請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8726完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃建璋 | |
| dc.contributor.author | "Cheng Pin, Chen" | en |
| dc.contributor.author | 陳正彬 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:00:16Z | - |
| dc.date.available | 2010-02-24 | |
| dc.date.available | 2021-05-20T20:00:16Z | - |
| dc.date.copyright | 2010-02-24 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-02-08 | |
| dc.identifier.citation | Reference
1. Green, M.A., The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Progress in Photovoltaics, 2009. 17(3): p. 183-189. 2. Bauhuis, G.J., et al., Thin film GaAs solar cells with increased quantum efficiency due to light reflection. Solar Energy Materials and Solar Cells, 2004. 83(1): p. 81-90. 3. Zhu, J., et al., Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Letters, 2009. 9(1): p. 279-282. 4. Green, M.A., et al., Solar cell efficiency tables (version 33). Progress in Photovoltaics, 2009. 17(1): p. 85-94. 5. Takamoto, T., et al., Over 30% efficient InGaP/GaAs tandem solar cells. Applied Physics Letters, 1997. 70(3): p. 381-383. 6. Meier, J., et al., Potential of amorphous and microcrystalline silicon solar cells. Thin Solid Films, 2004. 451-52: p. 518-524. 7. Bucher, K., J. Bruns, and H.G. Wagemann, Absorption-coefficient of silicon - an assessment of measurements and the simulation of temperature-variation. Journal of Applied Physics, 1994. 75(2): p. 1127-1132. 8. Yoshida, N., et al., A study of absorption coefficient spectra in a-Si : H films near the transition from amorphous to crystalline phase measured by resonant photothermal bending spectroscopy. Journal of Non-Crystalline Solids, 2008. 354(19-25): p. 2164-2166. 9. Hadipour, A., B. de Boer, and P.W.M. Blom, Organic tandem and multi-junction solar cells. Advanced Functional Materials, 2008. 18(2): p. 169-181. 10. Dennler, G., et al., Design rules for donors in bulk-heterojunction tandem solar 121 cells-towards 15 % energy-conversion efficiency. Advanced Materials, 2008. 20(3): p. 579-583. 11. Amano, C., et al., 20.2-percent efficiency Al0.4Ga0.6As GaAs tandem solar-cells grown by molecular-beam epitaxy. Applied Physics Letters, 1987. 51(24): p. 1998-2000. 12. Bertness, K.A., et al., 29.5-percent-efficient GalnP/GaAs tandem solar-cells. Applied Physics Letters, 1994. 65(8): p. 989-991. 13. Ganguly, G., D.E. Carlson, and R.R. Arya, Amorphous germanium recombination junctions in amorphous-silicon-based tandem solar cells. Applied Physics Letters, 2003. 83(20): p. 4256-4258. 14. Andreev, V.M., et al., Tandem solar cells based on AlGaAs/GaAs and GaSb structures. Compound Semiconductors 1996, 1997(155): p. 425-428. 15. Takamoto, T., et al., 26.9% efficient and radiation resistant InGaP/GaAs tandem solar cells. Compound Semiconductors 1998, 1999(162): p. 853-856. 16. Dimroth, F., U. Schubert, and A.W. Bett, 25.5% efficient Ga0.35In0.65P/ Ga0.83In0.17 as tandem solar cells grown on GaAs substrates. IEEE Electron Device Letters, 2000. 21(5): p. 209-211. 17. Nattestad, A., et al., Highly efficient photocathodes for dye-sensitized tandem solar cells. Nature Materials, 2010. 9(1): p. 31-35. 18. Kim, J.Y., et al., Efficient tandem polymer solar cells fabricated by all-solution processing. Science, 2007. 317(5835): p. 222-225. 19. Yamaguchi, M., Physics and technologies of superhigh-efficiency tandem solar cells. Semiconductors, 1999. 33(9): p. 961-964. 20. Beaumont, B., et al., Ga0.47 In0.53 as Photovoltaic Booster Cells for Tandem Solar-Energy Conversion. Solar Cells, 1989. 26(4): p. 313-321. 122 21. Dharmadasa, I.M., Third generation multi-layer tandem solar cells for achieving high conversion efficiencies. Solar Energy Materials and Solar Cells, 2004. 85(2): p. 293-300. 22. Hein, M., et al., Characterization of a 300X photovoltaic concentrator system with one-axis tracking. Solar Energy Materials and Solar Cells, 2003. 75(1-2): p. 277-283. 23. Zhu et al, Nanodome solar cells with efficient light management and self-cleaning. Nano Lett., 2009. http://www.stanford.edu/group/cui_group/papers/nl9034237.pdf. 24. Chen, C.P., et al., Nanoparticle-coated n-ZnO/p-Si photodiodes with improved photoresponsivities and acceptance angles for potential solar cell applications. Nanotechnology, 2009. 20(24): p.245204-1 -245204-6. 25. Matsui, H., et al., Correlation between micro-roughness, surface chemistry, and performance of crystalline Si/amorphous Si : H : Cl hetero-junction solar cells. Journal of Non-Crystalline Solids, 2008. 354(19-25): p. 2483-2487. 26. Krc, J., et al., Effect of surface roughness of ZnO : Al films on light scattering in hydrogenated amorphous silicon solar cells. Thin Solid Films, 2003. 426(1-2): p. 296-304. 27. Campbell, P.R. and M.A. Green, On intensity enhancement in textured optical sheets for solar-cells. IEEE Transactions on Electron Devices, 1986. 33(11): p. 1834-1835. 28. Derrick, G.H., R.C. Mcphedran, and D.R. Mckenzie, Theoretical-studies of textured amorphous-silicon solar-cells. Applied Optics, 1986. 25(20): p. 3690-3696. 29. Campbell, P., Light trapping in textured solar-cells. Solar Energy Materials, 123 1990. 21(2-3): p. 165-172. 30. Takato, H., et al., Effects of optical confinement in textured antireflection coating using ZnO films for solar-cells. Japanese Journal of Applied Physics Part 2-Letters, 1992. 31(12A): p. L1665-L1667. 31. Zhao, J.H., et al., 19.8% efficient 'honeycomb' textured multicrystalline and 24.4% monocrystalline silicon solar cells. Applied Physics Letters, 1998. 73(14): p. 1991-1993. 32. Spiegel, M., et al., Industrially attractive front contact formation methods for mechanically V-textured multicrystalline silicon solar cells. Solar Energy Materials and Solar Cells, 2002. 74(1-4): p. 175-182. 33. Springer, J., et al., Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates. Solar Energy Materials and Solar Cells, 2005. 85(1): p. 1-11. 34. Hupkes, J., et al., Surface textured MF-sputtered ZnO films for microcrystalline silicon-based thin-film solar cells. Solar Energy Materials and Solar Cells, 2006. 90(18-19): p. 3054-3060. 35. Muhida, R., et al., Relationship between average slope of textured substrate and poly-Si thin film solar cells performance. Materials Research Innovations, 2009. 13(3): p. 246-248. 36. Kumar, P., et al., Microcrystalline single and double junction silicon based solar cells entirely prepared by HWCVD on textured zinc oxide substrate. Journal of Non-Crystalline Solids, 2006. 352(9-20): p. 1855-1858. 37. Mase, T., et al., Amorphous-silicon solar-cells on textured aluminum substrate prepared by electrical etching. Solar Cells, 1986. 17(2-3): p. 191-200. 38. Koida, T., H. Fujiwara, and M. Kondo, High-mobility hydrogen-doped In2O3 124 transparent conductive oxide for a-Si:H/c-Si heterojunction solar cells. Solar Energy Materials and Solar Cells, 2009. 93(6-7): p. 851-854. 39. Koida, T., H. Fujiwara, and M. Kondo, Reduction of optical loss in hydrogenated amorphous silicon/crystalline silicon heterojunction solar cells by high-mobility hydrogen-doped In2O3 transparent conductive oxide. Applied Physics Express, 2008. 1(4): p. 041501-1-041501-3. 40. Kawashima, T., et al., FTO/ITO double-layered transparent conductive oxide for dye-sensitized solar cells. Journal of Photochemistry and Photobiology a-Chemistry, 2004. 164(1-3): p. 199-202. 41. Alamri, S.N. and A.W. Brinkman, The effect of the transparent conductive oxide on the performance of thin film CdS/CdTe solar cells. Journal of Physics D-Applied Physics, 2000. 33(1): p. L1-L4. 42. Plattner, R., W. Stetter, and P. Kohler, Transparent conductive tin-oxide layers for thin-film solar-cells. Siemens Forschungs-Und Entwicklungsberichte- Siemens Research and Development Reports, 1988. 17(3): p. 138-146. 43. Gubbala, S., et al., Surface properties of SnO2 nanowires for enhanced performance with dye-sensitized solar cells. Energy & Environmental Science, 2009. 2(12): p. 1302-1309. 44. Liu, J.P., et al., Organic/inorganic hybrid solar cells with vertically oriented ZnO nanowires. Applied Physics Letters, 2009. 94(17): p. 173107-1-173107-3. 45. Jeon, M. and K. Kamisako, Synthesis and characterization of silicon nanowires using tin catalyst for solar cells application. Materials Letters, 2009. 63(9-10): p. 777-779. 46. Boercker, J.E., E. Enache-Pommer, and E.S. Aydil, Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells. Nanotechnology, 2008. 125 19(9): p. 095604-1-095604-10. 47. Tian, B.Z., et al., Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature, 2007. 449(7164): p. 885-U8. 48. Lok, C., Nanowire solar cells - Building photovoltaics out of nanowires. Technology Review, 2005. 108(9): p. 85-86. 49. Dmitruk, N.L., A.V. Korovin, and I.B. Mamontova, Efficiency enhancement of surface barrier solar cells due to excitation of surface plasmon polaritons. Semiconductor Science and Technology, 2009. 24(12): p. 125011-1-125011-7. 50. Losurdo, M., et al., Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance. Solar Energy Materials and Solar Cells, 2009. 93(10): p. 1749-1754. 51. Akimov, Y.A., K. Ostrikov, and E.P. Li, Surface plasmon enhancement of optical absorption in thin-film silicon solar sells. Plasmonics, 2009. 4(2): p. 107-113. 52. Chang, Y.C., et al., Effects of surface plasmon resonant scattering on the power conversion efficiency of organic thin-film solar cells. Journal of Vacuum Science & Technology B, 2007. 25(6): p. 1899-1902. 53. Pillai, S., et al., Surface plasmon enhanced silicon solar cells. Journal of Applied Physics, 2007. 101(9): p. 093105-1-093105-8. 54. Derkacs, D., et al., Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Applied Physics Letters, 2006. 89(9): p. 093103-1-093103-3. 55. Ishikawa, K., et al., The photocurrent of dye-sensitized solar cells enhanced by the surface plasmon resonance. Journal of Chemical Engineering of Japan, 2004. 37(5): p. 645-649. 126 56. Vukadinovic, M., et al., Numerical modelling of trap-assisted tunnelling mechanism in a-Si : H and mu c-Si n/p structures and tandem solar cells. Solar Energy Materials and Solar Cells, 2001. 66(1-4): p. 361-367. 57. Litovchenko, V.G., et al., Multiparticle exciton complexes in semiconductors with a large exciton binding-energy in (ZnO). Jetp Letters, 1979. 30(9): p. 544-548. 58. Zhang, J.Y., et al., Electrically driven ultraviolet lasing behavior from phosphorus-doped p-ZnO nanonail array/n-Si heterojunction. Applied Physics Letters, 2009. 95(21): p. 211107-1-211107-3. 59. Chen, S.F., et al., Preparation, characterization and activity evaluation of p-n junction photocatalyst p-ZnO/n-TiO2. Applied Surface Science, 2008. 255(5): p. 2478-2484. 60. Wei, Z.P., et al., Fabrication of nitrogen doped p-ZnO and ZnO light-emitting diodes on sapphire. Journal of the Korean Physical Society, 2008. 53(5): p. 3038-3042. 61. Rogozin, I.V. and M.B. Kotlyarevsky, Characteristics of nitrogen-doped p-ZnO thin films and ZnO/ZnSe p-n heterojunctions grown on a ZnSe substrate. Semiconductor Science and Technology, 2008. 23(8): p. 085008-1-085008-5. 62. Sun, J.C., et al., Ultraviolet electroluminescence from n-ZnO : Ga/p-ZnO : N homojunction device on sapphire substrate with p-type ZnO : N layer formed by annealing in N2O plasma ambient. Chemical Physics Letters, 2008. 460(4-6): p. 548-551. 63. Dutta, M. and D. Basak, p-ZnO/n-Si heterojunction: Sol-gel fabrication, photoresponse properties, and transport mechanism. Applied Physics Letters, 2008. 92(21): p. 212112-1-212112-3. 127 64. Sun, J.C., et al., Realization of ultraviolet electroluminescence from ZnO homojunction with n-ZnO/p-ZnO : As/GaAs structure. Applied Physics Letters, 2007. 90(12): p. 121128-1-121128-3. 65. Chen, H.C., et al., UV electroluminescence and structure of n-ZnO/p-GaN heterojunction LEDs grown by atomic layer deposition. IEEE Journal of Quantum Electronics, 2010. 46(2): p. 265-271. 66. Chen, C.H., et al., Electroluminescence from n-ZnO nanowires/p-GaN heterostructure light-emitting diodes. Applied Physics Letters, 2009. 95(22): p. 223101-1-223101-3. 67. Chang, S.P., et al., MBE n-ZnO/MOCVD p-GaN heterojunction light-emitting diode. Thin Solid Films, 2009. 517(17): p. 5054-5056. 68. Zhao, L., et al., A new approach to white light emitting diodes of p-GaN/i-ZnO/ n-ZnO heterojunctions. Applied Physics B-Lasers and Optics, 2008. 92(2): p. 185-188. 69. Rogers, D., et al., Materials characterization of n-ZnO/p-GaN : Mg/c-Al2O3 UV LEDs grown by pulsed laser deposition and metal-organic chemical vapor deposition. Superlattices and Microstructures, 2007. 42(1-6): p. 322-326. 70. Chen, C.P., et al., Observation of 394 nm electroluminescence from lowtemperature sputtered n-ZnO/SiO2 thin films on top of the p-GaN heterostructure. Applied Physics Letters, 2007. 91(9): p. 091107-1-091107-3. 71. Yang, H.S., et al., Fabrication of hybrid n-ZnMgO/n-ZnO/p-AlGaN/p-GaN light-emitting diodes. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2005. 44(10): p. 7296-7300. 72. Qin, Q., et al., Electroluminescence of an n-ZnO/p-GaN heterojunction under forward and reverse biases. Chinese Physics Letters, 2005. 22(9): p. 2298-2301. 128 73. Xu, H.Y., et al., Ultraviolet electroluminescence from p-GaN/i-ZnO/n-ZnO heterojunction light-emitting diodes. Applied Physics B-Lasers and Optics, 2005. 80(7): p. 871-874. 74. Ataev, B.M., et al., Fabrication and properties of an n-ZnO : Ga/p-GaN : Mg/alpha-Al2O3 heterojunction. Semiconductors, 2004. 38(6): p. 672-674. 75. Ataev, B.M., et al., n-ZnO/p-GaN/alpha-Al2O3 heterojunction as a promising blue light emitting system. Journal of Optoelectronics and Advanced Materials, 2003. 5(4): p. 899-902. 76. El-Shaer, A., et al., Fabrication and characterization of n-ZnO on p-SiC heterojunction diodes on 4H-SiC substrates. Superlattices and Microstructures, 2007. 42(1-6): p. 387-391. 77. Kandasamy, S., et al., Electrical characterization and hydrogen gas sensing properties of a n-ZnO/p-SiC Pt-gate metal semiconductor field effect transistor. Applied Physics Letters, 2007. 90(6): p. 064103-1-064103-3. 78. Alivov, Y.I., et al., Electrical and optical properties of n-ZnO/p-SiC heterojunctions. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2005. 44(10): p. 7281-7284. 79. Alivov, Y.I., et al., Photoresponse of n-ZnO/p-SiC heterojunction diodes grown by plasma-assisted molecular-beam epitaxy. Applied Physics Letters, 2005. 86(24): p. 241108-1-241108-3. 80. Yuen, C., et al., Fabrication of n-ZnO : Al/p-SiC(4H) heterojunction lightemitting diodes by filtered cathodic vacuum arc technique. Applied Physics Letters, 2005. 86(24): p. 182112-1-182112-3. 81. Alivov, Y.I., et al., Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Applied Physics 129 Letters, 2003. 83(23): p. 4719-4721. 82. Jeong, I.S., J.H. Kim, and S. Im, Ultraviolet-enhanced photodiode employing n-ZnO/p-Si structure. Applied Physics Letters, 2003. 83(14): p. 2946-2948. 83. Park, C.H., et al., Spectral responsivity and quantum efficiency of n-ZnO/p-Si photodiode fully isolated by ion-beam treatment. Applied Physics Letters, 2003. 82(22): p. 3973-3975. 84. Tan, S.T., et al., Ultraviolet and visible electroluminescence from n-ZnO/SiOx/ (n,p)-Si heterostructured light-emitting diodes. Applied Physics Letters, 2008. 93(1): p. 013506-1-013506-3. 85. Mridha, S. and D. Basak, Ultraviolet and visible photoresponse properties of n-ZnO/p-Si heterojunction. Journal of Applied Physics, 2007. 101(8): p. 083102-1-083102-5. 86. Ajimsha, R.S., M.K. Jayaraj, and L.M. Kukreja, Electrical characteristics of n-ZnO/p-Si heterojunction diodes grown by pulsed laser deposition at different oxygen pressures. Journal of Electronic Materials, 2008. 37(5): p. 770-775. 87. Choi, Y.S., et al., Photoresponse characteristics of n-ZnO/p-Si heterojunction photodiodes. Journal of Vacuum Science & Technology B, 2002. 20(6): p. 2384-2387. 88. Jeong, I.S., et al., n-ZnO/p-Si UV photodetectors employing AlOx films for antireflection. Thin Solid Films, 2004. 447: p. 111-114. 89. S. J. Jiao, Y.M.L., D. Z. Shen, Z. Z. Zhang, B. H. Li, J. Y. Zhang, B. Yao, Y. C. Liu, and X. W. Fan, Ultraviolet electroluminescence of ZnO based heterojunction light emitting diode. phys. stat. sol. (c), 2006. 3: p. 972-975. 90. Lin, T.K., et al., ZnO MSM photodetectors with Ru contact electrodes. Journal of Crystal Growth, 2005. 281(2-4): p. 513-517. 130 91. Liu, C., et al., Fabrication and characterization of ZnO film based UV photodetector. Journal of Materials Science-Materials in Electronics, 2009. 20(3): p. 197-201. 92. Yadav, H.K., K. Sreenivas, and V. Gupta, Enhanced response from metal/ZnO bilayer ultraviolet photodetector. Applied Physics Letters, 2007. 90(17): p. 172113-1-172113-3. 93. Purica, M., E. Budianu, and E. Rusu, ZnO thin films on semiconductor substrate for large area photodetector applications. Thin Solid Films, 2001. 383(1-2): p. 284-286. 94. Chen, S.F., et al., Preparation, characterization and activity evaluation of p-n junction photocatalyst p-NiO/n-ZnO. Journal of Sol-Gel Science and Technology, 2009. 50(3): p. 387-396. 95. Deng, R., et al., X-ray photoelectron spectroscopy measurement of n-ZnO/p-NiO heterostructure valence-band offset. Applied Physics Letters, 2009. 94(2): p. 022108-1-022108-3. 96. Ishida, Y., et al., Potential profiling of the nanometer-scale charge-depletion layer in n-ZnO/p-NiO junction using photoemission spectroscopy. Applied Physics Letters, 2006. 89(15): p. 153502-1-153502-3. 97. Ohta, H., et al., UV-detector based on pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO/n-ZnO. Thin Solid Films, 2003. 445(2): p. 317-321. 98. Gu, Y.F., et al., Visible-blind ultra-violet detector based on n-ZnO/p-Si heterojunction fabricated by plasma-assisted pulsed laser deposition. Solid State Communications, 2007. 143(8-9): p. 421-424. 99. Harako, S., et al., Visible and infrared electroluminescence from an Er-doped 131 n-ZnO/p-Si light emitting diode. Physica Status Solidi (a) Applications and Materials Science, 2008. 205(1): p. 19-22. 100. Kim, H.Y., et al., Photoresponse of Si detector based on n-ZnO/p-Si and n-ZnO/ n-Si structures. Optical Materials, 2001. 17(1-2): p. 141-144. 101. Park, C.H., et al., n-ZnO/p-Si photodiodes fabricated using ion-beam induced isolation technique. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 2003. 206: p. 432-435. 102. Park, C.H., et al., n-ZnO/p-Si photodiodes fully isolated by B+ ion-implantation. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 2004. 216: p. 127-130. 103. Huang, Y.-F., et al., Improved broadband and quasi -omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nat Nano, 2007. 2(12): p. 770-774. 104. Krunks, M., et al., Nanostructured solar cell based on spray pyrolysis deposited ZnO nanorod array. Solar Energy Materials and Solar Cells, 2008. 92(9): p. 1016-1019. 105. Tanaka, M., et al., Development of new a-Si C-Si heterojunction solar-cells - ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer). Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1992. 31(11): p. 3518-3522. 106. Lalatonne, Y., J. Richardi, and M.P. Pileni, Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals. Nature Materials, 2004. 3(2): p. 121-125. 107. Huang, Y.F., et al., Improved broadband and quasi -omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nature 132 Nanotechnology, 2007. 2(12): p. 770-774. 108. Yang, Z.P., et al., Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Letters, 2008. 8(2): p. 446-451. 109. Alivov, Y.I., et al., Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes. Applied Physics Letters, 2003. 83(14): p. 2943-2945. 110. Xu, P.S., et al., Native point defect states in ZnO. Chinese Physics Letters, 2001. 18(9): p. 1252-1253. 111. Studenikin, S.A., N. Golego, and M. Cocivera, Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. Journal of Applied Physics, 1998. 84(4): p. 2287-2294. 112. Khan, M.A., et al., Violet-blue GaN homojunction light-emitting-diodes with rapid thermal annealed p-type layers. Applied Physics Letters, 1995. 66(16): p. 2046-2047. 113. Ohta, H., et al., Fabrication and photoresponse of a pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO and n-ZnO. Applied Physics Letters, 2003. 83(5): p. 1029-1031. 114. Liang, S., et al., ZnO Schottky ultraviolet photodetectors. Journal of Crystal Growth, 2001. 225(2-4): p. 110-113. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8726 | - |
| dc.description.abstract | 摘要
自從1970 年代發生能源危機以及現今環保意識的抬頭,可回收再利用的能源越來越受重視,其中以太陽能電池的應用最為廣泛。在太陽能電池方面目前有幾個問題有待被解決其中包含:界面反射率、寬廣化的吸收頻譜、入射光的接收角以及元件內載子復合等等所造成的問題。過去幾十年內,為了提高矽基(Si)為主太陽能電池的效率,發展出一套利用化學濕蝕刻的方式,在太陽能電池的表面製造出具有週期性的粗糙化結構、倒金字塔結構以及蜂窩狀結構,使得太陽能電池表面材料的折射係數形成漸進式的變化以及造成入射光有效的被元件捕捉,進而降低表面的反射率。然而由於化學濕蝕刻容易受到濕度和溫度的影響,所以很難利用化學濕蝕刻成功的製作出具奈米結構的光電元件。 在太陽能電池轉換效率方面,目前以利用多層接面結構的砷化鎵(GaAs)為主的太陽能電池效率最高,但由於其製作步驟繁複且材料成本昂貴,所以在應用上還是以矽基(Si)為主要的太陽能電池材料。而在太陽能電池的光接收角改善方面,目前技術上是利用太陽光追蹤系統來控制入射光保持在接近垂直入射以達到吸收能圓的最大化,但是太陽光追蹤系統卻需要消耗額外的能源進而導致能源的浪費。至於在元件內的載子復合問題,主要是藉由材料品質的改善以及材料與金屬接面的材料重參雜來增加載子的生命周期。然而,傳輸路徑的過長也會使得載子在傳遞到金屬的過程中被缺陷復合的機率提高。基於以上的問題,我們提出利用結合寬能隙材料氧化鋅(ZnO)以及矽基(Si), 製作出具有寬廣且平坦吸收頻譜的光電元件,接著再利用最佳化的奈米小球鋪排技術,使光電元件的光響應和接收角都有大幅的提升。 同時,我們還利用鋪排奈米小球的技術以及蝕刻製程,製作出在材料接面上具備奈米結構的n-GZO/a-Si(i)/p+-Si 異質結構光偵測器,由於奈米結構可以有效的降低表面反射率以及表面型態較接近圓柱狀,所以此元件具有較高的光響應以及廣接收角的特性。除此之外,我們還發現在奈米結構的元件中其載子傳輸時間較短,而較短的載子傳輸時間可以降低載子在元件內被復合的機率,進而有機會造成較高的光響應。最後,具備奈米結構的光電元件擁有較高的光響應、寬廣的接 收角以及較快的載子傳輸時間,其在太陽能電池的應用上具有相當大的潛力。 | zh_TW |
| dc.description.abstract | Abstract
Renewable energy was attracted more attentions due to the energy crisis in 1970 and environmental issue in the world. There are several critical problems on high conversion efficiency solar cell manufacturing, low reflectivity, multiple band absorption, wide acceptance angle and low carrier recombination, et al. For the past decades, photovoltaic scientists developed the high conversion efficiency crystalline Si based solar cells by manufacturing the periodic rough structures, pyramid, inverted pyramid and honeycomb, et al., using wet etching on the solar cell surface. And, the reflectance could be drastic decreased due to the gradual refractive index in the surface textured devices. However, the wet etching process is hard to control due to the humidity and temperature in the clean room. Another, the size of textured structure is hard to control at the nanoscale. Furthermore, multiple junction solar cells could produce the higher conversion efficiency compared to the single junction solar cells due to the broad band absorption spectrum. The highest solar cell conversion efficiency was observed in the GaAs based semiconductor. The cost and difficult process result in the smaller market sharing than Si based solar cells. The acceptance angle of incident light for solar cells is another important issue for absorbing maximum light intensity by daytime. Although solar tracking system could provide the solution for this issue, it will cause the extra energy consumption. Another key issue for high conversion efficiency is carrier recombination. More carriers which were recombined in the devices will reduce the conversion efficiency. However, shortening the carrier transit paths could possibly decrease the probability of recombination when carrier transported to the contact electrodes. From the above mentions, we proposed another approach to manufacture the high conversion efficiency solar cells by combining the material of GZO and Si. By the overlapping of band gaps, the characteristic of broad band absorption ranged from 400nm to 800nm is realized in the n-GZO/p-Si heterojunction photodiodes. By the simple and novel technique of silica nanosphere spraying, the enhanced responsivity and wide acceptance angle could be achieved in the nanoparticle coated devices. The wide acceptance angle in n-GZO/p-Si photodiodes is due to the Bragg diffraction effect, Litterow configuration. This work could have the potential application to solar cells. Furthermore, we investigate the nanostructure n-GZO/a-Si(i)/p+-Si heterojunction photodiodes by using the self-masked nanosphere lithography. The characteristics of high responsivity and wide acceptance angle are achieved in the nanostructure photodiodes which is due to reducing surface reflectivity and nanostructure morphology. Moreover, nanostructure photodiodes have shorter transit time compared to planar photodiodes which is due to the shorter and more transit paths in the nanostructure devices. Nanostructure photodiodes possess the higher photoresponsivity compared to planar one which is possible due to the lower reflectance and shorter transit time. The n-GZO/a-Si(i)/nanopatterned p+-Si heterojunction photodiodes has the shortest transit time compared to planar n-GZO/a-Si(i)/p+-Si and n-GZO/nanopatterned a-Si(i)/p+-Si heterojunction photodiodes. Finally, self-masked nanosphere lithography and nanopatterned photodiodes possessed the enhanced photoresponsivity, wider acceptance angle and shorter transit time compared to the planar photodiodes. They have the potential applications to solar cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:00:16Z (GMT). No. of bitstreams: 1 ntu-99-D94941001-1.pdf: 6209623 bytes, checksum: 074699525227edf6378f8848708bcd82 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Contents
口試委員審定書 誌謝………………………………………………………………… I 中文摘要…………………………………………………………… III Preface…………………………………………………………….... V Abstract…………………………………………………………….. VIII Chapter 1 Introduction…………………………………... 1 1-1 Historical reviews of solar cells………………………………………….. 1 1-1-1 Energy shortage……………………………………………………….. 1 1-1-2 Solar cells progress……………………………………………………. 3 1-1-3 Bottlenecks of solar cells……………………………………………… 6 A. Broad band absorption………………………………………………… 7 B. Wide acceptance angle………………………………………………... 9 C. Low reflectance on solar cells………………………………………… 11 D. Carrier recombinations………………………………………………... 13 1-2 Historical review of ZnO based heterojunction optoelectronic devices…. 14 1-2-1 ZnO based Heterojunction Light Emitting Diodes (LEDs)…………… 15 1-2-2 ZnO based Heterojunction Photodetectors (PDs)……………………... 16 XII 1-2-3 Nanostructure optoelectronic devices progress on solar cell applications…………………………………………………………………... 17 1-3 Dissertation overviews…………………………………………………… 19 Chapter 2 Nanoparticle coated n-GZO/p-Si hotodiodes with improved photoresponsivities and acceptance angles for potential solar cell applications……………………….. 21 2-1 Motivations……………………………………………………………… 23 2-2 Device fabrications………………………………………………………. 23 2-2-1 Process flows………………………………………………………….. 23 2-2-2 Photos of scanning electronic microscope (SEM)…………………….. 25 2-2-3 Photos of atomic force microscope (AFM)…………………………… 25 2-2-4 Contact characteristics between Ni/Au and p-Si……………………… 27 2-3 Characterizations of n-GZO/p-Si photodiodes………………………… 30 2-3-1 Electrical properties…………………………………………………… 30 2-3-2 Optical properties of n-GZO/p-Si photodiodes……………………….. 30 A. Photoresponsivity of n-GZO/p-Si photodiodes with flat band absorption…………………………………………………………… 30 B. Enhanced photoresponsivity in SiO2 nanoparticle coated photodiodes 34 C. Wide acceptance angle……………………………………………… 36 D. Theoretical calculations using diffraction theory - Littrow configuration………………………………………………………….. . 39 XIII 2-4 Conclusions………………………………………………………………. 44 Chapter 3 Investigations of light absorption properties and acceptance angles of nanopatterned n-GZO/a-Si(i)/ p+-Si photodiodes…………………………………………... 46 3-1 Motivations………………………………………………………………. 48 3-2 Device fabrications………………………………………………………. 48 3-2-1 Fabrications of nanopatterned structure……………………………... 48 A. Etching morphology on different nanosphere concentrations………… 48 B. Etching morphology on different etching receipts of nanopatterned structure……………………………………………………………….. 51 C. Morphology of nanopatterned p+-Si before and after a-Si(i) deposition 51 D. Morphology of nanopatterned a-Si before and after RIE dry etching… 54 3-2-2 Fabrication process………………………………………………….. 56 A. Process flows………………………………………………………….. 56 B. SEM photos of nanopatterned p+-Si before and after deposition of a-Si layer………………………………………………………………. 58 C. Characterizations of metal contact……………………………………. 58 3-3 Characterizations of photodiodes………………………………………… 62 3-3-1 Electrical properties…………………………………………………. 62 3-3-2 Optical characterizations of n-GZO/a-Si(i)/p+-Si heterojunction photodiodes………………………………………………………….. 64 XIV A. Photoresponsivity…………………………………………………… 64 B. Reflectance of nanostructure………………………………………….. 67 C. Discussions on peak shift of photoresponsivity………………………. 69 D. Wide acceptance angle………………………………………………... 72 E. The mechanism of improved acceptance angle……………………….. 75 3-3-3 Investigations on transit time of nanostructure photodiodes………….. 75 A. Experimental setup……………………………………………………. 75 B. Results and discussions on transit time……………………………….. 77 B-1 Constant incident light intensity…………………………………. 77 B-1-1 Comparisons on different devices…………………………... 77 B-1-2 Relations between wavelength and transit time…………….. 82 B-2 Constant photocurrents………………………………………… 83 B-2-1 Comparisons on different devices………………………… 83 B-2-2 Relations between wavelength and transit time…………….. 85 3-4 Conclusions………………………………………………………………. 88 Chapter 4 Conclusions…………………………………… 90 Appendix 1 394nm EL emission in n-ZnO/p-GaN LEDs with effective silica current blocking layer……………….. 92 XV A1-1 Motivations……………………………………………………………. 93 A1-2 The material analysis of ZnO…………………………………………. 93 A1-2-1 Preparation of ZnO thin film……………………………………… 93 A1-2-2 Photoluminescence (PL) of ZnO…………………………………. 94 A1-2-3 X-ray diffraction (XRD) of ZnO…………………………………. 96 A1-3 Device fabrication……………………………………………………… 98 A1-4 Characteristics of n-ZnO/p-GaN LEDs………………………………… 99 A1-4-1 Photoluminescence (PL)…………………………………………... 99 A1-4-2 Electrical characteristics (I-V)…………………………………….. 99 A1-4-3 Electroluminescence (EL) of light emitting diodes (LEDs)………. 101 A. The effect of rapid temperature anneal (RTA) process for the n-ZnO/ p-GaN heterojunction LEDs………………………………………… 101 B. Electroluminescence (EL) of n-ZnO/p-GaN LEDs with and without SiO2 current blocking layer…………………………………………… 104 C. Discussion of band diagram on the mechanism of carrier recombination…………………………………………………………. 105 D. Electrical luminescence of device with different thickness of SiO2 current blocking layer…………………………………………………. 105 A1-5 Conclusions…………………………………………………………….. 108 Appendix 2 Photoresponse of heterojunction photodetectors by RF sputtering n-ZnO on p-GaN/sapphire….. 110 A2-1 Motivations…………………………………………………………….. 111 XVI A2-2 Device fabrication……………………………………………………… 111 A2-3 Characteristics of n-ZnO/p-GaN photodetectors………………………. 112 A. Electrical characteristics (I-V)………………………………………….. 112 B. Analysis of X-ray diffraction (XRD)…………………………………... 114 C. Photocurrent under different power of incident light………………… 114 D. The photoresponsivity of n-ZnO/p-GaN photodiodes………………….. 116 E. Discussion on the band diagram of n-ZnO/p-GaN photodiodes……….. 118 A2-4 Conclusions…………………………………………………………….. 119 Reference………………………………………………….... 120 Related Publications and Honor…………………………... 133 | |
| dc.language.iso | en | |
| dc.title | 具奈米結構之氧化鋅光電元件特性分析 | zh_TW |
| dc.title | Characterizations of ZnO Nanostructure Based Optoelectronic Devices | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 夏興國,楊志忠,彭隆瀚,綦振瀛,李清庭,洪瑞華 | |
| dc.subject.keyword | 太陽能電池,光伏打效應,奈米小球,奈米結構之二極體,光偵測器,布拉格繞射,接收角以及傳輸時間, | zh_TW |
| dc.subject.keyword | solar cells,photovoltaics,nanosphere,nanostructure photodiodes,photodetectors,Bragg diffraction,acceptance angle and transit time, | en |
| dc.relation.page | 139 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2010-02-08 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf | 6.06 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
