Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86950
標題: 有效條件數於無網格法輻射基底函數及基本解之應用
Applications of the Effective Condition Number in RBF and MFS of Meshless Methods
作者: 米努德
Amir Noorizadegan
指導教授: 陳俊杉
Chuin-Shan Chen
共同指導教授: 楊德良
Der-Liang Young
關鍵字: 徑向基函數,RBF插值,鬼點法,Kansa法,高階BVPs,乘連通域,基本解法,有效條件數,
RBF interpolation,ghost point method,radial basis functions,Kansa method,high order BVPs,multiply connected domain,method of fundamental solutions,effective condition number,condition number,
出版年 : 2023
學位: 博士
摘要: 本論文幾乎完全關注有效條件數在 RBF 和 MFS 中的應用,以幫助科學家和工程師成功應用這些無網格方法。 自由和問題相關的參數,包括 RBF 的類型、RBF 無網格方法中的形狀參數以及 MFS 中源(中心)點的位置仍然是懸而未決的研究課題。在本論文中,我們建議使用不確定性原理 (UP) 來克服所有挑戰。 [14]中的不確定性(權衡)原則指出“不可能構造同時保證良好穩定性和小誤差的徑向基函數”。這意味著在準確性和穩定性之間存在權衡。穩定性可以通過線性系統的調節來測量。因此,產生病態線性系統的形狀參數值預計會產生小誤差,反之亦然。然而,標準(常規)條件數並不是對線性系統實際條件的良好估計。另一方面,有效條件數被認為是對實際條件數的更好估計。基於我們在 RBF 無網格方法和基本解方法中的數值觀察,觀察到有效條件數與誤差之間存在很強的數值相關性。因此,在不確定性原則的推動下,我們建議根據有效條件數搜索最不穩定的設置,以實現 UP 承諾的高度準確的結果。這些設置可以通過更好的 RBF 類型、良好的形狀參數(在 RBF 中)和源點的適當位置(在 MFS 中)來設置。此外,引入了三種方法來提高所提出方法的效率。 最後,將結果與著名的留一法交叉驗證 (LOOCV) 方法進行比較。 在大多數情況下觀察到更好的準確性,同時在所有情況下都獲得了更高的效率。
In recent decades radial basis functions (RBFs) have been proven to be valuable tools in scientific computing areas like (i) Computational mechanics problems, including stress analysis and elasticity, (ii) Fluid dynamics Problems, including reaction-diffusion, shallow water equations, and convection advection problems, (iii) Image analysis, computer graphics, animated deformations and including shape modeling, and (iv) Economics problems, including pricing. These applications are connected through common mathematical problems and concepts like (i) Recovery of functions data, (ii) Meshfree or meshless methods for solving partial differential equations (PDEs), (iii) Inverse and ill–posed problems, (iv) Learning algorithms, and (v) Neural networks, which can be handled easily and successfully by radial basis functions. We focus on meshless methods for (i) Reconstruction of multivariate functions, and (ii) Solving partial differential equations. To do so, a few core techniques, including the Kansa method and method of fundamental solutions are needed. This dissertation focuses almost entirely on applications of the Effective Condition Number in RBF and MFS} to help scientists and engineers apply these meshless methods successfully. Free and problem-dependent parameters including the type of RBF, a shape parameter in RBF meshless methods, and the location of source (center) points in MFS still remain outstanding research topics. In this dissertation, we propose to overcome all challenges using the Uncertainty Principle (UP). The Uncertainty (Trade-off) Principle in radial basis functions was first proposed by Schaback in 1995 [14] and states that ``It is impossible to construct radial basis functions which guarantee good stability and small errors at the same time". This means that there is a trade-off between accuracy and stability. Stability can be measured by the conditioning of the linear system. As such, a shape parameter value yielding an ill-conditioned linear system is expected to produce a small error and vice versa. However, the standard (conventional) condition number is not a good estimate of the real conditioning of a linear system. On the other hand, the Effective Condition Number is known as a better estimate of the real condition number. Based on our numerical observations in RBF meshless methods and method of fundamental solutions a strong numerical correlation between the Effective Condition Number and error is observed. Therefore, motivated by the Uncertainty Principle, we propose to search for the most unstable settings in terms of the Effective Condition Number to achieve the highly accurate results promised by the UP. These settings can be set up by a better type of RBF, a good shape parameter (in RBF), and proper locations of source points (in MFS). In addition, three methods are introduced to increase the efficiency of the proposed (i) The approximation of the minimal singular value, and (ii) An efficient search algorithm. Note that Different strategies are applied to different methods. In the end, the results are compared with the well-known leave-one-out cross-validation (LOOCV) method. Better accuracy was observed for most cases while higher efficiency was obtained for all cases.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86950
DOI: 10.6342/NTU202210179
全文授權: 未授權
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  未授權公開取用
5.32 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved