Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87347
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘敏雄zh_TW
dc.contributor.advisorMin-Hsiung Panen
dc.contributor.author黃偉哲zh_TW
dc.contributor.authorWei-Zhe Huangen
dc.date.accessioned2023-05-18T17:12:14Z-
dc.date.available2023-11-10-
dc.date.copyright2023-06-07-
dc.date.issued2022-
dc.date.submitted2022-10-28-
dc.identifier.citation衛生福利部統計處(2022)。110年死因統計年報。中華民國衛生福利部。
Aaronson, D. S.; Horvath, C. M. A road map for those who don't know JAK-STAT. Science, 2002, 296, 1653-1655.
Akira, S.; Nishio, Y.; Inoue, M.; Wang, X.-J.; We, S.; Matsusaka, T.; Yoshida, K.; Sudo, T.; Naruto, M.; Kishimoto. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell, 1994, 77, 63-71.
Alanazi, I.; Hoffmann, P.; Adelson. D. L. MicroRNAs are part of the regulatory network that controls EGF induced apoptosis, including elements of the JAK/STAT pathway, in A431 cells. PloS one, 2015, 10, e0120337.
Aldoss, I. T.; Tashi, T.; Ganti, A. K. Seliciclib in malignancies. Expert Opinion on Investigational Drugs; Taylor & Francis, 2009
Alosi, J. A.; McDonald, D. E.; Schneider, J. S.; Privette, A. R.; McFadden, D. W. Pterostilbene inhibits breast cancer in vitro through mitochondrial depolarization and induction of caspase-dependent apoptosis. J. Surg. Res. 2010, 161, 195-201.
Alsop, K.; Fereday, S.; Meldrum, C.; DeFazio, A.; Emmanuel, C.; George, J.; Dobrovic, A.; Birrer, M. J.; Webb, P. M.; Stewart, C.; Friedlander,M.; Fox, S.; Bowtell, T.; Mitchell. G. BRCA mutation frequency and patterns of treatment response in BRCA mutation–positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. Am. J. Clin. Oncol. 2012, 30, 2654.
Amé, J. C.; Spenlehauer, C.; de Murcia, G. The PARP superfamily. Bioessays. 2004, 26, 882-893.
Amjad, M. T., Chidharla, A., & Kasi, A. Cancer Chemotherapy. StatPearls Publishing, United States. 2022
Anglesio, M. S.; George, J.; Kulbe, H.; Friedlander, M.; Rischin, D.; Lemech, C.; Power, J.; Coward, J.; Cowin, P. A.; House, C. Chakravarty.P.; Gorringe; Campbell, I. G.; Australian Ovarian Cancer Study Group; Okamoto, A.; Birrer, M. J.;Huntsman D. G.; Anna de Fazio; Kalloger S, E; Frances Balkwill; C. Bowtell, D. D. IL6-STAT3-HIF signaling and therapeutic response to the angiogenesis inhibitor sunitinib in ovarian clear cell cancer IL6-STAT3-HIF signaling in ovarian clear cell cancer. Clin. Cancer. Res. 2011, 17, 2538-2548.
Arora, L.; Kumar, A. P.; Arfuso, F.; Chng, W. J.; Sethi, G. The role of signal transducer and activator of transcription 3 (STAT3) and its targeted inhibition in hematological malignancies. Cancers, 2018, 10, 327.
Bagshaw, S. M.; Gibney, R. T. Conventional markers of kidney function. Crit. Care Med., 2008, 36, S152-158.
Barton, B. E.; Murphy, T. F.; Shu, P.; Huang, H. F.; Meyenhofer, M.; Barton, A. Novel single-stranded oligonucleotides that inhibit signal transducer and activator of transcription 3 induce apoptosis in vitro and in vivo in prostate cancer cell lines. Mol Cancer Ther., 2004, 3, 1183-1191.
BCCancer. Ovary - Epithelial Carcinoma. http://www.bccancer.bc.ca/health-professionals/clinical-resources/cancer-management-manual/gynecology/ovary-epithelial-carcinoma
Becker, S.; Groner, B.; Müller, C. W. J. N. Three-dimensional structure of the Stat3β homodimer bound to DNA., Nature, 1998, 394, 145-151.
Berenbaum, M. C. What is synergy? Pharmacol. Rev., 1989, 41, 93-141.
Berns, K.; Caumanns, J. J.; Hijmans, E. M.; Gennissen, A. M. C.; Severson, T. M.; Evers, B.; Wisman, G. B. A.; Jan Meersma, G.; Lieftink, C.; Beijersbergen, R. L.; Itamochi, H.; van der Zee, A. G. J.; de Jong, S.; Bernards, R. ARID1A mutation sensitizes most ovarian clear cell carcinomas to BET inhibitors. Oncogene., 2018, 37, 4611-4625.
Bixel, K.; Saini, U.; Kumar Bid, H.; Fowler, J.; Riley, M.; Wanner, R.; Deepa Priya Dorayappan, K.; Rajendran, S.; Konishi, I.; Matsumura, N.; Cohn, D. E.; Selvendiran, K. Targeting STAT3 by HO3867 induces apoptosis in ovarian clear cell carcinoma. Int J Cancer, 2017, 141, 1856-1866.
Bodnar, L.; Wcislo, G.; Gasowska-Bodnar, A.; Synowiec, A.; Szarlej-Wcisło, K.; Szczylik, C. Renal protection with magnesium subcarbonate and magnesium sulphate in patients with epithelial ovarian cancer after cisplatin and paclitaxel chemotherapy: a randomised phase II study. Eur. J. Cancer, 2008, 44, 2608-2614.
Bosetti, C.; Negri, E.; Trichopoulos, D.; Franceschi, S.; Beral, V.; Tzonou, A.; Parazzini, F.; Greggi, S.; La Vecchia, C. Long-term effects of oral contraceptives on ovarian cancer risk. Int. J. Cancer, 2002, 102, 262-265.
Bratton, S. B.; Salvesen, G. S. Regulation of the Apaf-1–caspase-9 apoptosome. J. Cell. Sci., 2010, 123, 3209-3214.
Brooks, A. J.; Putoczki, T. JAK-STAT signalling pathway in cancer. Cancers, 2020, 12.
Buys, S. S.; Partridge, E.; Black, A.; Johnson, C. C.; Lamerato, L.; Isaacs, C.; Reding, D. J.; Greenlee, R. T.; Yokochi, L. A.; Kessel, B.; Crawford, E. D.; Church, T. R.; Andriole, G. L.; Weissfeld, J. L.; Fouad, M. N.; Chia, D.; O'Brien, B.; Ragard, L. R.; Clapp, J. D.; Rathmell, J. M.; Riley, T. L.; Hartge, P.; Pinsky, P. F.; Zhu, C. S.; Izmirlian, G.; Kramer, B. S.; Miller, A. B.; Xu, J. L.; Prorok, P. C.; Gohagan, J. K.; Berg, C. D. Effect of screening on ovarian cancer mortality: the prostate, lung, colorectal and ovarian (PLCO) cancer screening randomized controlled trial., JAMA. 2011, 305, 2295-2303.
Cancer Research Product Guide. Cancer Research (3 Ed.). tocris., 2015.
Cai, L.; Zhang, G.; Tong, X.; You, Q.; An, Y.; Wang, Y.; Guo, L.; Wang, T.; Zhu, D.; Zheng, J. Growth inhibition of human ovarian cancer cells by blocking STAT3 activation with small interfering RNA. Eur. J. Obstet. Gynecol. Reprod. Biol., 2010, 148, 73-80.
Campbell, I. G.; Russell, S. E.; Choong, D. Y.; Montgomery, K. G.; Ciavarella, M. L.; Hooi, C. S.; Cristiano, B. E.; Pearson, R. B.; Phillips, W. A. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res.,2004, 64, 7678-7681.
Cannistra, S. A. Cancer of the ovary. N. Engl. J. Med., 2004, 351, 2519-2529.
Cao, Y.; Wang, J.; Tian, H.; Fu, G.-H. Mitochondrial ROS accumulation inhibiting JAK2/STAT3 pathway is a critical modulator of CYT997-induced autophagy and apoptosis in gastric cancer. J. Exp. Clin. Cancer Res., 2020, 39, 119.
Carneiro, B. A.; El-Deiry, W. S. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol., 2020, 17, 395-417.
Chaitanya, G. V.; Babu, P. P. Differential PARP cleavage: an indication of heterogeneous forms of cell death and involvement of multiple proteases in the infarct of focal cerebral ischemia in rat. Cell. Mol. Neurobiol. 2009, 29, 563-573.
Chandler, R. L.; Damrauer, J. S.; Raab, J. R.; Schisler, J. C.; Wilkerson, M. D.; Didion, J. P.; Starmer, J.; Serber, D.; Yee, D.; Xiong, J. Coexistent ARID1A–PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling. Nature. 2015, 6, 1-14.
Chang, H. Y.; Sneddon, J. B.; Alizadeh, A. A.; Sood, R.; West, R. B.; Montgomery, K.; Chi, J.-T.; Rijn, M.; Botstein, D.; Brown, P. O. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol., 2004, 2, e7.
Chao, S. H.; Price, D. H. Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J. Biol. Chem., 2001, 276, 31793-31799.
Chen, X.; Hussain, S.; Parveen, S.; Zhang, S.; Yang, Y.; Zhu, C. Sulfonyl group-containing compounds in the design of potential drugs for the treatment of diabetes and its complications. Curr. Med. Chem. 2012, 19, 3578-3604.
Cheng, T.-C.; Lai, C.-S.; Chung, M.-C.; Kalyanam, N.; Majeed, M.; Ho, C.-T.; Ho, Y.-S.; Pan, M.-H. Potent anti-cancer effect of 3′-hydroxypterostilbene in human colon xenograft tumors. PLoS One ,2014, 9, e111814.
Choo, Q.-Y.; Yeo, S. C. M.; Ho, P. C.; Tanaka, Y.; Lin, H.-S. Pterostilbene surpassed resveratrol for anti-inflammatory application: Potency consideration and pharmacokinetics perspective. J. Funct. Foods, 2014, 11, 352-362.
Chou, T.-C. Preclinical versus clinical drug combination studies. Leukemia & Lymphoma. Taylor & Francis, United Kingdom ,2008, 49, 2059-2080.
Chou, T.-C. Drug Combination Studies and Their Synergy Quantification Using the Chou-Talalay Method. Cancer Res., 2010, 70, 440-446.
Chou, T.-C.; Motzer, R. J.; Tong, Y.; Bosl, G. Computerized quantitation of synergism and antagonism of taxol, topotecan, and cisplatin against human teratocarcinoma cell growth: a rational approach to clinical protocol design. J. Natl. Cancer Inst., 1994, 86, 1517-1524.
Chou, T.-C. Derivation and properties of Michaelis-Menten type and Hill type equations for reference ligands. J. Theor. Biol., 1976, 59, 253-276.
Chou, T.-C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. 2006, 58, 621-681.
Chung, Y. C.; Chang, Y. Serum interleukin‐6 levels reflect the disease status of colorectal cancer. J. Surg. Oncol., 2003, 83, 222-226.
Compton, S. J.; Jones, C. G. Mechanism of dye response and interference in the Bradford protein assay. Anal. Biochem., 1985, 151, 369-374.
Daniilidis, A.; Karagiannis, V. Epithelial ovarian cancer. Risk factors, screening and the role of prophylactic oophorectomy. Hippokratia. 2007, 11, 63-66.
Darnell, J. E., Jr.; Kerr, I. M.; Stark, G. R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science., 1994, 264, 1415-1421.
DeLair, D.; Han, G.; Irving, J. A.; Leung, S.; Ewanowich, C. A.; Longacre, T. A.; Gilks, C. B.; Soslow, R. A. HNF-1β in ovarian carcinomas with serous and clear cell change. Int. J. Gynecol. Pathol., 2013, 32, 541-546.
Dettlaff-Pokora, A.; Kostro, J. Signal transducer and activator of transcription 3β in pancreatic cancer. Cent. Eur. J. Biol., 2010, 5, 435-438.
Dhanasekaran, D. N.; Reddy, E. P. JNK signaling in apoptosis. Oncogene. 2008, 27, 6245-6251.
Dhillon, S. Palbociclib: first global approval. Drugs., 2015, 75, 543-551.
Dilruba, S.; Kalayda, G. V. Platinum-based drugs: past, present and future. Cancer Chemother. Pharmacol., 2016, 77, 1103-1124.
Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol., 2007, 35, 495-516.
Evans, T.; Rosenthal, E. T.; Youngblom, J.; Distel, D.; Hunt, T. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell, 1983, 33, 389-396.
Feitelson, M. A.; Arzumanyan, A.; Kulathinal, R. J.; Blain, S. W.; Holcombe, R. F.; Mahajna, J.; Marino, M.; Martinez-Chantar, M. L.; Nawroth, R.; Sanchez-Garcia, I.; Sharma, D.; Saxena, N. K.; Singh, N.; Vlachostergios, P. J.; Guo, S.; Honoki, K.; Fujii, H.; Georgakilas, A. G.; Bilsland, A.; Amedei, A.; Niccolai, E.; Amin, A.; Ashraf, S. S.; Boosani, C. S.; Guha, G.; Ciriolo, M. R.; Aquilano, K.; Chen, S.; Mohammed, S. I.; Azmi, A. S.; Bhakta, D.; Halicka, D.; Keith, W. N.; Nowsheen, S. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Semin Cancer Biol. 2015, 35 Suppl, s25-s54.
Florea, A.-M.; Büsselberg, D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers, 2011, 3, 1351-1371.
Fornerod, M.; Ohno, M.; Yoshida, M.; Mattaj, I. W. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell ,1997, 90, 1051-1060.
Fu, X.-Y.; Kessler, D. S.; Veals, S. A.; Levy, D. E.; Darnell, J. ISGF3, the transcriptional activator induced by interferon alpha, consists of multiple interacting polypeptide chains. Proc. Natl. Acad. Sci. U.S.A., 1990, 87, 8555-8559.
García-Reyes, B.; Kretz, A.-L.; Ruff, J.-P.; Von Karstedt, S.; Hillenbrand, A.; Knippschild, U.; Henne-Bruns, D.; Lemke, J. The emerging role of cyclin-dependent kinases (CDKs) in pancreatic ductal adenocarcinoma. Int. J. Mol. Sci., 2018, 19, 3219.
Garg, M.; Shanmugam, M. K.; Bhardwaj, V.; Goel, A.; Gupta, R.; Sharma, A.; Baligar, P.; Kumar, A. P.; Goh, B. C.; Wang, L.; Sethi, G. The pleiotropic role of transcription factor STAT3 in oncogenesis and its targeting through natural products for cancer prevention and therapy. Med. Res. Rev. 2021, 41, 1291-1336.
Giono, L. E.; Manfredi, J. The p53 tumor suppressor participates in multiple cell cycle checkpoints. J. Cell. Physiol. 2006, 209, 13-20.
Gray, N. S.; Wodicka, L.; Thunnissen, A.-M. W. H.; Norman, T. C.; Kwon, S.; Espinoza, F. H.; Morgan, D. O.; Barnes, G.; LeClerc, S.; Meijer, L.; Kim, S.-H.; Lockhart, D. J.; Schultz, P. G. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science, 1998, 281, 533-538.
Green, D. R.; Kroemer, G. The pathophysiology of mitochondrial cell death. Science, 2004, 305, 626-629.
Gurniak, C. B.; Berg, L. J. Murine JAK3 is preferentially expressed in hematopoietic tissues and lymphocyte precursor cells. Blood, 1996 , 3151-3160.  
Hattori, M.; Sakamoto, H.; Satoh, K.; Yamamoto, T. DNA demethylase is expressed in ovarian cancers and the expression correlates with demethylation of CpG sites in the promoter region of c-erbB-2 and survivin genes. Cancer Lett. ,2001, 169, 155-164.
Hebenstreit, D.; Horejs-Hoeck, J.; Duschl, A. JAK/STAT-dependent gene regulation by cytokines. Drugs Ther. Perspect., 2005, 18, 243-249.
Heiss, E. H.; Schilder, Y. D.; Dirsch, V. M. Chronic treatment with resveratrol induces redox stress-and ataxia telangiectasia-mutated (ATM)-dependent senescence in p53-positive cancer cells. J. Biol. Chem., 2007, 282, 26759-26766.
Hengartner, M. O. Apoptosis: corralling the corpses. Cell ,2001, 104, 325-328.
Hennessy, B. T.; Coleman, R. L.; Markman, M. Ovarian cancer. The Lancet., 2009, 374, 1371-1382.
Hsu, C.-L.; Lin, Y.-J.; Ho, C.-T.; Yen, G.-C. The inhibitory effect of pterostilbene on inflammatory responses during the interaction of 3T3-L1 adipocytes and RAW 264.7 macrophages. J. Agric. Food Chem., 2013, 61, 602-610.
Huynh, J.; Chand, A.; Gough, D.; Ernst, M. Therapeutically exploiting STAT3 activity in cancer — using tissue repair as a road map. Nat. Rev. Cancer., 2019, 19, 82-96.
Itamochi, H.; Kigawa, J.; Terakawa, N. Mechanisms of chemoresistance and poor prognosis in ovarian clear cell carcinoma. Cancer Sci., 2008, 99, 653-658.
Jan, R.; Chaudhry, G. E. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv. Pharm. Bull., 2019, 9, 205-218.
Jayson, G. C.; Kohn, E. C.; Kitchener, H. C.; Ledermann, J. A. Ovarian cancer. 2014, 384, 1376-1388. Elsevier
Jelovac, D.; Armstrong, D. K. Recent progress in the diagnosis and treatment of ovarian cancer. CA Cancer J. Clin., 2011, 61, 183-203.
Jeremias, I.; Debatin, K.-M. TRAIL induces apoptosis and activation of NFkB. 1999, 9, 687-688.
Jervis, S.; Song, H.; Lee, A.; Dicks, E.; Tyrer, J.; Harrington, P.; Easton, D. F.; Jacobs, I. J.; Pharoah, P. P.; Antoniou, A. C. Ovarian cancer familial relative risks by tumour subtypes and by known ovarian cancer genetic susceptibility variants. J. Med., 2014, 51, 108-113.
Jia, L.-T.; Chen, S.-Y.; Yang, A.-G. Cancer gene therapy targeting cellular apoptosis machinery. Cancer Treat. Rev., 2012, 38, 868-876.
Johnston, P. A.; Grandis, J. R. STAT3 signaling: anticancer strategies and challenges. Mol Interv. 2011, 11, 18-26.
Jones, S.; Wang, T.-L.; Shih, I.-M.; Mao, T.-L.; Nakayama, K.; Roden, R.; Glas, R.; Slamon, D.; Diaz Jr, L. A.; Vogelstein, B. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 2010, 330, 228-231.
Jung, O.; Smeets, R.; Hartjen, P.; Schnettler, R.; Feyerabend, F.; Klein, M.; Wegner, N.; Walther, F.; Stangier, D.; Henningsen, A.; Rendenbach, C.; Heiland, M.; Barbeck, M.; Kopp, A. Improved in vitro test procedure for full assessment of the cytocompatibility of degradable magnesium based on ISO 10993-5/-12. Int. J. Mol. Sci., 2019, 20, 255.
Kandala, P. K.; Srivastava, S. K. Diindolylmethane suppresses ovarian cancer growth and potentiates the effect of cisplatin in tumor mouse model by targeting signal transducer and activator of transcription 3 (STAT3). BMC Med., 2012, 10, 9.
Kastan, M. B.; Bartek, J. Cell-cycle checkpoints and cancer. Nature, 2004, 432, 316-323.
Katopodis, P.; Chudasama, D.; Wander, G.; Sales, L.; Kumar, J.; Pandhal, M.; Anikin, V.; Chatterjee, J.; Hall, M.; Karteris, E. Kinase inhibitors and ovarian cancer. Cancers, 2019, 11, 1357.
Keith, C. T.; Borisy, A. A.; Stockwell, B. R. Multicomponent therapeutics for networked systems. Nat. Rev. Drug Discov., 2005, 4, 71-78.
Kerr, J. F.; Wyllie, A. H.; Currie, A. R. Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. Br. J. Cancer, 1972, 26, 239-257.
King, R. W.; Deshaies, R. J.; Peters, J.-M.; Kirschner, M. W. How proteolysis drives the cell cycle. Science, 1996, 274, 1652-1659.
Kurman, R. J.; Shih, I.-M. Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer—shifting the paradigm. Hum. Pathol. , 2011, 42, 918-931.
Kurman, R. J.; Shih, I.-M. Pathogenesis of ovarian cancer. Lessons from morphology and molecular biology and their clinical implications Int. J. Gynecol. Pathol., 2008, 27, 151.
Kuwana, T.; Newmeyer, D.Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr. Opin. Cell Biol., 2003, 15, 691-699.
Lee, M.-H.; Reynisdottir, I.; Massague, J. development. Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev., 1995, 9, 639-649.
Lee, P.-S.; Chiou, Y.-S.; Chou, P.-Y.; Nagabhushanam, K.; Ho, C.-T.; Pan, M.-H. 3′-Hydroxypterostilbene Inhibits 7,12-Dimethylbenz[a]anthracene (DMBA)/12-O-Tetradecanoylphorbol-13-Acetate (TPA)-Induced Mouse Skin Carcinogenesis. Phytomedicine. 2021, 81, 153432.
Lengyel, E. Ovarian cancer development and metastasis. Am. J. Clin. Pathol., 2010, 177, 1053-1064.
Levy, D. E.; Darnell, J. Stats: transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol., 2002, 3, 651-662.
Lewis, K. A.; Lilly, K. K.; Reynolds, E. A.; Sullivan, W. P.; Kaufmann, S. H.; Cliby, W. A. Ataxia telangiectasia and rad3-related kinase contributes to cell cycle arrest and survival after cisplatin but not oxaliplatin. Mol Cancer Ther., 2009, 8, 855-863.
Li, P.; Nijhawan, D.; Budihardjo, I.; Srinivasula, S. M.; Ahmad, M.; Alnemri, E. S.; Wang, X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 1997, 91, 479-489.
Lim, A. W. W.; Mesher, D.; Gentry‐Maharaj, A.; Balogun, N.; Widschwendter, M.; Jacobs, I.; Sasieni, P.; Menon, U. Gynaecology. Time to diagnosis of Type I or II invasive epithelial ovarian cancers: a multicentre observational study using patient questionnaire and primary care records., BJOG, 2016, 123, 1012-1020.
Lin, C.-B.; Lin, C.-C.; Tsay, G. J. 6-Gingerol inhibits growth of colon cancer cell LoVo via induction of G2/M arrest. Evid.-based Complement. Altern., 2012, 2012.
Lin, W.-S.; Leland, J. V.; Ho, C.-T.; Pan, M.-H. Occurrence, Bioavailability, Anti-inflammatory, and Anticancer Effects of Pterostilbene. 2020, 68, 12788-12799.
Liu, B. Identification of oxidative products of pterostilbene and 3'-hydroxypterostilbene in vitro and evaluation of anti-inflammatory and anti-cancer cell proliferative activity. 2014. PhD Thesis. Rutgers university-graduate school-new brunswick.
Lloyd, R. V.; Erickson, L. A.; Jin, L.; Kulig, E.; Qian, X.; Cheville, J. C.; Scheithauer, B. W. p27kip1: a multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am. J. Pathol., 1999, 154, 313-323.
Locksley, R. M.; Killeen, N.; Lenardo, M. J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell, 2001, 104, 487-501.
Loewe, S. The problem of synergism and antagonism of combined drugs. Drug Res.,1953, 3, 285-290.
Ma, Z.-j.; Li, X.; Li, N.; Wang, J.-h. Stilbenes from Sphaerophysa salsula. Fitoterapia, 2002, 73, 313-315.
Majeed, M.; Bani, S.; Natarajan, S.; Pandey, A. Evaluation of 90 day repeated dose oral toxicity and reproductive/developmental toxicity of 3'-hydroxypterostilbene in experimental animals. PLoS One.,2017, 12, e0172770.
Malumbres, M.; Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer, 2009, 9, 153-166.
Manchado, E.; Guillamot, M.; Malumbres, M. Killing cells by targeting mitosis. Cell Death Differ., 2012, 19, 369-377.
Manickam, M.; Ramanathan, M.; Jahromi, M. A.; Chansouria, J. P.; Ray, A. B. Antihyperglycemic activity of phenolics from Pterocarpus marsupium. J. Nat. Prod., 1997, 60, 609-610.
Matsuoka, A.; Takeshita, K.; Furuta, A.; Ozaki, M.; Fukuhara, K.; Miyata, N. The 4′-hydroxy group is responsible for the in vitro cytogenetic activity of resveratrol. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2002, 521, 29-35.
Matthews, H. K.; Bertoli, C.; de Bruin, R. A. M. Cell cycle control in cancer. Nat. Rev. Mol. 2022, 23, 74-88.
McCormack, D.; McFadden, D. J. Pterostilbene and cancer: current review. J. Surg. Res., 2012, 173, e53-e61.
McCormack, D.; McFadden, D. A review of pterostilbene antioxidant activity and disease modification. Oxid. Med. Cell. Longev., 2013, 2013.
Meinhold-Heerlein, I.; Fotopoulou, C.; Harter, P.; Kurzeder, C.; Mustea, A.; Wimberger, P.; Hauptmann, S.; Sehouli, J. The new WHO classification of ovarian, fallopian tube, and primary peritoneal cancer and its clinical implications. Arch. Gynecol. Obstet., 2016, 293, 695-700.
Mena, S.; Rodríguez, M. L.; Ponsoda, X.; Estrela, J. M.; Jäättela, M.; Ortega, A. L. Pterostilbene-induced tumor cytotoxicity: a lysosomal membrane permeabilization-dependent mechanism. PLoS One., 2012, 7, e44524.
Michalak, E. M.; Vandenberg, C. J.; Delbridge, A. R.; Wu, L.; Scott, C. L.; Adams, J. M.; Strasser, A. Apoptosis-promoted tumorigenesis: gamma-irradiation-induced thymic lymphomagenesis requires Puma-driven leukocyte death. Genes Dev., 2010, 24, 1608-1613.
Miller, R. E.; Brough, R.; Bajrami, I.; Williamson, C. T.; McDade, S.; Campbell, J.; Kigozi, A.; Rafiq, R.; Pemberton, H.; Natrajan, R. Synthetic lethal targeting of ARID1A-mutant ovarian clear cell tumors with dasatinib. Mol. Cancer, 2016, 15, 1472-1484.
Min, H.; Wei‐hong, Z. J. Constitutive activation of signal transducer and activator of transcription 3 in epithelial ovarian carcinoma. J. Obstet. Gynaecol. Res., 2009, 35, 918-925.
Morgan, D. O. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol., 1997, 13, 261.
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65, 55-63.
Muller, P. A. J.; Vousden, K. H. p53 mutations in cancer. Nat. Cell Biol., 2013, 15, 2-8.
Murias, M.; Jäger, W.; Handler, N.; Erker, T.; Horvath, Z.; Szekeres, T.; Nohl, H.; Gille, L. Antioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: structure–activity relationship. Biochem. J. 2005, 69, 903-912.
Nair, A. B.; Jacob, S. simple practice guide for dose conversion between animals and human. J. Basic. Clin. Physiol. Pharmacol.,2016, 7, 27.
National Comprehensive Cancer Network , N. Ovarian Cancer/Fallopian Tube Cancer/Primary Peritoneal Cancer. 2022 Retrieved from https://www.nccn.org/patients/guidelines/content/PDF/ovarian-patient.pdf
Nessa, M. U.; Beale, P.; Chan, C.; Yu, J. Q.; Huq, F. Combinations of resveratrol, cisplatin and oxaliplatin applied to human ovarian cancer cells. Anticancer Res., 2012, 32, 53-59.
Nikhil, K.; Sharan, S.; Singh, A. K.; Chakraborty, A.; Roy, P. Anticancer activities of pterostilbene-isothiocyanate conjugate in breast cancer cells: involvement of PPARγ. PLoS One, 2014, 9, e104592.
Nozawa, H.; Chiu, C.; Hanahan, D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc. Natl. Acad. Sci. U.S.A., 2006, 103, 12493-12498.
Offman, S. L.; Longacre, T. A. Clear cell carcinoma of the female genital tract (not everything is as clear as it seems). Adv. Anat. Pathol., 2012, 19, 296-312.
Ogawa, N.; Satsu, H.; Watanabe, H.; Fukaya, M.; Tsukamoto, Y.; Miyamoto, Y.; Shimizu, M. Acetic acid suppresses the increase in disaccharidase activity that occurs during culture of caco-2 cells. J. Nutr., 2000, 130, 507-513.
Oliver, F. J.; de la Rubia, G.; Rolli, V.; Ruiz-Ruiz, M. C.; de Murcia, G.; Murcia, J. Importance of Poly(ADP-ribose) Polymerase and Its Cleavage in Apoptosis: lesson from an uncleavable mutant. J. Biol. Chem., 1998, 273, 33533-33539.
Olivier, T.; Haslam, A.; Prasad, V. Anticancer drugs approved by the US food and drug administration from 2009 to 2020 according to their mechanism of action. JAMA., 2021, 4, e2138793-e2138793.
Opferman, J. T.; Korsmeyer, S. J. Apoptosis in the development and maintenance of the immune system. Nat. Immunol, 2003, 4, 410-415.
Pelengaris, S.; Khan, M.; Evan, G. c-MYC: more than just a matter of life and death. Nat. Rev. Cancer., 2002, 2, 764-776.
Plisiecka-Hałasa, J.; Karpińska, G.; Szymańska, T.; Ziółkowska, I.; Mądry, R.; Timorek, A.; Dębniak, J.; Ułańska, M.; Jędryka, M.; Chudecka-Głaz, A. P21WAF1, P27KIP1, TP53 and c-MYC analysis in 204 ovarian carcinomas treated with platinum-based regimens. Ann. Oncol. 2003, 14, 1078-1085.
Polyak, K.; Lee, M.-H.; Erdjument-Bromage, H.; Koff, A.; Roberts, J. M.; Tempst, P.; Massagué, J. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell, 1994, 78, 59-66.
Qin, J.; Shen, X.; Zhang, J.; Jia, D. Allosteric inhibitors of the STAT3 signaling pathway. Eur. J. Med. Chem., 2020, 190, 112122.
Rawlings, J. S.; Rosler, K. M.; Harrison, D. A. The JAK/STAT signaling pathway. J. Cell Sci., 2004, 117, 1281-1283.
Rimando, A. M.; Cuendet, M.; Desmarchelier, C.; Mehta, R. G.; Pezzuto, J. M.; Duke, S. O. Cancer chemopreventive and antioxidant activities of pterostilbene, a naturally occurring analogue of resveratrol. J. Agric. Food Chem., 2002, 50, 3453-3457.
Roberti, M.; Pizzirani, D.; Simoni, D.; Rondanin, R.; Baruchello, R.; Bonora, C.; Buscemi, F.; Grimaudo, S.; Tolomeo, M. Synthesis and biological evaluation of resveratrol and analogues as apoptosis-inducing agents. J. Med. Chem., 2003, 46, 3546-3554.
Rossi, M.; Caruso, F.; Opazo, C.; Salciccioli, J. Crystal and molecular structure of piceatannol; scavenging features of resveratrol and piceatannol on hydroxyl and peroxyl radicals and docking with transthyretin. J. Agric. Food Chem., 2008, 56, 10557-10566.
Royar, J.; Becher, H.; Chang‐Claude. Low‐dose oral contraceptives: Protective effect on ovarian cancer risk. Int. J. Cancer, 2001, 95, 370-374.
Saelens, X.; Festjens, N.; Walle, L. V.; Gurp, M.; Loo, G.; Vandenabeele, P. Toxic proteins released from mitochondria in cell death. Oncogene, 2004, 23, 2861-2874.
Salazar, C.; Campbell, I. G.; Gorringe, K. L. When is “Type I” ovarian cancer not “Type I”? indications of an out-dated dichotomy. Front. Oncol., 2018, 8, 654.
Saturno, G.; Pesenti, M.; Cavazzoli, C.; Rossi, A.; Giusti, A. M.; Gierke, B.; Pawlak, M.; Venturi, M. Expression of serine/threonine protein-kinases and related factors in normal monkey and human retinas: the mechanistic understanding of a CDK2 inhibitor induced retinal toxicity. Toxicol. Pathol., 2007, 35, 972-983.
Schneider, J. G.; Alosi, J. A.; McDonald, D. E.; McFadden, D. W. Pterostilbene inhibits lung cancer through induction of apoptosis. J. Surg. Res., 2010, 161, 18-22.
Schorge, J. O.; McCann, C.; Del Carmen, M. G. Surgical debulking of ovarian cancer: what difference does it make? Rev Obstet Gynecol., 2010, 3, 111-117.
Sepúlveda, P.; Encabo, A.; Carbonell-Uberos, F.; Miñana, M. D. BCL-2 expression is mainly regulated by JAK/STAT3 pathway in human CD34+ hematopoietic cells. Cell Death Differ., 2007, 14, 378-380.
Shahmarvand, N.; Nagy, A.; Shahryari, J.; Ohgami, R. S. Mutations in the signal transducer and activator of transcription family of genes in cancer. Cancer Sci., 2018, 109, 926-933.
Shao, X.; Chen, X.; Badmaev, V.; Ho, C.-T.; Sang, S. Structural identification of mouse urinary metabolites of pterostilbene using liquid chromatography/tandem mass spectrometry. Rapid. Commun. Mass Spectrom., 2010, 24, 1770-1778.
Shapiro, G. I. Cyclin-dependent kinase pathways as targets for cancer treatment. Clin. Oncol., 2006, 24, 1770-1783.
She, Q. B.; Bode, A. M.; Ma, W. Y.; Chen, N. Y.; Dong, Z. Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and p38 kinase. Cancer Res., 2001, 61, 1604-1610.
Shih, I.-M.; Kurman, R. J. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis., Am. J. Pathol., 2004, 164, 1511-1518.
Siddik, Z. H. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene., 2003, 22, 7265-7279.
Sidransky, D. Two tracks but one race? Curr. Biol., 1996, 6, 523-525.
Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. Cancer statistics, 2022. 2022, 72, 7-33.
Siveen, K. S.; Sikka, S.; Surana, R.; Dai, X.; Zhang, J.; Kumar, A. P.; Tan, B. K. H.; Sethi, G.; Bishayee, A. Targeting the STAT3 signaling pathway in cancer: Role of synthetic and natural inhibitors. Biochim. Biophys. Acta. Rev. Cancer, 2014, 1845, 136-154.
Sobolev, V. S.; Horn, B. W.; Potter, T. L.; Deyrup, S. T.; Gloer, J. B. Production of stilbenoids and phenolic acids by the peanut plant at early stages of growth. J. Agric. Food Chem., 2006, 54, 3505-3511.
Star, R. A. Treatment of acute renal failure. Kidney Int. 1998, 54, 1817-1831.
Stepkowski, S. M.; Kirken, R. A. Janus Tyrosine kinases and signal transducers and activators of transcription regulate critical functions of T Cells in allograft rejection and transplantation tolerance. Transplantation, 2006, 82, 295-303.
Stevens, L.; Lafayette, R.; Perrone, R.; Levey, A.; Schrier, R. (2007). Diseases of the kidney and urinary tract., Lippincott Williams & Wilkins: Philadelphia
Stewart, C.; Ralyea, C.; Lockwood, S. Ovarian cancer: an integrated review. Semin. Oncol. Nurs., 2019, 35, 151-156.
Stratton, J. F.; Pharoah, P.; Smith, S. K.; Easton, D.; Ponder, B. Gynaecology. A systematic review and meta‐analysis of family history and risk of ovarian cancer. BJOG., 1998, 105, 493-499.
Sugiyama, T.; Kamura, T.; Kigawa, J.; Terakawa, N.; Kikuchi, Y.; Kita, T.; Suzuki, M.; Sato, I.; Taguchi, K. Clinical characteristics of clear cell carcinoma of the ovary: a distinct histologic type with poor prognosis and resistance to platinum-based chemotherapy. Cancer, 2000, 88, 2584-2589.
Sun, H.; Liu, X.; Long, S. R.; Ge, H.; Wang, Y.; Yu, S.; Xue, Y.; Zhang, Y.; Li, X.; Li, W. Antidiabetic effects of pterostilbene through PI3K/Akt signal pathway in high fat diet and STZ-induced diabetic rats. Eur. J. Pharmacol., 2019, 859, 172526.
Takahashi, K.; Takenaka, M.; Kawabata, A.; Yanaihara, N.; Okamoto, A. Rethinking of treatment strategies and clinical management in ovarian clear cell carcinoma. Int. J. Clin. Oncol., 2020, 25, 425-431.
Takemoto, J. K., Remsberg, C. M., & Davies, N. M. Pharmacologic activities of 3'-hydroxypterostilbene: cytotoxic, anti-Oxidant, anti-Adipogenic, anti-inflammatory, histone deacetylase and sirtuin 1 inhibitory activity. J Pharm Pharm Sci.,. 2015. 18, 713-727.
Pollard, T. D.; Earnshaw, W. C.; J. Lippincott-Schwartz, & Johnson, G. T. Cell Biology (Third Edition), Elsevier, Philadelphia, PA, 2017 (pp. 713-726)
Tolomeo, M.; Grimaudo, S.; Di Cristina, A.; Roberti, M.; Pizzirani, D.; Meli, M.; Dusonchet, L.; Gebbia, N.; Abbadessa, V.; Crosta, L.; Barucchello, R ; Grisolia, G.; Invidiata,F.; Simoni, D. Pterostilbene and 3′-hydroxypterostilbene are effective apoptosis-inducing agents in MDR and BCR-ABL-expressing leukemia cells. Int. J. Biochem. Cell Biol., 2005, 37, 1709-1726.
Torre, L. A.; Bray, F.; Siegel, R. L.; Ferlay, J.; Lortet‐Tieulent, J.; Jemal, A. J. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65, 87-108.
Tsai, H.-Y.; Ho, C.-T.; Chen, Y.-K. Biological actions and molecular effects of resveratrol, pterostilbene, and 3′-hydroxypterostilbene. J Food Drug Anal., 2017, 25, 134-147.
van Doorn, W. G. Plant programmed cell death and the point of no return. Trends Plant Sci., 2005, 10, 478-483.
Vargas, A. N. Natural history of ovarian cancer. Ecancermedicalscience, 2014, 8. 465.
Wagh, A. R.; Bose, K. Apoptosis in cancer cell signaling and current therapeutic possibilities., unravelling cancer signaling pathways: a multidisciplinary approach. Springer Singapore: Singapore. 2019, pp. 113-129.
Wahedi, H. M.; Ahmad, S.; Abbasi, S. W. Stilbene-based natural compounds as promising drug candidates against COVID-19. Biomol. Struct. Dyn., 2020, 1-10.
Walczak, H.; Krammer, P. H. The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp. Cell Res., 2000, 256, 58-66.
Walker, G. R.; Schlesselman, J. J.; Ness, R. B. Family history of cancer, oral contraceptive use, and ovarian cancer risk. Am. J. Obstet. Gynecol., 2002, 186, 8-14.
Walker, J. L.; Powell, C. B.; Chen, L. m.; Carter, J.; Bae Jump, V. L.; Parker, L. P.; Borowsky, M. E.; Gibb, R. K. Society of gynecologic oncology recommendations for the prevention of ovarian cancer. Cancer, 2015, 121, 2108-2120.
Wang, S. W.; Sun, Y. M. The IL-6/JAK/STAT3 pathway: potential therapeutic strategies in treating colorectal cancer. Int. J. Oncol., 2014, 44, 1032-1040.
Wegenka, U. M.; Buschmann, J.; Lütticken, C.; Heinrich, P. C.; Horn, F. Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level. Mol. Cell. Biol., 1993, 13, 276-288.
Weinert, T. DNA damage and checkpoint pathways: molecular anatomy and interactions with repair. Cell., 1998, 94, 555-558.
Wen, W.; Lowe, G.; Roberts, C. M.; Finlay, J.; Han, E. S.; Glackin, C. A.; Dellinger, T. H. Pterostilbene suppresses ovarian cancer growth via induction of apoptosis and blockade of cell cycle progression involving inhibition of the STAT3 pathway. Int. J. Mol. Sci., 2018, 19. 1983
Wong, A. S. T.; Che, C. M.; Leung, K. W. Recent advances in ginseng as cancer therapeutics: a functional and mechanistic overview. Nat. Prod. Rep., 2015, 32, 256-272.
Wu, R.; Baker, S. J.; Hu, T. C.; Norman, K. M.; Fearon, E. R.; Cho, K. R. Type I to type II ovarian carcinoma progression: mutant Trp53 or Pik3ca confers a more aggressive tumor phenotype in a mouse model of ovarian cancer. Am. J. Pathol., 2013, 182, 1391-1399.
Xiong, Y.; Hannon, G. J.; Zhang, H.; Casso, D.; Kobayashi, R.; Beach, D. p21 is a universal inhibitor of cyclin kinases. Nature, 1993, 366, 701-704.
Xu, Y.; Fisher, G. J. Receptor type protein tyrosine phosphatases (RPTPs) - roles in signal transduction and human disease. J. Cell. Commun. Signal., 2012, 6, 125-138.
Yadav, B.; Wennerberg, K.; Aittokallio, T.; Tang, J. Searching for drug synergy in complex dose–response landscapes using an interaction potency model. Comput. Struct. Biotechnol., 2015, 13, 504-513.
Yamagami, W.; Nagase, S.; Takahashi, F.; Ino, K.; Hachisuga, T.; Aoki, D.; Katabuchi, H. Clinical statistics of gynecologic cancers in Japan., J. Gynecol. Oncol, 2017, 28, 2.
Yang, Y.; Cao, Y.; Chen, L.; Liu, F.; Qi, Z.; Cheng, X.; Wang, Z. Cryptotanshinone suppresses cell proliferation and glucose metabolism via STAT3/SIRT3 signaling pathway in ovarian cancer cells. Cancer Med., 2018, 7, 4610-4618.
Yeo, S. C. M.; Ho, P. C.; Lin, H. S. Pharmacokinetics of pterostilbene in S prague‐D awley rats: The impacts of aqueous solubility, fasting, dose escalation, and dosing route on bioavailability. Mol. Nutr. Food. Res., 2013, 57, 1015-1025.
Yoshikawa, H.; Matsubara, K.; Qian, G. S.; Jackson, P.; Groopman, J. D.; Manning, J. E.; Harris, C. C.; Herman, J. G. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat. Genet., 2001, 28, 29-35.
Youle, R. J.; Strasser, A. J. The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol, 2008, 9, 47-59.
Yu, H.; Lee, H.; Herrmann, A.; Buettner, R.; Jove, R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat. Rev. Cancer, 2014, 14, 736-746.
Yue, J.; López, J. M. Understanding MAPK Signaling Pathways in Apoptosis. Int. J. Mol. Sci., 2020, 21. 2346
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87347-
dc.description.abstract美國癌症協會American Cancer Society’s Center (ACS) 統計資料顯示,卵巢癌在美國女性癌症死亡中排名第五。在目前臨床治療上,化學療法是卵巢癌最常見的治療方法。有鑒於化療的缺點及其帶來的一些副作用,人們正在展望癌症化學治療的替代策略和全新分子機制。JAK2/STAT3 (The Janus kinase/signal transducer and activator of transcription) 訊號傳遞路徑是卵巢癌中的主要訊號通路之一,其與卵巢癌預後不良和腫瘤發展密切相關。紫檀芪(PSB)因其具有高生物利用度和抗腫瘤活性、低毒性而被廣泛研究,是一種有潛力的惡性腫瘤輔助治療劑。先前研究顯示,該化合物可有效抑制 STAT3 磷酸化,並且調控下游基因進一步誘發卵巢癌細胞週期停滯與細胞凋亡。3′-羥基紫檀芪(3′-HPSB)和2′-羥基紫檀芪(2′-HPSB)是紫檀芪的兩種羥基衍生物。然而,它們在卵巢癌中的抑制能力和潛在機制尚未闡明。因此,設計了兩種類型的人類卵巢癌細胞系模型和細胞株異種移植小鼠模型,藉以評估上述兩種化合物在細胞週期阻滯、凋亡及其可能分子機制方面對卵巢癌抗腫瘤作用進行探討。結果表明,在卵巢癌透明細胞型細胞株-TOV21G 中,3′-HPSB 可通過啟動 Caspase-3/Caspase-9 級聯反應和 PARP 誘導內源性凋亡,並通過下調 CDK1 和 Cyclin B1 的表現量導致 G2/M 期細胞週期停滯。此外,這種植物來源的化合物亦可通過下調JAK2/STAT3途徑的磷酸化來抑制STAT3核轉位。體內試驗研究表明,3′-HPSB 相比於PSB更能通過下調 JAK2/STAT3 訊號傳遞路徑並導致腫瘤細胞凋亡,從而降低 CDX 小鼠模型中的腫瘤生長且該化合物在小鼠臟器中未見無任何副作用。此外,在協同作用的測定上 3'-HPSB 可與第一線抗腫瘤藥物 Cisplatin 對透明細胞型卵巢癌進行有效性聯合治療的潛力。綜合以上所述紫檀芪與結構類似物中,3’-羥基紫檀芪相比於紫檀芪更可以作為一種有效治療透明細胞型卵巢癌潛在藥物。zh_TW
dc.description.abstractAccording to statistical data of the American Cancer Society, ovarian cancer ranks fifth in cancer deaths among women, and at present, chemotherapy is the most common treatment for ovarian cancer. In light of the disadvantages of chemotherapy and several side effects that it may bring about, alternative strategies and brand new molecular mechanisms for cancer therapy are being looked forward. To be mentioned, JAK2/STAT3 pathway is one of the major signaling pathways in ovarian cancer which also be closely related to poor prognosis and tumor progression. Pterostilbene (PSB) is well-studied with its high bioavailability and strong antitumor activity, low toxicity, rendered as an attractive agent for adjuvant therapy in malignancies, which effectively suppressed phosphorylation of STAT3, as well as STAT3 downstream genes that regulate cell cycle and apoptosis in ovarian cancer. 3'-Hydroxypterostilbene (3′-HPSB) and 2'-Hydroxypterostilbene (2′-HPSB) are two of hydroxyl analogs of PSB. However, their inhibitory capability and underlying mechanism in ovarian carcinoma haven’t been clarified. Accordingly, a cell model with two types of human ovarian cancer cell lines and a cell line-derived xenograft mice model are designed to evaluate the anti-tumor effect of the above-mentioned compounds on ovarian cancer, in terms of cell cycle arrest, apoptosis, and its underlying possible molecular mechanisms. The results suggested that 3′-HPSB could lead to G2/M phase arrest by downregulating CDK1 and Cyclin B expressions. Besides, 3′-HPSB induced an intrinsic apoptosis pathway via activation of Caspase-3/Caspase-9 cascade and cleavege PARP and in clear cell ovarian carcinoma cell line-TOV21G. This compound could also inhibit the nuclear translocation of STAT3 via the reduction of phosphorylation of JAK2/STAT3 pathway. Moreover, the in vivo study showed that 3′-HPSB might have the potential to reduce tumor growth in CDX mice model by down-regulating JAK2/STAT3 pathway and leading tumor cell apoptosis without leading to adverse effect in organs. Overall, our result suggested that 3′-HPSB may be comparatively more effective than PSB in antitumor via inhibiting JAK2/STAT3 signal pathway. In addition, 3'- HPSB showed the potential to effectively synergize with the first-line anti-tumor drug Cisplatin in the treatment of clear cell ovarian cancer. Moreover, 3′-HPSB could be served as a novel anti-tumorigenesis agent on behalf of current therapy in clear cell ovarian carcinoma.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-18T17:12:14Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-05-18T17:12:14Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝誌 I
中文摘要 IV
ABSTRACT VI
目錄 VIII
附圖索引 XIII
附表索引 XIV
圖目錄 XV
表目錄 XVII
縮寫表 XVIII
第一章、緒論 1
第二章、文獻回顧 3
第一節、卵巢癌 3
(一) 卵巢癌流行病學 3
(二) 卵巢癌分型 4
(三) 卵巢癌之分期 5
(四) 上皮性卵巢癌 (Epithelial ovarian cancer, EOC) 7
(五) 上皮性卵巢癌好發因素 9
(六) 上皮性卵巢癌徵狀與診斷 11
(七) 上皮性卵巢癌治療方法與困境 11
(八) 透明細胞型卵巢癌 (Ovarian clear cell carcinoma, OCCC) 14
第二節、細胞週期 (cell cycle) 15
(一) 細胞週期簡介 15
(二) 細胞週期檢查點與細胞週期調控 17
(三) 細胞週期停滯 20
(四) 細胞週期停滯與腫瘤增生抑制 21
第三節、細胞凋亡 22
(一) 簡介 22
(二) 內源性細胞凋亡 (intrinsic apoptosis) 23
(三) 外源性細胞凋亡 (extrinsic apoptosis) 24
第四節、JAK-STAT 訊號傳遞路徑 26
(一) JAK/STAT 訊號傳遞路徑簡介 (Janus kinase-signal transducer and activator of transcription) 26
(二) STAT3 27
第五節、芪類化合物 (Stilbenoid) 30
(一) 芪類化合物簡介 30
(二) 紫檀芪 (Pterostilbene, PSB) 30
(三) 3'-羥基紫檀芪 (3'-Hydroxypterostilbene, 3'-HPSB) 31
(四) 2'-羥基紫檀芪 (2'-Hydroxypterostilbene, 2'-HPSB) 32
第六節、藥物協同作用 33
(一) 藥物協同、拮抗與疊加作用 33
(二) 中值效應方程式 (median-effect equation) 34
(三) 藥物合併指數定理(The combination index theorm) 35
第三章、研究標的與架構 38
第一節、研究標的 38
第二節、實驗架構 38
第四章、材料與方法 40
第一節、實驗材料 40
(一) 實驗使用細胞株 40
(二) 化學試劑與相關藥品 40
(三) 實驗儀器一覽 42
第二節、實驗方法 45
(一) 細胞實驗方法 45
1. 樣品及培養基配置 45
2. 細胞解凍 46
3. 細胞繼代培養 46
4. 冷凍細胞 47
5. 細胞存活率試驗 (MTT assay) 47
6.細胞凋亡測定- Annexin V/PI 雙染分析 48
7. 細胞週期變化分析 49
8. 細胞增生試驗 51
9. 蛋白質萃取 52
(二) 動物實驗方法 54
1. 品系與飼養環境 54
2. 細胞株異種移植模式 54
3. 試劑配製 55
4. 投藥方式 55
5. 動物組織包埋與切片 56
6. 免疫組織化學染色法 58
7. 免疫組織螢光染色法 60
8. PAS 染色 (Periodic-acid Schiff stain) 64
9. 組織均質及蛋白質萃取 65
10. 蛋白質定量 66
11. 西方墨點法 67
12. 統計分析 71
第五章、結果與討論 72
第一節、紫檀芪及其羥基衍生物對於兩種上皮性卵巢癌亞型細胞株TOV21G與OVCAR3 生長的影響 72
第二節、紫檀芪及其結構類似物對於兩種上皮性卵巢癌亞型細胞株 TOV21G 與 OVCAR3 細胞凋亡的影響 75
第三節、3'-羥基紫檀芪誘導 TOV21G中內源性細胞凋亡 78
第四節、紫檀芪及其結構類似物抑制 TOV21G 增生 81
第五節、紫檀芪及其結構類似物對於兩種上皮性卵巢癌亞型細胞株TOV21G 與 OVCAR3 細胞週期停滯之影響 83
第六節、3'-羥基紫檀芪誘導 TOV21G 細胞周期停滯於 G2/M 期及其分子機轉 86
第七節、探討 3'-羥基紫檀芪對於 TOV21G JAK2/STAT3 訊號傳遞路徑的抑制效果 88
第八節、3'-羥基紫檀芪下降由介入 IL6 所誘導上升的 p-JAK2 和 p-STAT3 表現量 90
第九節、3'-羥基紫檀芪可抑制 p-STAT3 核轉位 (nuclear translocation) 93
第十節、紫檀芪及其羥基類似物與常見腫瘤藥物順鉑 (Cisplatin, Cis) 對於 TOV21G 異體移植小鼠的影響 95
第十一節、紫檀芪、3'-羥基紫檀芪相比於常見腫瘤藥物順鉑對於 TOV21G 異體移植小鼠腎臟不具損傷影響 100
第十二節、3'-羥基紫檀芪有效降低 TOV21G 異體移植小鼠腫瘤組織切片中STAT3 與 p-STAT3 蛋白表現量 104
第十三節、3'-羥基紫檀芪有效降低 TOV21G 異體移植小鼠腫瘤中 JAK2/STAT3 訊號傳遞路徑相關蛋白與提升內源性凋亡相關蛋白表現量 107
第十四節、紫檀芪及其類似物與順鉑共同治療對於人類兩組織學分型卵巢癌細胞協同作用之影響 110
第六章、結論 115
參考文獻 118
附錄 133
-
dc.language.isozh_TW-
dc.subject協同作用zh_TW
dc.subject細胞株異種移植zh_TW
dc.subjectJAK2-STAT3訊號傳遞路徑zh_TW
dc.subject3'-羥基紫檀芪zh_TW
dc.subject透明細胞型卵巢癌zh_TW
dc.subject細胞凋亡zh_TW
dc.subjectclear cell ovarian carcinomaen
dc.subjectApoptosisen
dc.subjectCell line-derived xenograft (CDX)en
dc.subjectJAK2-STAT3 pathwayen
dc.subject3'-Hydroxypterostilbeneen
dc.subjectSynergismen
dc.title3′-羥基紫檀芪透過下調 JAK2/STAT3 訊號路徑抑制人類上皮性卵巢癌細胞之生長zh_TW
dc.title3′-Hydroxypterostilbene inhibits human epithelial ovarian cancer cell growth by suppressing JAK2/STAT3 signaling pathwayen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee何元順;黃步敏;王應然;郭靜娟zh_TW
dc.contributor.oralexamcommitteeYuan Soon Ho;Bu-Miin Huang;Ying-Jan Wang;Ching-Chuan Kuoen
dc.subject.keyword3'-羥基紫檀芪,透明細胞型卵巢癌,JAK2-STAT3訊號傳遞路徑,細胞凋亡,細胞株異種移植,協同作用,zh_TW
dc.subject.keyword3'-Hydroxypterostilbene,clear cell ovarian carcinoma,JAK2-STAT3 pathway,Apoptosis,Cell line-derived xenograft (CDX),Synergism,en
dc.relation.page133-
dc.identifier.doi10.6342/NTU202210007-
dc.rights.note未授權-
dc.date.accepted2022-10-28-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept食品科技研究所-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  未授權公開取用
7.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved