Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86950
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊杉zh_TW
dc.contributor.advisorChuin-Shan Chenen
dc.contributor.author米努德zh_TW
dc.contributor.authorAmir Noorizadeganen
dc.date.accessioned2023-05-02T17:01:13Z-
dc.date.available2023-11-09-
dc.date.copyright2023-05-02-
dc.date.issued2023-
dc.date.submitted2023-01-07-
dc.identifier.citation[1] A. Noorizadegan, Chuin-Shan Chen, D.L. Young, and C.S. Chen, Effective condition number for the selection of the RBF shape parameter with the fictitious point method. Applied Numerical Mathematics, 178: p. 280-295, 2022.
[2] A. Karageorghis, A. Noorizadegan, and C.S. Chen, Fictitious centre RBF method for high order BVPs in multiply connected domains. Applied Mathematics Letters, 125: 107711, 2022.
[3] 5. Chuin-Shana Chen, A. Noorizadegan, C.S. Chen, D.L. Young, On the selection of a better radial basis function and its shape parameter in interpolation problems. Applied Mathematics and Computation, 2023. 442: p. 127713.
[4] C.S. Chen, A. Noorizadegan, D.L. Young, Chuin-Shana Chen, On the determination of locating the source points of the MFS using effective condition number. Journal of Computational and Applied Mathematics, 2023. 423: p. 114955.
[5] A. Noorizadegan, D.L. Young, and Chuin-Shan Chen, A novel local radial basis function collocation method for multi-dimensional piezoelectric problems. Journal of Intelligent Material Systems and Structures, p. 1045389X211057207, 2021.
[6] Schaback, R. and H. Wendland, Kernel techniques: From machine learning to meshless methods. Acta Numerica, 2006. 15: p. 543-639.
[7] S.-R. Lin, D.L. Young, and Chuin-Shan Chen, Ghost-point based radial basis function collocation methods with variable shape parameters. Engineering Analysis with Boundary Elements, 130, 40–48, 2021.
[8] R. Franke, Scattered data interpolation: tests of some methods. Mathematics of Computation, 38: 181–200, 1982.
[9] R. Franke, A critical comparison of some methods for interpolation of scattered data. Technical report NPS53-79-003. Naval Postgraduate School, Monterey, California, 1979.
[10] V.D. Kupradze and M.A. Aleksidze, The method of functional equations for the approximate solution of certain boundary value problems. USSR Computational Mathematics and Mathematical Physics. 4(4): p. 82-126, 1964.
[11] C.A. Micchelli, Interpolation of scattered data: Distance matrices and conditionally positive definite functions. Constructive Approximation, 2(1): 11–22, 1986.
[12] R. Schaback, Small Errors Imply Large Instabilities. arXiv e-prints, 2022: p. arXiv: 2203.04593.
[13] R. Schaback, Stability of radial basis function interpolants, in Approximation Theory X, C. K. Chui, L. L. Schumaker, and J. Stockler (eds.), Vanderbilt Univ. Press (Nashville, TN), pp. 433–440, 2002.
[14] R. Schaback, Error estimates and condition numbers for radial basis function interpolation. Advances in Computational Mathematics, 3(3): 251–264, 1995.
[15] G.E. Fasshauer, Meshfree Approximation Methods with Matlab. Meshfree Approximation Methods with Matlab. 2007.
[16] A.H.D. Cheng, Multiquadric and its shape parameter—A numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation. Engineering Analysis with Boundary Elements, 36(2): 220–239, 2012.
[17] T.F. Chan, and D.E. Foulser, Effectively Well-Conditioned Linear Systems. SIAM Journal on Scientific and Statistical Computing, 9: 963–969, 1988.
[18] Z.-C. Li, H.-T. Huang, J.-T. Chen, and Y. Wei, Effective condition number and its applications. Computing, 89(1): 87–112, 2010.
[19] S. Rippa, An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Advances in Computational Mathematics, 11(2-3): 193–210, 1999.
[20] A. Karageorghis, C.S. Chen, and Y.-S. Smyrlis, A matrix decomposition RBF algorithm: Approximation of functions and their derivatives. Applied Numerical Mathematics, 57(3): 304–319, 2007.
[21] L. Kuo, On The Selection of a Good Shape Parameter for RBF Approximation and Its Applications for Solving PDEs. Ph.D. Thesis, University of Southern Mississippi, 2015.
[22] Heisenberg, W. The physical content of quantum kinematics and mechanics. In Wheeler, J. A. Zurek, W. H. (eds.) Quantum Theory and Measurement, 62–84 (Princeton UP, Princeton, NJ, 1983). [Originally published: Z. Phys., 43, 172-98 (1927)].
[23] H. Wendland, Gaussian interpolation revisited, T.L. K. Kopotun, and M. Neamtu, Editor. , Vanderbilt Univ. Press, Nashville, TN: Trends in approximation theory: Vanderbild University, Nashville. pp. 417–426, 2001.
[24] B. Matern, Spatial variation (Second ed.), Lecture Notes in Statistics, 36, SpringerVerlag (Berlin). 1986.
[25] F.J. Hickernell, and Y.C. Hon, Radial basis function approximations as smoothing splines. Applied Mathematics and Computation, 102(1): 1–24, 1999.
[26] H. Wendland, Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics. Cambridge: Cambridge University Press, 2004.
[27] W.R. Madych, Miscellaneous error bounds for multiquadric and related interpolators. Computers and Mathematics With Applications, 24: p. 121-138, 1992.
[28] J. M. Banoczi, N.-C. Chiu, G. E. Cho, and I. C. F. Ipsen, The lack of influence of the right-hand side on the accuracy of linear system solution, SIAM Journal on Scientific Computing, 20(1), 203–227, 1998.
[29] C. S. Chen, A. Karageorghis, H. Zheng, Improved RBF collocation methods for fourth order boundary value problems, Communication in Computational Physics, 27, 1530–1549, 2020.
[30] C. S. Chen, A. Karageorghis, and F. Dou, A novel RBF collocation method using fictitious centres, Applied Mathematics Letters, 101, 106069, 2020.
[31] C. S. Chen, A. Karageorghis, and L. Amuzu, Kansa RBF collocation method with auxiliary boundary centres for high order BVPs, Journal of Computational and Applied Mathematics, 398, 113680, 2021.
[32] G. E. Fasshauer and J. G. Zhang, On choosing optimal shape parameters for RBF approximation, Numerical Algorithms, 45(1), 345–368, 2007.
[33] A. Karageorghis D. Tappoura, C.S. Chen, Kansa RBF method with auxiliary boundary cetres for fourth order BVPs, Mathematics and Computers in Simulation, 181, 581–597, 2020.
[34] E. Kansa, Multiquadrics scattered data approximation scheme with applications to computational fluid-dynamics solutions to parabolic, hyperbolic and elliptic partial differential equations, Computers and Mathematics with Applications, 19(8), 147–161, 1990.
[35] J. Lin, Y. Zhao, D. Watson, C.S. Chen, The radial basis function differential quadrature with ghost points, Mathematics and Computers in Simulation, 173, 105-114, 2020.
[36] J. Rice, Matrix computation and mathematical software, McGraw-Hill Education; New Ed edition, 1983.
[37] D.L. Young, S.R. Lin, Chuin-Shan Chen, C.S. Chen, Two–step MPS–MFS ghost point method for solving partial differential equations, Computers and Mathematics with Applications, 94, 38–46, 2021.
[38] X. Zhu, F. F. Dou, A. Karageorghis, C.S. Chen, A fictitious points one-step MPS-MFS technique, Applied Mathematics and Computation, 382, 125332, 2020.
[39] A.H.D. Cheng, Y. Hong, An overview of the method of fundamental solutions – Solvability, uniqueness, convergence, and stability, Eng. Anal. Bound. Elem., 120, 118–152, 2020.
[40] C.S. Chen, A. Karageorghis, Yan Li, On choosing the location of the sources in the MFS, Numer. Algor, 72, 107–130, 2016.
[41] H.A. Cho, M.A. Golberg, A.S. Muleshkov, X. Li, Trefftz methods for time dependent partial differential equations, Computers, Materials & Continua, 1, 1–37, 2004.
[42] T.W. Drombosky, Ashley L. Meyer, Leevan Ling, Applicability of the method of fundamental solutions, Eng. Anal. Bound. Elem., 33(5), 637–643, 2009.
[43] G. Fairweather and A. Karageorghis, The method of fundamental solutions for elliptic boundary value problems, Adv. Comput. Math., 9, 69–95, 1998.
[44] M.A. Golberg, C.S. Chen, The method of fundamental solutions for potential, Helmholtz and diffusion problems, Boundary Integral Methods: Numerical and Mathematical Aspects (M. A. Golberg, ed.), Comput. Eng., vol. 1, WIT Press/Comput. Mech. Publ., Boston, MA, 1999, pp. 103–176.
[45] A. Karageorghis, G. Fairweather, The method of fundamental solutions for the numerical solution of the biharmonic equation, J. Comput. Phys. 69, 434–459, 1987.
[46] A. Karageorghis, A practical algorithm for determining the optimal pseudo-boundary in the method of fundamental solutions, Adv. Appl. Math. Mech., 1, 510–528, 2009.
[47] M. Li, C. S. Chen, and A. Karageorghis, The MFS for the solution of harmonic boundary value problems with non-harmonic boundary conditions, Comput. Math. Appl., 66, 2400–2424, 2013.
[48] J. Lin, A.R. Lamichhane, C.S. Chen, Jun Lu, The adaptive algorithm for the selection of sources of the method of fundamental solutions, Eng. Anal. Bound. Elem., 95, 154–159, 2018.
[49] Z-C Li, H-T Huang, Study on effective condition number for collocation methods, Eng. Anal. Bound. Elem., 32, 839–848, 2008.
[50] J. Oh, H. Zhu, Z. Fu, An Adaptive Method of Fundamental Solutions for Solving the Laplace Equation, Comput. Math. with Appl., 77(7), 1828-1840, 2018.
[51] R. Schaback, Adaptive numerical solution of MFS systems, The Method of Fundamental Solutions – A Meshless Method (C.S. Chen, A. Karageorghis, Y.S. Smyrlis, eds.), Dynamic Publishers, Inc., Atlanta, 2008, pp. 1–27.
[52] T. Shigeta, D.L. Young, and C.S. Liu, Adaptive multilayer method of fundamental solutions using a weighted greedy QR decomposition for the Laplace equation, J. Comput. Phys., 231, 7118–7132, 2012.
[53] K-Y. Wong, L. Ling, Optimality of the method of fundamental solutions, Eng. Anal. Bound. Elem., 35(1), 42–46, 2011.
[54] W. Chen, Y. Hong and J. Lin, The sample solution approach for determination of the optimal shape parameter in multiquadric function of the Kansa method, Comput. Math. Appl. 75, 2942–2954, 2018
[55] F. John, Partial Differential Equations, Third edition, Applied Mathematical Sciences 1, Springer-Verlag, New York-Berlin, 1978.
[56] E. J. Kansa, Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics. II. Solutions to parabolic, hyperbolic and elliptic partial differential equations, J. Comput. Appl. Math. 19, 147–161, 1990.
[57] http://graphics.stanford.edu/data/3Dscanrep/
[58] S. Christiansen and P. C. Hansen, The effective condition number applied to error analysis of certain boundary collocation methods, J. Comput. Appl. Math., 54, pp. 15-36, 1994.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86950-
dc.description.abstract本論文幾乎完全關注有效條件數在 RBF 和 MFS 中的應用,以幫助科學家和工程師成功應用這些無網格方法。 自由和問題相關的參數,包括 RBF 的類型、RBF 無網格方法中的形狀參數以及 MFS 中源(中心)點的位置仍然是懸而未決的研究課題。在本論文中,我們建議使用不確定性原理 (UP) 來克服所有挑戰。 [14]中的不確定性(權衡)原則指出“不可能構造同時保證良好穩定性和小誤差的徑向基函數”。這意味著在準確性和穩定性之間存在權衡。穩定性可以通過線性系統的調節來測量。因此,產生病態線性系統的形狀參數值預計會產生小誤差,反之亦然。然而,標準(常規)條件數並不是對線性系統實際條件的良好估計。另一方面,有效條件數被認為是對實際條件數的更好估計。基於我們在 RBF 無網格方法和基本解方法中的數值觀察,觀察到有效條件數與誤差之間存在很強的數值相關性。因此,在不確定性原則的推動下,我們建議根據有效條件數搜索最不穩定的設置,以實現 UP 承諾的高度準確的結果。這些設置可以通過更好的 RBF 類型、良好的形狀參數(在 RBF 中)和源點的適當位置(在 MFS 中)來設置。此外,引入了三種方法來提高所提出方法的效率。 最後,將結果與著名的留一法交叉驗證 (LOOCV) 方法進行比較。 在大多數情況下觀察到更好的準確性,同時在所有情況下都獲得了更高的效率。zh_TW
dc.description.abstractIn recent decades radial basis functions (RBFs) have been proven to be valuable tools in scientific computing areas like (i) Computational mechanics problems, including stress analysis and elasticity, (ii) Fluid dynamics Problems, including reaction-diffusion, shallow water equations, and convection advection problems, (iii) Image analysis, computer graphics, animated deformations and including shape modeling, and (iv) Economics problems, including pricing. These applications are connected through common mathematical problems and concepts like (i) Recovery of functions data, (ii) Meshfree or meshless methods for solving partial differential equations (PDEs), (iii) Inverse and ill–posed problems, (iv) Learning algorithms, and (v) Neural networks, which can be handled easily and successfully by radial basis functions. We focus on meshless methods for (i) Reconstruction of multivariate functions, and (ii) Solving partial differential equations. To do so, a few core techniques, including the Kansa method and method of fundamental solutions are needed. This dissertation focuses almost entirely on applications of the Effective Condition Number in RBF and MFS} to help scientists and engineers apply these meshless methods successfully. Free and problem-dependent parameters including the type of RBF, a shape parameter in RBF meshless methods, and the location of source (center) points in MFS still remain outstanding research topics. In this dissertation, we propose to overcome all challenges using the Uncertainty Principle (UP). The Uncertainty (Trade-off) Principle in radial basis functions was first proposed by Schaback in 1995 [14] and states that ``It is impossible to construct radial basis functions which guarantee good stability and small errors at the same time". This means that there is a trade-off between accuracy and stability. Stability can be measured by the conditioning of the linear system. As such, a shape parameter value yielding an ill-conditioned linear system is expected to produce a small error and vice versa. However, the standard (conventional) condition number is not a good estimate of the real conditioning of a linear system. On the other hand, the Effective Condition Number is known as a better estimate of the real condition number. Based on our numerical observations in RBF meshless methods and method of fundamental solutions a strong numerical correlation between the Effective Condition Number and error is observed. Therefore, motivated by the Uncertainty Principle, we propose to search for the most unstable settings in terms of the Effective Condition Number to achieve the highly accurate results promised by the UP. These settings can be set up by a better type of RBF, a good shape parameter (in RBF), and proper locations of source points (in MFS). In addition, three methods are introduced to increase the efficiency of the proposed (i) The approximation of the minimal singular value, and (ii) An efficient search algorithm. Note that Different strategies are applied to different methods. In the end, the results are compared with the well-known leave-one-out cross-validation (LOOCV) method. Better accuracy was observed for most cases while higher efficiency was obtained for all cases.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-05-02T17:01:13Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-05-02T17:01:13Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements iii
Abstract v
Contents ix
List of Figures xiii
List of Tables xix
Denotation xxiii

Chapter 1 Introduction 1
1.1 Introduction . . . . . . . 1
1.2 Outline . . . . . . . 4
Chapter 2 The Formulation of the RBF and MFS of Meshless Method 7
2.1 RBF Interpolation . . . . . . . 7
2.1.1 Shape Parameter Determination . . . . . . . 10
2.2 The Kansa Method for the Second and Fourth Order BVPs with ghost Point . . . . . . . 11
2.3 The Kansa Method for the Higher Order BVPs with ghost Point . . . . . . . 13
2.4 Method of Fundamental Solutions . . . . . . . 16
2.4.1 Harmonic problems . . . . . . . 16
2.4.2 Bi-harmonic problems . . . . . . . 18
2.4.3 Determination of the Source Points’ Location . . . . . . . 19
2.5 Summary . . . . . . . 20
Chapter 3 Numerical Stability and Conditioning of RBF Interpolation 21
3.1 Uncertainty Principle for RBF Interpolation . . . . . . . 22
3.2 Effective Condition Number . . . . . . . 23
3.3 Standard Condition Number . . . . . . . 25
3.4 Summary . . . . . . . 26
Chapter 4 Numerical Experiments 29
4.1 Effective Condition Number Applications in the RBF Interpolation . . . . . . . 29
4.1.1 Proposed Method . . . . . . . 30
4.1.2 Numerical Examples . . . . . . . 32
4.1.3 Remarks . . . . . . . 48
4.2 Effective Condition Number Applications in the Kansa Method for the Second and Fourth Order BVPs with ghost Point . . . . . . . 50
4.2.1 Proposed Method . . . . . . . 50
4.2.2 Numerical Examples . . . . . . . 51
4.2.3 Remarks . . . . . . . 68
4.3 Effective Condition Number Applications in the Kansa Method for the Higher Order BVPs with ghost Point . . . . . . . 69
4.3.1 Proposed Method . . . . . . . 69
4.3.2 Simply-Connected Domain Examples . . . . . . . 70
4.3.3 Multiple-Connected Domain Examples . . . . . . . 72
4.3.4 Remarks . . . . . . . 73
4.4 Effective Condition Number Applications in Determination of the Source Points'Location in the MFS . . . . . . . 75
4.4.1 The Proposed Method . . . . . . . 75
4.4.2 Numerical Experiments . . . . . . . 77
4.4.3 Remarks . . . . . . . 95
Chapter 5 Conclusions and Future Works 97
5.1 Conclusions . . . . . . . 97
5.2 Future works . . . . . . . 99
-
dc.language.isoen-
dc.subject鬼點法zh_TW
dc.subjectRBF插值zh_TW
dc.subjectKansa法zh_TW
dc.subject基本解法zh_TW
dc.subject有效條件數zh_TW
dc.subject徑向基函數zh_TW
dc.subject高階BVPszh_TW
dc.subject乘連通域zh_TW
dc.subjectcondition numberen
dc.subjectRBF interpolationen
dc.subjectghost point methoden
dc.subjectradial basis functionsen
dc.subjectKansa methoden
dc.subjecthigh order BVPsen
dc.subjectmultiply connected domainen
dc.subjectmethod of fundamental solutionsen
dc.subjecteffective condition numberen
dc.title有效條件數於無網格法輻射基底函數及基本解之應用zh_TW
dc.titleApplications of the Effective Condition Number in RBF and MFS of Meshless Methodsen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree博士-
dc.contributor.coadvisor楊德良zh_TW
dc.contributor.coadvisorDer-Liang Youngen
dc.contributor.oralexamcommittee范佳銘;陳清祥;沈立軒;張榮語;陳正宗zh_TW
dc.contributor.oralexamcommitteeChia-Ming Fan;Ching-Shyang Chen;Li-Shen Shen;Rong-Yeu Chang;Jeng-Tzong Chenen
dc.subject.keyword徑向基函數,RBF插值,鬼點法,Kansa法,高階BVPs,乘連通域,基本解法,有效條件數,zh_TW
dc.subject.keywordRBF interpolation,ghost point method,radial basis functions,Kansa method,high order BVPs,multiply connected domain,method of fundamental solutions,effective condition number,condition number,en
dc.relation.page109-
dc.identifier.doi10.6342/NTU202210179-
dc.rights.note未授權-
dc.date.accepted2023-01-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  未授權公開取用
5.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved