Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87446
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂廷璋zh_TW
dc.contributor.advisorTing-Jang Luen
dc.contributor.author胡雪盈zh_TW
dc.contributor.authorSuet-Yine Wooen
dc.date.accessioned2023-06-07T16:04:43Z-
dc.date.available2023-11-09-
dc.date.copyright2023-06-07-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationA Linares-Pasten, J.; Aronsson, A.; Nordberg Karlsson, E., Structural considerations on the use of endo-xylanases for the production of prebiotic xylooligosaccharides from biomass. Current Protein and Peptide Science 2018, 19, 48-67.
Alyassin, M.; Campbell, G. M.; Masey O'Neill, H.; Bedford, M. R., Simultaneous determination of cereal monosaccharides, xylo- and arabinoxylo-oligosaccharides and uronic acids using HPAEC-PAD. Food Chemistry 2020, 315, 126221.
Andrewartha, K. A.; Phillips, D. R.; Stone, B. A., Solution properties of wheat-flour arabinoxylans and enzymically modified arabinoxylans. Carbohydrate Research 1979, 77, 191-204.
Banerjee, S.; Mazumdar, S., Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. International Journal of Analytical Chemistry 2012, 2012, 282574.
Bartolomé, B.; Faulds, C. B.; Kroon, P. A.; Waldron, K.; Gilbert, H. J.; Hazlewood, G.; Williamson, G., An Aspergillus niger esterase (ferulic acid esterase III) and a recombinant Pseudomonas fluorescens subsp. cellulosa esterase (Xy1D) release a 5-5' ferulic dehydrodimer (diferulic acid) from barley and wheat cell walls. Applied and Environmental Microbiology 1997, 63, 208-212.
Beg, Q.; Kapoor, M.; Mahajan, L.; Hoondal, G., Microbial xylanases and their industrial applications: a review. Applied microbiology and biotechnology 2001, 56, 326-338.
Berrin, J.-G.; Ajandouz, E. H.; Georis, J.; Arnaut, F.; Juge, N., Substrate and product hydrolysis specificity in family 11 glycoside hydrolases: an analysis of Penicillium funiculosum and Penicillium griseofulvum xylanases. Applied Microbiology and Biotechnology 2007, 74, 1001-1010.
Berrin, J. G.; Juge, N., Factors affecting xylanase functionality in the degradation of arabinoxylans. Biotechnology Letters 2008, 30, 1139-1150.
Bhardwaj, N.; Kumar, B.; Verma, P., A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioresources and Bioprocessing 2019, 6, 40.
Biely, P.; Vršanská, M.; Tenkanen, M.; Kluepfel, D., Endo-β-1, 4-xylanase families: differences in catalytic properties. Journal of Biotechnology 1997, 57, 151-166.
Biggs, K., Physiology of cell expansion during plant growth. American Society of Plant Biologists 1987, 46-57.
Björndal, H.; Hellerqvist, C. G.; Lindberg, B.; Svensson, S., Gas‐liquid chromatography and mass spectrometry in methylation analysis of polysaccharides. Angewandte Chemie International Edition in English 1970, 9, 610-619.
Blumenkrantz, N.; Asboe-Hansen, G., New method for quantitative determination of uronic acids. Analytical Biochemistry 1973, 54, 484-489.
Brillouet, J. M.; Mercier, C., Fractionation of wheat bran carbohydrates. Journal of the Science of Food and Agriculture 1981, 32, 243-251.
Broekaert, W. F.; Courtin, C. M.; Verbeke, K.; Van De Wiele, T.; Verstraete, W.; Delcour, J. A., Prebiotic and Other Health-Related Effects of Cereal-Derived Arabinoxylans, Arabinoxylan-Oligosaccharides, and Xylooligosaccharides. Critical Reviews in Food Science and Nutrition 2011, 51, 178-194.
Brouns, F.; Hemery, Y.; Price, R.; Mateo Anson, N., Wheat Aleurone: Separation, Composition, Health Aspects, and Potential Food Use. Critical Reviews in Food Science and Nutrition 2012, 52, 553-568.
Charnock, S. J.; Lakey, J. H.; Virden, R.; Hughes, N.; Sinnott, M. L.; Hazlewood, G. P.; Pickersgill, R.; Gilbert, H. J., Key residues in subsite F play a critical role in the activity of Pseudomonas fluorescens subspecies cellulosa xylanase A against xylooligosaccharides but not against highly polymeric substrates such as xylan. Journal of Biological Chemistry 1997, 272, 2942-2951.
Chen, J.-L.; Nguan, H. S.; Hsu, P.-J.; Tsai, S.-T.; Liew, C. Y.; Kuo, J.-L.; Hu, W.-P.; Ni, C.-K., Collision-induced dissociation of sodiated glucose and identification of anomeric configuration. Physical Chemistry Chemical Physics 2017, 19, 15454-15462.
Cholujova, D.; Jakubikova, J.; Czako, B.; Martisova, M.; Hunakova, L.; Duraj, J.; Mistrik, M.; Sedlak, J., MGN-3 arabinoxylan rice bran modulates innate immunity in multiple myeloma patients. Cancer Immunol Immunother 2013, 62, 437-445.
Davies, G. J.; Wilson, K. S.; Henrissat, B., Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochemical Journal 1997, 321, 557-559.
Dekker, R. F. H.; Richards, G. N., Hemicellulases: Their Occurrence, Purification, Properties, and Mode of Action. Advances in Carbohydrate Chemistry and Biochemistry 1976, 32, 277-352.
Delcour, J. A.; Van Win, H.; Grobet, P. J., Distribution and structural variation of arabinoxylans in common wheat mill streams. Journal of Agricultural and Food Chemistry 1999, 47, 271-275.
Dervilly-Pinel, G.; Rimsten, L.; Saulnier, L.; Andersson, R.; Åman, P., Water-extractable Arabinoxylan from Pearled Flours of Wheat, Barley, Rye and Triticale. Evidence for the Presence of Ferulic Acid Dimers and their Involvement in Gel Formation. Journal of Cereal Science 2001, 34, 207-214.
Dervilly-Pinel, G.; Tran, V.; Saulnier, L., Investigation of the distribution of arabinose residues on the xylan backbone of water-soluble arabinoxylans from wheat flour. Carbohydrate Polymers 2004, 55, 171-177.
Dole, M.; Mack, L. L.; Hines, R. L.; Mobley, R. C.; Ferguson, L. D.; Alice, M. B., Molecular Beams of Macroions. The Journal of Chemical Physics 1968, 49, 2240-2249.
Domon, B.; Costello, C. E., A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconjugate Journal 1988, 5, 397-409.
Dubois, M., Use of phenol reagent for the determination of total sugar. Analytical Chemistry 1956, 28, 350.
Escarnot, E.; Aguedo, M.; Agneessens, R.; Wathelet, B.; Paquot, M., Extraction and characterization of water-extractable and water-unextractable arabinoxylans from spelt bran: Study of the hydrolysis conditions for monosaccharides analysis. Journal of Cereal Science 2011, 53, 45-52.
Fauré, R.; Courtin, C. M.; Delcour, J. A.; Dumon, C.; Faulds, C. B.; Fincher, G. B.; Fort, S.; Fry, S. C.; Halila, S.; Kabel, M. A., A brief and informationally rich naming system for oligosaccharide motifs of heteroxylans found in plant cell walls. Australian Journal of Chemistry 2009, 62, 533-537.
Ghoneum, M., Anti-HIV activity in vitro of MGN-3, an activated arabinoxylane from rice bran. Biochemical and Biophysical Research Communications 1998, 243, 25-29.
Ghoneum, M.; Brown, J., NK immunorestoration of cancer patients by biobran/ MGN-3, a modified arabinoxylan rice bran (study of 32 patients followed for up to 4 year). Anti-aging Medical Therapeutics 1999, 3, 217-226.
Ghoneum, M.; Jewett, A., Production of tumor necrosis factor-alpha and interferon-gamma from human peripheral blood lymphocytes by MGN-3, a modified arabinoxylan from rice bran, and its synergy with interleukin-2 in vitro. Cancer Detection and Prevention 2000, 24, 314-324.
Gröndahl, M.; Teleman, A.; Gatenholm, P., Effect of acetylation on the material properties of glucuronoxylan from aspen wood. Carbohydrate Polymers 2003, 52, 359-366.
Grabber, J.; Hatfield, R.; Ralph, J., Diferulate cross‐links impede the enzymatic degradation of non‐lignified maize walls. Journal of the Science of Food and Agriculture 1998, 77, 193-200.
Gruppen, H.; Kormelink, F. J. M.; Voragen, A. G. J., Water-unextractable Cell Wall Material from Wheat Flour. 3. A Structural Model for Arabinoxylans. Journal of Cereal Science 1993, 18, 111-128.
Gudipati, M.; Rao, M., Cereal Non-Cellulosic Polysaccharides: Structure and Function Relationship—An Overview. Critical reviews in food science and nutrition 2007, 47, 599-610.
Gírio, F. M.; Fonseca, C.; Carvalheiro, F.; Duarte, L. C.; Marques, S.; Bogel-Łukasik, R., Hemicelluloses for fuel ethanol: a review. Bioresource technology 2010, 101, 4775-4800.
Hilpmann, G.; Becher, N.; Pahner, F.-A.; Kusema, B.; Mäki-Arvela, P.; Lange, R.; Murzin, D. Y.; Salmi, T., Acid hydrolysis of xylan. Catalysis Today 2016, 259, 376-380.
Hoffmann, R. A.; Kamerling, J. P.; Vliegenthart, J. F., Structural features of a water-soluble arabinoxylan from the endosperm of wheat. Carbohydrate Research 1992, 226, 303-311.
Iribarne, J. V.; Thomson, B. A., On the evaporation of small ions from charged droplets. The Journal of Chemical Physics 1976, 64, 2287-2294.
Izydorczyk, M. S.; Dexter, J. E., Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products-a Review. Food Research International 2008, 41, 850-868.
Jedrychowski, M. P.; Huttlin, E. L.; Haas, W.; Sowa, M. E.; Rad, R.; Gygi, S. P., Evaluation of HCD- and CID-type fragmentation within their respective detection platforms for murine phosphoproteomics. Molecular and Cellular Proteomics 2011, 10, M111.009910.
JMares, D.; Stone, B., Studies on wheat endosperm II. Properties of the wall components and studies on their organization in the wall. Australian Journal of Biological Sciences 1973, 26, 813-830.
Jänis, J.; Hakanpää, J.; Hakulinen, N.; Ibatullin, F. M.; Hoxha, A.; Derrick, P. J.; Rouvinen, J.; Vainiotalo, P., Determination of thioxylo‐oligosaccharide binding to family 11 xylanases using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and X‐ray crystallography. The FEBS Journal 2005, 272, 2317-2333.
Juvonen, M.; Kotiranta, M.; Jokela, J.; Tuomainen, P.; Tenkanen, M., Identification and structural analysis of cereal arabinoxylan-derived oligosaccharides by negative ionization HILIC-MS/MS. Food Chemistry 2019, 275, 176-185.
Kato, A.; Azuma, J.-i.; KOSHUIMA, T., Isolation and identification of a new feruloylated tetrasaccharide from bagasse lignin-carbohydrate complex containing phenolic acid. Agricultural and Biological Chemistry 1987, 51, 1691-1693.
Kormelink, F. J.; Gruppen, H.; Viëtor, R. J.; Voragen, A. G. J. C. R., Mode of action of the xylan-degrading enzymes from Aspergillus awamori on alkali-extractable cereal arabinoxylans. Carbohydrate Research 1993, 249, 355-367.
Kouzounis, D.; Sun, P.; Bakx, E. J.; Schols, H. A.; Kabel, M. A., Strategy to identify reduced arabinoxylo-oligosaccharides by HILIC-MSn. Carbohydrate Polymers 2022, 289, 119415.
Kozlova, L.; Mikshina, P.; Gorshkova, T., Glucuronoarabinoxylan extracted by treatment with endoxylanase from different zones of growing maize root. Biochemistry (Moscow) 2012, 77, 395-403.
Lempereur, I.; Rouau, X.; Abecassis, J., Genetic and agronomic variation in arabinoxylan and ferulic acid contents of durum wheat (Triticum durumL.) grain and its milling fractions. Journal of Cereal Science 1997, 25, 103-110.
Lin, C.-C.; Yang, Y.-C.; Lu, Z.-Y.; Bagal-Kestwal, D. R.; Lu, T.-J., Profile diversity of galacto-oligosaccharides from disaccharides to hexasaccharides by porous graphitic carbon liquid chromatography-orbitrap tandem mass spectrometry. Food Chemistry 2022, 390, 133151.
Linder, Å.; Bergman, R.; Bodin, A.; Gatenholm, P., Mechanism of Assembly of Xylan onto Cellulose Surfaces. Langmuir 2003, 19, 5072-5077.
Logtenberg, M. J.; Donners, K. M. H.; Vink, J. C. M.; van Leeuwen, S. S.; de Waard, P.; de Vos, P.; Schols, H. A., Touching the High Complexity of Prebiotic Vivinal Galacto-oligosaccharides Using Porous Graphitic Carbon Ultra-High-Performance Liquid Chromatography Coupled to Mass Spectrometry. Journal of Agricultural and Food Chemistry 2020, 68, 7800-7808.
Luonteri, E.; Siika-aho, M.; Tenkanen, M.; Viikari, L., Purification and characterization of three α-arabinosidases from Aspergillus terreus. Journal of Biotechnology 1995, 38, 279-291.
Mathew, S.; Abraham, T., Ferulic Acid: An Antioxidant Found Naturally in Plant Cell Walls and Feruloyl Esterases Involved in its Release and Their Applications. Critical Reviews in Biotechnology 2004, 24, 59-83.
Mathew, S.; Aronsson, A.; Karlsson, E. N.; Adlercreutz, P., Xylo- and arabinoxylooligosaccharides from wheat bran by endoxylanases, utilisation by probiotic bacteria, and structural studies of the enzymes. Applied Microbiology and Biotechnology 2018, 102, 3105-3120.
McCleary, B. V.; McKie, V. A.; Draga, A.; Rooney, E.; Mangan, D.; Larkin, J., Hydrolysis of wheat flour arabinoxylan, acid-debranched wheat flour arabinoxylan and arabino-xylo-oligosaccharides by β-xylanase, α-L-arabinofuranosidase and β-xylosidase. Carbohydrate Research 2015, 407, 79-96.
Mendez-Encinas, M. A.; Carvajal-Millan, E.; Rascon-Chu, A.; Astiazaran-Garcia, H. F.; Valencia-Rivera, D. E., Ferulated Arabinoxylans and Their Gels: Functional Properties and Potential Application as Antioxidant and Anticancer Agent. Oxidative Medicine and Cellular Longevity 2018, 2018, 2314759.
Mendis, M.; Leclerc, E.; Simsek, S., Arabinoxylan hydrolyzates as immunomodulators in lipopolysaccharide-induced RAW264.7 macrophages. Food & Function 2016, 7, 3039-3045.
Mussatto, S. I.; Teixeira, J. A., Lignocellulose as raw material in fermentation processes. 2010.
Naidu, D. S.; Hlangothi, S. P.; John, M. J., Bio-based products from xylan: A review. Carbohydrate Polymers 2018, 179, 28-41.
Nordberg Karlsson, E.; Schmitz, E.; Linares-Pastén, J. A.; Adlercreutz, P., Endo-xylanases as tools for production of substituted xylooligosaccharides with prebiotic properties. Applied Microbiology and Biotechnology 2018, 102, 9081-9088.
Ordaz-Ortiz, J. J.; Guillon, F.; Tranquet, O.; Dervilly-Pinel, G.; Tran, V.; Saulnier, L., Specificity of monoclonal antibodies generated against arabinoxylans of cereal grains. Carbohydrate Polymers 2004, 57, 425-433.
Pérez-Martínez, A.; Valentín, J.; Fernández, L.; Hernández-Jiménez, E.; López-Collazo, E.; Zerbes, P.; Schwörer, E.; Nuñéz, F.; Martín, I. G.; Sallis, H.; Díaz, M.; Handgretinger, R.; Pfeiffer, M. M., Arabinoxylan rice bran (MGN-3/Biobran) enhances natural killer cell-mediated cytotoxicity against neuroblastoma in vitro and in vivo. Cytotherapy 2015, 17, 601-612.
Pastell, H.; Virkki, L.; Harju, E.; Tuomainen, P.; Tenkanen, M., Presence of 1→3-linked 2-O-β-D-xylopyranosyl-α-L-arabinofuranosyl side chains in cereal arabinoxylans. Carbohydrate Research 2009, 344, 2480-2488.
Pell, G.; Taylor, E. J.; Gloster, T. M.; Turkenburg, J. P.; Fontes, C. M.; Ferreira, L. M.; Nagy, T.; Clark, S. J.; Davies, G. J.; Gilbert, H. J., The mechanisms by which family 10 glycoside hydrolases bind decorated substrates. Journal of Biological Chemistry 2004, 279, 9597-9605.
Pettolino, F. A.; Walsh, C.; Fincher, G. B.; Bacic, A., Determining the polysaccharide composition of plant cell walls. Nature Protocols 2012, 7, 1590-1607.
Puchart, V.; Biely, P., Simultaneous production of endo-beta-1,4-xylanase and branched xylooligosaccharides by Thermomyces lanuginosus. Journal of Biotechnology 2008, 137, 34-43.
Quéméner, B.; Ordaz-Ortiz, J. J.; Saulnier, L., Structural characterization of underivatized arabino-xylo-oligosaccharides by negative-ion electrospray mass spectrometry. Carbohydrate Research 2006, 341, 1834-1847.
Ralet, M.-C., Feruloylated oligosaccharides from cell-wall polysaccharides, Part I. Isolation and purification of feruloyrated oligosaccharides from cell walls of sugar-beet pulp. Carbohydrate Research 1994, 263, 227-241.
Reilly, P. J., Xylanases: structure and function. Trends in the Biology of Fermentations for Fuels and Chemicals 1981, 111-129.
Ring, S. G.; Selvendran, R. R., Isolation and analysis of cell wall material from beeswing wheat bran (Triticum aestivum). Phytochemistry 1980, 19, 1723-1730.
Shao, Y.; Lin, A. H., Improvement in the quantification of reducing sugars by miniaturizing the Somogyi-Nelson assay using a microtiter plate. Food Chemistry 2018, 240, 898-903.
Shibuya, N.; Misaki, A.; Iwasaki, T., The Structure of Arabinoxylan and Arabinoglucuronoxylan Isolated from Rice Endosperm Cell Wall. Agricultural and Biological Chemistry 1983, 47, 2223-2230.
Shibuya, N.; Nakane, R., Pectic polysaccharides of rice endosperm cell walls. Phytochemistry 1984, 23, 1425-1429.
Sorek, N.; Yeats, T. H.; Szemenyei, H.; Youngs, H.; Somerville, C. R., The implications of lignocellulosic biomass chemical composition for the production of advanced biofuels. BioScience 2014, 64, 192-201.
Sunna, A.; Antranikian, G., Xylanolytic enzymes from fungi and bacteria. Critical Reviews in Biotechnology 1997, 17, 39-67.
Tian, L.; Gruppen, H.; Schols, H. A., Characterization of (Glucurono)arabinoxylans from oats using enzymatic fingerprinting. Journal of Agricultural and Food Chemistry 2015, 63, 10822-10830.
Tsai, S.-T.; Chen, J.-L.; Ni, C.-K., Does low-energy collision-induced dissociation of lithiated and sodiated carbohydrates always occur at anomeric carbon of the reducing end? Rapid Communications in Mass Spectrometry 2017, 31, 1835-1844.
Van Craeyveld, V.; Swennen, K.; Dornez, E.; Van de Wiele, T.; Marzorati, M.; Verstraete, W.; Delaedt, Y.; Onagbesan, O.; Decuypere, E.; Buyse, J., Structurally different wheat-derived arabinoxylooligosaccharides have different prebiotic and fermentation properties in rats. The Journal of Nutrition 2008, 138, 2348-2355.
Van Dyk, J.; Pletschke, B., A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnology Advances 2012, 30, 1458-1480.
Van Laere, K. M.; Hartemink, R.; Bosveld, M.; Schols, H. A.; Voragen, A. G., Fermentation of plant cell wall derived polysaccharides and their corresponding oligosaccharides by intestinal bacteria. Journal of Agricultural and Food Chemistry 2000, 48, 1644-1652.
Viëtor, R. J.; Kormelink, F. J. M.; Angelino, S. A. G. F.; Voragen, A. G. J., Substitution patterns of water-unextractable arabinoxylans from barley and malt. Carbohydrate Polymers 1994, 24, 113-118. Ward, G.; Hadar, Y.; Bilkis, I.; Konstantinovsky, L.; Dosoretz, C. G., Initial steps of ferulic acid polymerization by lignin peroxidase. Journal of Biological Chemistry 2001, 276, 18734-18741.
Yamasaki, T.; Enomoto, A.; Kato, A.; Ishii, T.; Kameyama, M.; Anzai, H.; Shimizu, K., Enzymatically derived aldouronic acids from Cryptomeria japonica arabinoglucuronoxylan. Carbohydrate Polymers 2012, 87, 1425-1432.
Zhang, Z.; Smith, C.; Li, W., Extraction and modification technology of arabinoxylans from cereal by-products: A critical review. Food Research International 2014, 65, 423-436.
Zheng, X.; Li, L.; Wang, X., Molecular Characterization of Arabinoxylans from Hull-Less Barley Milling Fractions. Molecules 2011, 16, 2743-2753.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87446-
dc.description.abstract阿拉伯木聚醣為穀物主要半纖維素組成,複雜的側支結構是影響其吸水性、黏度、保氣性及益生質功能的因素,更是分析上的挑戰。本研究利用內切木聚醣酶將櫸木 (BWX)、燕麥 (OSX)與小麥 (WAX)三種來源水溶性同質與異質木聚醣水解出保有側支的寡醣,再以液相層析串聯軌道阱質譜 (LC-Orbitrap-MS/MS)進行結構解析,鑑別骨幹與側支的鍵結資訊。單醣組成及甲基化醣基鍵結分析顯示,BWX為同質木聚醣,而OSX與WAX為異質阿拉伯木聚醣,含有阿拉伯糖醣基分支。本研究選擇真菌Trichoderma viride 之glycoside hydrolase (GH) 11 family 內切木聚醣酶釋出寡醣,所建立液相層析串聯軌道阱質譜法解析出直線型木寡醣及分支型阿拉伯木寡醣共17種,分布在三至七醣聚合度範圍。解析結果顯示所選擇的三種木聚醣均以(1→4)-鍵結之木糖醣基為骨幹,BWX為單純的直線型,OSX樣品之分支率為15%,包含 (1→3)-鍵結單取代10%及 (1→2;1→3)-鍵結雙取代5%阿拉伯糖側支。WAX分支率較高為20%,包含 (1→3)-鍵結單取代17%、連續 (1→3)-鍵結單取代2%以及 (1→2;1→3)-鍵結雙取代1%。所建立分析平台同時可以由水解寡醣產物解析結果,推測此glycoside hydrolase (GH) 11 family的內切木聚醣酶具有-3至+4共七個受質結合位,在結合位-3、-2、+2及+3上可容納單取代及雙取代形式的醣基側支修飾。本研究建立之分析平台能夠辨別木聚醣骨幹上阿拉伯糖醣基取代基鍵結及取代形式的差異,為以木糖為骨幹的聚醣及寡醣產品提供便捷的品質管制平台,並可延伸發展為木寡醣益生質之酵素來源選擇與產品品質的監測工具。zh_TW
dc.description.abstractArabinoxylan is one of the major hemicellulose components in cereal's cell walls. The complex structural characteristics of arabinoxylan alter its water-absorbing, viscosity, gas retention capacity, prebiotic properties and pose a challenge to chemical analysis. This study developed an effective analytical tool based on enzymatic digestion combining a high-resolution liquid-chromatography-orbitrap tandem mass spectrometry (LC-Orbitrap-MS/MS) to reveal the structural characteristics of three water-soluble xylans from beechwood (BWX), oat spelts (OSX), and wheat (WAX). Results of sugar composition and permethylation linkage analyses indicated that BWX was a homogenous xylan, and OSX and WAX were heterogenous arabinoxylans with arabinosyl branches. Glycoside hydrolase family 11 endoxylanase from Trichoderma viride was selected to release oligomers from the hemicellulose samples. The platform could characterize 17 oligosaccharides, including linear and branched structures in the degree of polymerization range of 3 ~ 7. The structural characterizing results indicate that (1→4)-linked xylan was the backbone for all three polysaccharides. BWX was a linear xylan. The degree of substitution of the OSX was 15%, including 10% of (1→3)-linked monosubstituted and 5% of (1→2;1→3)-linked disubstituted arabinosyl branches; the degree of substitution of the WAX was 20%, higher than OSX, including 17% of (1→3)-linked monosubstituted, 2% of continuously (1→3)-linked monosubstituted and 1% of (1→2;1→3)-linked disubstituted arabinosyl branches. The information of released oligosaccharides also could induce that the active sites of the glycoside hydrolase (GH) 11 family endoxylanase contained seven binding subsites. The binding subsites could be labeled from -3 to +4, where the point of glycosidic bond cleavage between subsites -1 and +1. The enzyme can also accommodate monosubstituted and disubstituted arabinosyl side groups at the -3, -2, +2, and +3 subsites. This developed analytical platform can differentiate substituted linkages and patterns of branches on xylans. It can be an effective tool for quality control of arabinoxylans and applied to search for enzyme sources for prebiotic development from xylo-oligosaccharides.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-07T16:04:43Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-06-07T16:04:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目錄
摘要 i
Abstract ii
目錄 iii
圖目錄 vii
表目錄 xi
附錄 xii
附圖目錄 xii
附表目錄 xiii
第一章、 前言 1
第二章、 文獻回顧 2
2.1 穀物細胞壁多醣 2
2.2 穀物之半纖維素組成 3
2.3 硬木木之半纖維素組成 3
2.4 草本植物之半纖維素組成 3
2.5 穀物來源之異質木聚醣 4
2.5.1 穀物結構 4
2.5.2 穀物來源阿拉伯木聚醣之分佈及結構特徵 4
2.5.2.1 大麥 Hordeum vulgare 5
2.5.2.2 小麥 Triticum aestivum 5
2.5.2.3 稻米 Oryza sativa 6
2.6 阿拉伯木聚醣之取得 7
2.7 異質木聚醣之功能結構關係 8
2.7.1 食品加工性質-溶解度、凝膠作用 8
2.7.1.1 溶解度 8
2.7.1.2 凝膠作用 9
2.7.1.3 益生質特性 11
2.7.1.4 免疫調節特性 12
2.8 木聚醣醣苷水解酵素 (Xylanolytic Enzymes) 13
2.8.1 內切木聚醣酶 (Endo-β-1,4-xylanase; EC 3.2.1.8) 14
2.8.1.1 GH10及GH11 family內切木聚醣酶水解特性 14
2.9 異質木聚醣結構解析 16
2.9.1 氣相層析串聯質譜法 (GC-MS) 16
2.9.2 陰離子交換層析法串聯安培脈衝偵測器 (HPAEC-PAD) 17
2.9.3 液相層析串聯質譜法 (LC-MS/MS) 18
2.9.3.1 串聯質譜儀的結構與特性 18
2.9.3.2 離子源種類 18
2.9.3.3 質量分析器 19
2.9.3.4 寡醣碎片離子命名法 20
2.9.4 阿拉伯木寡醣質譜斷裂模式 22
第三章、 實驗目的與研究架構 23
第四章、 實驗材料及方法 24
4.1 實驗材料 24
4.1.1 木聚醣樣品 24
4.2 試藥與儀器設備 24
4.2.1 化學藥劑與試劑 24
4.2.2 標準品 25
4.2.3 酵素 25
4.2.4 儀器設備 25
4.3 樣品製備方式 26
4.3.1 酵素水解反應 26
4.4 分析方法 27
4.4.1 總醣含量測定 27
4.4.2 還原醣含量測定 27
4.4.3 醣醛酸含量測定 28
4.4.4 以陰離子交換層析法進行單醣組成及分支程度測定 28
4.4.4.1 甲醇解 28
4.4.4.2 TFA酸水解 28
4.4.4.3 中性醣分析條件 29
4.4.4.4 酸性醣分析條件 29
4.4.5 以氣相層析串聯質譜法進行單醣及醣苷鍵結分析 29
4.4.5.1 多醣以糖醇醋酸衍生法進行單醣組成分析前處理 29
4.4.5.2 多醣以部分甲基化糖醇醋酸衍生進行鍵結組成分析前處理 30
4.4.5.3 氣相層析串聯質譜儀之層析條件 30
4.4.6 液相石墨化碳管柱層析串聯質譜儀進行阿拉伯木寡糖結構解析 31
4.4.6.1 質譜儀游離化效率品質管制 31
4.4.6.2 層析及質譜條件設定 32
第五章、 結果與討論 34
5.1 木聚醣產品之醣組成 34
5.1.1 單醣組成及骨幹取代程度 34
5.1.2 鍵結組成 35
5.2 以液相層析串聯質譜法建立五碳寡醣之斷裂模式 35
5.2.1 直線型阿拉伯木寡醣斷裂模式分析 35
5.2.2 分支型阿拉伯木寡醣斷裂模式分析 36
5.3 Endo-β-1,4-xylanase產物 (XylOS)結構鑑別 38
5.3.1 直線型木聚醣樣品之GH11 family內切木聚醣酶水解產物 (XylOS-BWX) 38
5.3.2 不同取代程度阿拉伯木聚醣之酵素水解產物 (XylOS-OSX, WAX) 39
5.3.2.1 比較阿拉伯木寡醣三醣異構物結構 40
5.3.2.2 比較阿拉伯木寡醣四醣異構物結構 40
5.3.2.3 比較阿拉伯木寡醣五醣異構物結構 41
5.3.2.4 比較阿拉伯木寡醣六醣異構物結構 42
5.3.2.5 比較阿拉伯木寡醣七醣異構物結構 44
5.3.3 以酵素水解產物推測木聚醣分支率 46
5.4 GH11 family Endo-β-1,4-xylanase水解作用模式解析 47
5.4.1 預測酵素受質結合位個數 47
5.4.2 預測可容納側支的受質結合位 47
5.4.3 木聚醣受質取代程度與酵素轉換率的關係 48
第六章、 結論 50
第七章、 參考文獻 51
表次 60
圖次 81
第八章、 附錄 112
8.1 附錄圖次 112
8.2 附錄表次 126

圖目錄
圖 一、各種半纖維素結構。(a) 半乳糖甘露聚醣、(b) 葡萄甘露聚醣、(c) 半乳糖葡萄糖醛酸甘露聚醣、(d) 木聚醣、(e) 阿拉伯木聚醣、(f) 葡萄糖醛酸木聚醣、(g) 阿拉伯葡萄糖醛酸木聚醣及 (h) 木糖葡聚醣。 2
圖 二、穀物顆粒之組織結構圖。 4
圖 三、大麥胚乳阿拉伯木聚醣結構示意圖。(●表示木糖;□表示阿拉伯糖;——表示1,4鍵結;/表示1,3鍵結;\表示1,2鍵結) 5
圖 四、小麥胚乳水不可萃阿拉伯木聚醣結構示意圖。(●表示木糖;□表示阿拉伯糖;——表示1,4鍵結;/表示1,3鍵結;\表示1,2鍵結) 6
圖 五、稻米胚乳阿拉伯木聚醣結構示意圖。(●表示木糖;□表示阿拉伯糖;——表示1,4鍵結;/表示1,3鍵結;\表示1,2鍵結) 6
圖 六、稻米麩皮阿拉伯木聚醣結構示意圖。(●表示木糖;□表示阿拉伯糖;△表示半乳糖; 表示4-甲基葡萄糖醛酸醣基;—表示1,4鍵結;/表示1,3鍵結;\表示1,2鍵結) 7
圖 七、阿拉伯木聚醣結構特徵 (a)阿拉伯木寡醣一般結構及 (b)阿拉伯糖醣基側支的取代形態。 9
圖 八、從植物細胞壁分離之各式結構的阿魏酸二聚體。 10
圖 九、阿魏酸阿拉伯木聚醣形成與結構示意圖,以8-5’ di-FA為例 (a)阿魏酸二聚體之形成 (b) 8-5’ di-FA阿魏酸阿拉伯木聚醣之結構。 11
圖 十、參與木聚醣骨幹及側支降解之醣苷水解酵素種類。Ac:乙醯基、α-Araf:α-阿拉伯呋喃糖、α-4-O-Me-GlcA:α-4-O-甲基葡萄糖醛酸。 13
圖 十一、醣苷水解酵素之受質結合位及醣苷水解位置。 14
圖 十二、屬於Glycoside hydrolase 10和11 family之木聚醣酶結構。 16
圖 十三、細胞壁多醣之甲基化分析。 17
圖 十四、電噴灑游離化過程之示意圖。 19
圖 十五、寡醣於質譜斷裂碎片之命名。 21
圖 十六、分支型醣類質譜跨環及醣苷鍵斷裂斷片之命名。 21
圖 十七、研究架構圖。 23
圖 十八、櫸木木聚醣樣品三醣至七醣酵素水解產物之重建層析疊圖。 81
圖 十九、燕麥木聚醣樣品三醣至七醣酵素水解產物之重建層析疊圖。 82
圖 二十、小麥木聚醣樣品三醣至七醣酵素水解產物之重建層析疊圖。 83
圖 二十一、XylOS-BWX三醣BWXS3-1之二次質譜圖與結構斷裂碎片離子示意圖。 84
圖 二十二、XylOS-BWX四醣BWXS4-1之二次質譜圖與結構斷裂碎片離子示意圖。 85
圖 二十三、XylOS-BWX五醣BWXS5-1之二次質譜圖與結構斷裂碎片離子示意圖。 86
圖 二十四、XylOS-BWX六醣BWXS6-1之二次質譜圖與結構斷裂碎片離子示意圖。 87
圖 二十五、XylOS-BWX七醣BWXS7-1之二次質譜圖與結構斷裂碎片離子示意圖。 88
圖 二十六、XylOS-OSX三醣OSXS3-1之二次質譜圖與結構斷裂碎片離子示意圖。 89
圖 二十七、XylOS-OSX三醣OSXS3-2之二次質譜圖與結構斷裂碎片離子示意圖。 90
圖 二十八、XylOS-OSX四醣OSXS4-1之二次質譜圖與結構斷裂碎片離子示意圖。 91
圖 二十九、XylOS-OSX四醣OSXS4-2之二次質譜圖與結構斷裂碎片離子示意圖。 92
圖 三十、XylOS-OSX五醣OSXS5-1之二次質譜圖與結構斷裂碎片離子示意圖。 93
圖 三十一、XylOS-OSX五醣OSXS5-2之二次質譜圖與結構斷裂碎片離子示意圖。 94
圖 三十二、XylOS-OSX六醣OSXS6-1之二次質譜圖與結構斷裂碎片離子示意圖。 95
圖 三十三、XylOS-OSX六醣OSXS6-3之二次質譜圖與結構斷裂碎片離子示意圖。 96
圖 三十四、XylOS-OSX七醣OSXS7-1之二次質譜圖與結構斷裂碎片離子示意圖。 97
圖 三十五、XylOS-OSX七醣OSXS7-2之二次質譜圖與結構斷裂碎片離子示意圖。 98
圖 三十六、XylOS-WAX三醣WAXS3-1之二次質譜圖與結構斷裂碎片離子示意圖。 99
圖 三十七、XylOS-WAX三醣WAXS4-1之二次質譜圖與結構斷裂碎片離子示意圖。 100
圖 三十八、XylOS-WAX三醣WAXS4-2之二次質譜圖與結構斷裂碎片離子示意圖。 101
圖 三十九、XylOS-WAX五醣WAXS5-1之二次質譜圖與結構斷裂碎片離子示意圖。 102
圖 四十、XylOS-WAX六醣WAXS6-1之二次質譜圖與結構斷裂碎片離子示意圖。 103
圖 四十一、XylOS-WAX七醣WAXS7-1之二次質譜圖與結構斷裂碎片離子示意圖。 104
圖 四十二、XylOS-WAX七醣WAXS7-2之二次質譜圖與結構斷裂碎片離子示意圖。 105
圖 四十三、XylOS-WAX七醣WAXS7-3之二次質譜圖與結構斷裂碎片離子示意圖。 106
圖 四十四、利用沖提譜型辨別燕麥木聚醣五醣產物 (XylOS-OSX, OSXS5-2)於撞擊能量NCE 15%下產生之特徵碎片。 107
圖 四十五、於HCD撞擊能量15%下,利用沖提譜型辨別燕麥木聚醣六醣產物 (XylOS-OSX, OSXS6-2)之結構。 108
圖 四十六、不同撞擊能量對於波峰BWXS5-1之A-type斷裂碎片強度之影響。 109
圖 四十七、不同撞擊能量對於波峰BWXS6-1之A-type斷裂碎片強度之影響。 110
圖 四十八、不同撞擊能量對於波峰BWXS7-1之A-type斷裂碎片強度之影響。 111

表目錄
表 一、以HP-5MS UI作為分析管柱的氣相層析串聯質譜分析系統分析部分甲基化糖醇醋酸酯之溫度梯度 31
表 二、以Hypercarb™作為分析管柱的PGC-LC-Orbitrap-MS/MS進行阿拉伯木寡糖之層析流洗梯度 32
表 三、以高效液相陰離子交換層析 (HPAEC-PAD)分析櫸木、燕麥與小麥木聚醣樣品之單醣組成 60
表 四、以氣相層析質譜儀 (GC-MS)分析櫸木、燕麥與小麥木聚醣樣品之單醣及醣苷鍵結組成 61
表 五、直線型與分支型阿拉伯木寡醣標準品於HCD撞擊模式下所得斷裂碎片種類及相對離子強度 62
表 六、直線型及分支型阿拉伯木寡醣側支取代及分支點之Z離子和Y離子relative abundance統整 64
表 七、預期Trichoderma viride 來源endoxylanase水解產物阿拉伯木寡醣三醣至七醣異構物種類 65
表 八、櫸木木聚醣樣品之酵素水解產物 (XylOS-BWX)合適HCD撞擊能量、特徵離子與結構解析 69
表 九、燕麥木聚醣樣品之酵素水解產物 (XylOS-OSX) 合適HCD撞擊能量、特徵離子與結構解析 71
表 十、小麥木聚醣樣品之酵素水解產物 (XylOS-WAX) 合適HCD撞擊能量、特徵離子與結構解析 75
表 十一、櫸木、燕麥及小麥木聚醣樣品受質之酵素水解產物轉換率及聚合度分佈 78
表 十二、預測酵素可容許側支取代的受質結合位 79
表 十三、三種木聚醣樣品骨幹上側支取代差異 80

附圖目錄
附圖 一、Terminal形式木糖醣基 (t-Xylp)甲基糖醇醋酸酯衍生物1,5-Di-O-acetyl-1-deuterio-2,3,4-tri-O-methyl-D-xylitol之質譜圖。 112
附圖 二、4-linked形式木糖醣基 (4-Xylp)甲基糖醇醋酸酯衍生物1,4,5-Tri-O-acetyl-1-deuterio-2,3-di-O-methyl-D-xylitol之質譜圖。 113
附圖 三、2,4-linked形式木糖醣基 (2,4-Xylp)甲基糖醇醋酸酯衍生物1,2,4,5-Tetra-O-acetyl-1-deuterio-3-O-methyl-D-xylitol之質譜圖。 114
附圖 四、3,4-linked形式木糖醣基 (3,4-Xylp)甲基糖醇醋酸酯衍生物1,3,4,5-Tetra-O-acetyl-1-deuterio-2-O-methyl-D-xylitol之質譜圖。 115
附圖 五、2,3,4-linked形式木糖醣基 (2,3,4-Xylp)甲基糖醇醋酸酯衍生物1,2,3,4,5-Penta-O-acetyl-1-deuterio-D-xylitol之質譜圖。 116
附圖 六、A3X阿拉伯木寡醣標準品之二次質譜圖與結構斷裂碎片離子示意圖。 117
附圖 七、A2XX阿拉伯木寡醣標準品之二次質譜圖與結構斷裂碎片離子示意圖。 118
附圖 八、XA3XX阿拉伯木寡醣標準品於撞擊能量NCE 15%下之二次質譜圖與結構斷裂碎片離子示意圖。 119
附圖 九、XA3XX阿拉伯木寡醣標準品於撞擊能量NCE 20%下之二次質譜圖與結構斷裂碎片離子示意圖。 120
附圖 十、XA2XX阿拉伯木寡醣標準品之二次質譜圖與結構斷裂碎片離子示意圖。 121
附圖 十一、A2,3XX阿拉伯木寡醣標準品之二次質譜圖與結構斷裂碎片離子示意圖。 122
附圖 十二、阿拉伯木寡醣鍵結判斷依據。 123
附圖 十三、預測endo-1,4-β-xylanase受質結合位上可容納醣基側支的位置。 124
附圖 十四、推測酵素水解產物經二次水解後之寡醣種類之示意圖。 125

附表目錄
附表 一、木糖各式鍵結甲基糖醇醋酸酯衍生物之Kovats retention index及質譜碎片相對峰度 126
附表 二、本研究使用之阿拉伯木寡醣標準品 127
附表 三、直線型與分支型木寡醣寡醣斷裂碎片 128
附表 四、阿拉伯木寡醣縮寫規則 129
附表 五、定量endo-1,4-β-xylanase水解產物中阿拉伯木寡醣之檢量線 130
-
dc.language.isozh_TW-
dc.subject內切木聚醣酶zh_TW
dc.subject阿拉伯木聚醣zh_TW
dc.subject半纖維素結構分析zh_TW
dc.subject液相層析串聯軌道阱質譜法zh_TW
dc.subjectendoxylanaseen
dc.subjectLC-Orbitrap-MS/MSen
dc.subjectarabinoxylanen
dc.subjectstructural analysis of hemicelluloseen
dc.title以內切木聚醣酶結合液相層析串聯質譜法建立阿拉伯木聚醣分子特徵zh_TW
dc.titleMolecular characteristics of arabinoxylan by using endoxylanase-LC-MS/MS methoden
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張永和;羅翊禎;方銘志;魏國晋zh_TW
dc.contributor.oralexamcommitteeYung-Ho Chang;Yi-Chen Lo;Ming-Chih Fang;Guor-Jien Weien
dc.subject.keyword阿拉伯木聚醣,內切木聚醣酶,液相層析串聯軌道阱質譜法,半纖維素結構分析,zh_TW
dc.subject.keywordarabinoxylan,endoxylanase,LC-Orbitrap-MS/MS,structural analysis of hemicellulose,en
dc.relation.page162-
dc.identifier.doi10.6342/NTU202204280-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-10-18-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept食品科技研究所-
dc.date.embargo-lift2027-10-17-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  此日期後於網路公開 2027-10-17
8.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved