, R. M.; Federoff, H. J.; Wullner, U.; Papapetropoulos, S.; Youdim, M. B.; Cantuti-Castelvetri, I.; Young, A. B.; Vance, J. M.; Davis, R. L.; Hedreen, J. C.; Adler, C. H.; Beach, T. G.; Graeber, M. B.; Middleton, F. A.; Rochet, J. C.; Scherzer, C. R.; Global, P. D. G. E. C. PGC-1alpha, a potential therapeutic target for early intervention in Parkinson's disease. Sci Transl Med. 2010, 2, 52-73.
Zhou, J.; Yang, Z.; Shen, R.; Zhong, W.; Zheng, H.; Chen, Z.; Tang, J.; Zhu, J. Resveratrol improves mitochondrial biogenesis function and activates PGC-1alpha pathway in a preclinical model of early brain injury following subarachnoid hemorrhage. Front Mol Biosci. 2021, 8, 620683.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87566-
dc.description.abstract神經退化性疾病 (neurodegenerative disease, ND) 爲一種常見於老年族群的疾病,可由神經元和神經系統的進行性損傷引起,可導致記憶、認知和運動方面的功能障礙。粒線體功能失調 (mitochondrial dysfunction) 爲帕金森氏症 (Parkinson’s disease) 等 ND 的常見病理機制之一。當 大腦受到中風或腦損傷的刺激時,會釋放出過量的麩胺酸 (glutamate, GLU) 會導致粒線體功能失調,並造成不可逆的神經元細胞死亡。白藜蘆醇 (resveratrol) 在 ND 中的生物活性及預防功效已經得到了廣泛的研究成果,但由於其生物利用率較低的限制而無法在生物體中達到預期的效果。文獻指出,白皮杉醇 (piceatannol, PIC) 爲生物可利用率較高的白藜蘆醇羥基化類似物,其已知擁有與白藜蘆醇類似的神經保護作用。在前人研究中,PIC 已證實可透過誘導抗氧化酵素 heme oxygenase-1 (HO-1) 的表達,延緩 GLU 所誘導的神經元死亡。然而,其在探討與 ND 相關的粒線體功能失調中的作用及潛在的分子機制尚不明確。基於先前文獻的研究,本研究旨在探討 PIC 在體外實驗中對 GLU 誘導的粒線體功能失調的保護作用,及其在體內實驗中延緩帕金森氏症的潛力。結果顯示,PIC 可通過調節 Bcl-2-associated X protein (Bax)/ B-cell lymphoma 2 (Bcl-2) 比例、nuclear factor erythroid 2 (Nrf2) 及其下游抗氧化酵素的表現及活性,延緩 GLU 誘導的 PC12 細胞凋亡和粒線體 ROS 生成。GLU 誘導的 ATP 耗竭、mtDNA 拷貝數及粒線體質量的改變在 PIC介入後顯著恢復至趨向於控制組的現象。此外,PIC 亦可誘導 peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) 轉入細胞核,促進粒線體的生合成相關蛋白及 sirtuin-3 (SIRT3) 的表達。PIC 透過上調粒線體融合相關基因 Opa1、Mfn1 及抑制粒線體分裂相關基因 Fis1 的 mRNA 表現量以調節粒線體動態平衡及細胞自噬。另一方面,PIC的介入顯著抑制了 GLU 誘導秀麗隱桿線蟲的多巴胺神經元損傷及粒線體的片段化,使其維持粒線體網絡的形態。綜合上述結果,推測 PIC 可做爲有效的神經保護化合物,在延緩 ND 中的粒線體功能失調具有一定的潛力。zh_TW
dc.description.abstractNeurodegenerative diseases (ND), the disorders that particularly occur in elderly population, normally caused by progressive damage to neurons and nervous system, result in a wide range of impairment in memory, cognitive, and movement. Mitochondrial dysfunction is one of the common etiologies of neurodegenerative disorders, such as Parkinson’s disease. Excessive glutamate (GLU) is released when the brain is stimulated by a stroke or brain injury which subsequently leads to mitochondrial dysfunction and results in irreversible neuronal cell death. Resveratrol has been well-studied with its bioactivity and preventive effect on ND but being limited by its low bioavailability. Therefore, piceatannol (PIC), a hydroxylated resveratrol analog with higher bioavailability than its original counterpart, is expected to exert neuroprotective effect similar to that of resveratrol. In previous study, PIC has been proven to improve GLU-induced toxicity in neurons via its expression of the antioxidative enzyme heme oxygenase-1 (HO-1). Whereas, its role in mitochondrial dysfunction related to ND has not been clarified, as well as the potential underlying molecular mechanisms. In combination with previous evidences, this study aims to investigate the protective effect of PIC against GLU-induced mitochondrial dysfunction in vitro and its potential in Parkinson’s disease alleviation in vivo. The results showed that PIC could attenuate GLU-induced apoptosis and mitochondrial ROS production by regulating Bcl-2-associated X protein (Bax)/ B-cell lymphoma 2 (Bcl-2) ratio, nuclear factor erythroid 2 (Nrf2) and its downstream antioxidant enzymes in PC12 cells. Moreover, GLU-induced ATP depletion, altered mtDNA copy numbers and mitochondrial mass were restored in PIC treatment. Besides, nuclear translocation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) was also promoted by PIC, which elevated the expression of mitochondrial biogenesis-related protein along with regulation of sirtuins-3 (SIRT3). PIC regulated mitochondrial dynamic balance and autophagy by inducing mRNA expression level of fusion related gene, Opa1, Mfn1 and inhibiting fission-related gene, Fis1. In addition, PIC alleviated GLU-induced dopaminergic neurodegeneration in Caenorhabditis elegans, which also improved mitochondrial morphology by ameliorated mitochondrial fragmentation. In conclusion, our study suggests that piceatannol may exhibit as potential neuroprotective agent in GLU-induced mitochondrial dysfunction in neurodegenerative disease.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-20T16:06:00Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-06-20T16:06:00Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 I
Abstract II
Graphical abstract IV
目錄 V
圖目錄 VIII
附圖目錄 IX
附表目錄 X
縮寫表 XI
第一章、前言 1
第二章、文獻回顧 3
第一節、神經退化性疾病 3
(一)、帕金森氏症 3
(二)、麩胺酸 6
第二節、粒線體在神經元的功能 10
(一)、粒線體功能失調 (mitochondrial dysfunction) 10
第三節、植化素 15
(一)、白藜蘆醇 (resveratrol, RES) 16
(二)、白皮杉醇 (piceatannol, PIC) 17
第四節、秀麗隱桿線蟲 18
(一)、秀麗隱桿線蟲簡介 18
(二)、在帕金森氏症中的應用 18
第三章、實驗目的與架構 20
第一節、實驗目的 20
第二節、實驗架構 20
第四章、材料與方法 22
第一節、實驗材料 22
(一)、樣品來源與製備 22
(二)、儀器設備 22
(三)、藥品試劑 23
(四)、抗體 25
(五)、RT-qPCR引子 (primer) 26
(六)、商業化試劑盒 (commercial kit) 26
第二節、細胞實驗 (in vitro) 方法 27
(一)、細胞培養 27
(二)、細胞存活率分析 (MTT assay) 28
(三)、細胞ROS定量 29
(四)、粒線體ROS定量 30
(五)、抗氧化酵素活性分析 31
(六)、細胞凋亡分析 33
(七)、ATP 含量分析 34
(八)、細胞毒性分析 (cytotoxicity assay) 35
(九)、粒線體質量 (mitochondrial mass) 分析 35
(十)、DNA萃取 36
(十一)、粒線體DNA (mtDNA) copy number分析 37
(十二)、蛋白質萃取 39
(十三)、蛋白質定量 40
(十四)、西方墨點法 41
(十五)、RNA 萃取及純化 44
(十六)、即時定量聚合酶連鎖反應 (RT-qPCR) 46
第三節、動物實驗 (in vivo) 方法 47
(一)、C. elegans 培養 47
(二)、體長實驗 48
(三)、熱耐受性實驗 48
(四)、體內ROS定量 49
(五)、多巴胺神經受損實驗 50
(六)、覓食運動行爲表現 51
(七)、頭部粒線體ROS定量 52
(八)、粒線體形態分析 52
第四節、統計分析 53
第五章、結果與討論 54
第一節、細胞實驗 (in vitro) 54
(一)、PIC、RES 及 GLU 對 PC12 細胞存活率之影響 54
(二)、PIC 與 RES 對 GLU誘導 PC12 細胞凋亡之影響 56
(三)、PIC 與 RES 對 GLU 誘導 PC12 細胞氧化壓力之影響 60
(四)、PIC 與 RES 對 GLU 誘導之細胞內 ATP 含量減少之影響 64
(五)、PIC 與 RES 對粒線體生合成相關路徑之影響 66
(六)、PIC 與 RES 對粒線體質量及 mtDNA 拷貝數之影響 71
(七)、PIC 與 RES 對粒線體融合分裂基因及自噬之影響 74
第二節、動物實驗 (in vivo) 79
(一)、PIC 與 RES 對 C. elegans 生長及熱耐受性之影響 79
(二)、PIC 與 RES 對 C. elegans 體內 ROS 之影響 80
(三)、PIC 與 RES 對 C. elegans多巴胺神經元及其調控行爲之影響 83
(四)、PIC 與 RES 對粒線體型態之影響 88
第六章、結論 90
參考文獻 92
-
dc.language.isozh_TW-
dc.title白皮杉醇透過保護粒線體損傷及抑制氧化壓力以降低麩胺酸誘導PC12神經細胞及秀麗隱桿線蟲之神經退化zh_TW
dc.titlePiceatannol attenuates glutamate-induced neurodegeneration through mitochondrial damage protection and oxidative stress suppression in PC12 cells and C. elegansen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee魏嘉徵;黃步敏;王應然;何元順zh_TW
dc.contributor.oralexamcommitteeChia-Cheng Wei;Bu-Miin Huang;Ying-Jan Wang;Yuan-Soon Hoen
dc.subject.keyword神經退化性疾病,粒線體功能失調,白藜蘆醇,白皮杉醇,zh_TW
dc.subject.keywordneurodegenerative diseases,mitochondrial dysfunction,resveratrol,piceatannol,en
dc.relation.page105-
dc.identifier.doi10.6342/NTU202210070-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2022-11-25-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept食品科技研究所-
dc.date.embargo-lift2025-09-13-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  目前未授權公開取用
16.98 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved