Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86689
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor高振宏(ChengHeng Robert Kao)
dc.contributor.authorChen-Wei Kaoen
dc.contributor.author高晨媁zh_TW
dc.date.accessioned2023-03-20T00:11:25Z-
dc.date.copyright2022-08-10
dc.date.issued2022
dc.date.submitted2022-08-02
dc.identifier.citation1. D. C. Brock, G. E. Moore, Understanding Moore's law: Four decades of innovation, Chemical Heritage Foundation, 2006. 2. G. E. Moore, Lithography and the future of Moore's law, Integrated Circuit Metrology, Inspection, and Process Control IX, vol. 2439, SPIE, 1995. 3. R. R. Schaller, Moore's law: past, present and future, IEEE Spectr., 34(6) (1997) 52-59. 4. B. Banijamali, S. Ramalingam, H. Liu, M. Kim, Outstanding and innovative reliability study of 3D TSV interposer and fine pitch solder micro-bumps, in: 2012 IEEE 62nd Electronic Components and Technology Conference, ECTC 2012, San Diego, CA, 2012, pp. 309-314. 5. K. N. Tu, Y. Liu, Recent advances on kinetic analysis of solder joint reactions in 3D IC packaging technology, Mater. Sci. Eng. R Rep., 136 (2019) 1-12. 6. Wafer level 3D ICs process technology, Springer-Verlag US, Boston, MA, 2008. 7. K. N. Tu, Recent advances on electromigration in very-large-scale-integration of interconnects, J. Appl. Phys., 94(9) (2003) 5451-5473. 8. W. W. Lee, L. T. Nguyen, G. S. Selvaduray, Solder joint fatigue models: review and applicability to chip scale packages, Microelectron. Reliab., 40(2) (2000) 231-244. 9. K.N. Tu, H.Y. Hsiao, C. Chen, Transition from flip chip solder joint to 3D IC microbump: Its effect on microstructure anisotropy, Microelectron. Reliab., 53 (2013) 2-6. 10. H. W. Yang, H. Y. Yu, C. R. Kao, Critical factors affecting structural transformations in 3D IC micro joints, in: 2017 IEEE 67th Electronic Components and Technology Conference, ECTC 2017, pp. 1008-1013. 11. H. Y. Chuang, T. L. Yang, M. S. Kuo, Y. J. Chen, J. J. Yu, C. C. Li, C. R. Kao, Critical concerns in soldering reactions arising from space confinement in 3D IC packages, IEEE Trans. Device Mater. Reliab., 12 (2012) 233-240. 12. L. Y. Gao, C. F. Li, P. Wan, Z. Q. Liu, A superior interfacial reliability of Fe-Ni UBM during high temperature storage, J. Mater. Sci. Mater. Electron., 28(12) (2017) 8537-8545. 13. K. Ruhmer, E. Laine, K. O'Donnell, J. Kostetsky, K. Hauck, D. Manessis, A. Ostmann, M. Toepper, N. Juergensen, Alternative UBM for lead free solder bumping using C4NP, in: 2007 IEEE 57th Electronic Components and Technology Conference, ECTC '07, Sparks, NV, 2007, pp. 15-21. 14. R. K. Ulrich, W. D. Brown, Advanced electronic packaging, 2nd ed., Wiley-Interscience/IEEE, Hoboken, NJ, 2006. 15. R. R. Tummala, Fundamentals of microsystems packaging McGraw-Hill, New York, 2001. 16. M. C. Hsu, Advanced microelectronic 3D-IC packaging, first ed., Wu-Nan Book, Taipei City, 2011. 17. C. E. Ho, Electronic packages and surface finish technology of copper, first ed., TPCA, Taipei City, 2018. 18. S. Y. Jang, J. Wolf, K. W. Paik, Under bump metallurgy study for Pb-free bumping, J. Electron. Mater., 31(5) (2002) 478-487. 19. S. Y. Jang, K. W. Paik, Comparison of electroplated eutectic Bi/Sn and Pb/Sn solder bumps on various UBM systems, IEEE Trans. Electron. Packag. Manufact., 24(4) (2001) 269-274. 20. Polybell International Coating System Solution Provider, What is Evaporation and Sputtering?, March 11, 2016. https://www.polybell.com.tw/page/news/show.aspx?num=77&kind=19&root=11&page=1 21. M. K. M. Arshad, U. Hashim, M. Isa, Under bump metallurgy (UBM)-A technology review for flip chip packaging, Int. J. Mech. Mater. Eng. (IJMME), 2(1) (2007) 48-54. 22. X. Liu, Processing and reliability assessment of solder joint interconnection for power chips, PhD Thesis, Virginia Polytechnic Institute and State University, 2001. 23. S. Haque, Processing and characterization of device solder interconnection and module attachment for power electronics modules, PhD Thesis, Virginia Polytechnic Institute and State University, 1999. 24. G. Liu, MOSFET front metallization process comparison: sputtering vs. electroless plating, February 13, 2019. https://www.eettaiwan.com/20190213ta31-fsm-of-mosfet/ 25. S. Fürtauer, D. Li, D. Cupid, H. Flandorfer, The Cu–Sn phase diagram, Part I: new experimental results, Intermetallics, 34 (2013) 142-147. 26. H. J. Van de Wiel, A. B.Vardøy, G. Hayes, H. R. Fischer, A. Lapadatu, M. M. V. Taklo, Characterization of hermetic wafer-level Cu-Sn SLID bonding, in: 2012 IEEE 4th Electronic System-Integration Technology Conference, ESTC 2012, pp. 1-7. 27. K. N. Tu, R. D. Thompson, Kinetics of interfacial reaction in bimetallic Cu-Sn thin films, Acta Metallurgica, 30(5) (1982) 947-952. 28. K. N. Tu, Cu/Sn interfacial reactions: thin-film case versus bulk case, Mater. Chem. Phys., 46(2-3) (1996) 217-223. 29. W. M. Tang, A. Q. He, L. Qi, D. G. Ivey, Solid-state interfacial reactions in electrodeposited Cu/Sn couples, T. NONFERR. METAL. SOC., 20(1) (2010) 90-96. 30. C.R. Kao, H.Y. Chuang, W.M. Chen, T.L. Yang, M.S. Kuo, Y.J. Chen, J.J. Yu, C.C. Li, Soldering reactions under space confinement for 3D IC applications, in: 2012 IEEE 62nd Electronic Components and Technology Conference, ECTC 2012, pp. 724-728. 31. T.L. Yang, J.J. Yu, W.L. Shih, C.H. Hsueh, C.R. Kao, Effects of silver addition on Cu–Sn microjoints for chip-stacking applications, J. Alloy. Compd., 605 (2014) 193-198. 32. K. Chen, D. Wang, H. Ling, A. Hu, M. Li, W. Zhang, L. Cao, Effects of Sn grain size on intermetallic compounds formation in 5 µm diameter Cu/Sn pillar bumps, J. Mater. Sci. Mater. Electron., 29(22) (2018) 19484-19490. 33. J.F. Li, P.A. Agyakwa, C.M. Johnson, Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process, Acta Mater., 59 (2011) 1198-1211. 34. R. Zhang, Y. Tian, C. Hang, B. Liu, C. Wang, Formation mechanism and orientation of Cu3Sn grains in Cu–Sn intermetallic compound joints, Mater. Lett., 110 (2013) 137-140. 35. L. Mo, F. Wu, C. Liu, Growth kinetics of IMCs in Cu-Sn intermetallic joints during isothermal soldering process, in: 2015 IEEE 65th Electronic Components and Technology Conference, ECTC 2015, pp. 1854-1858. 36. P. Yao, X.Y. Li, X.B. Liang, B. Yu, F.Y. Jin, Y. Li, A study on interfacial phase evolution during Cu/Sn/Cu soldering with a micro interconnected height, Mater. Charact., 131 (2017) 49-63. 37. T. Laurila, V. Vuorinen, J. K. Kivilahti, Interfacial reactions between lead-free solders and common base materials, Mater. Sci. Eng. R Rep., 49(1-2) (2005) 1-60. 38. S. Ahat, M. Sheng, L. Luo, Microstructure and shear strength evolution of SnAg/Cu surface mount solder joint during aging, J. Electron. Mater., 30(10) (2001) 1317-1322. 39. T. C. Chiu, K. Zeng, R. Stierman, D. Edwards, K. Ano, Effect of thermal aging on board level drop reliability for Pb-free BGA packages, in: 2004 IEEE 54th Electronic Components and Technology Conference, ECTC 2004, Cat. No. 04CH37546, vol. 2, pp. 1256-1262. 40. P. T. Vianco, J. A. Rejent, P. F. Hlava, Solid-state intermetallic compound layer growth between copper and 95.5Sn-3.9Ag-0.6Cu solder, J. Electron. Mater., 33(9) (2004) 991-1004. 41. K. Zeng, R. Stierman, T. C. Chiu, D. Edwards, K. Ano, K. N. Tu, Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability, J. Appl. Phys., 97(2) (2005) 024508. 42. H. Strandlund, H. Larsson, Prediction of Kirkendall shift and porosity in binary and ternary diffusion couples, Acta Mater., 52(15) (2004) 4695-4703. 43. Oh M. Doctoral thesis, Lehigh University; 1994. 44. Oberndorff P. Doctoral thesis, Technical University of Eindhoven; 2001. 45. Paul A. Doctoral thesis, Technical University of Eindhoven; 2004. 46. S. Kumar, C. A. Handwerker, M. A. Dayananda, Intrinsic and interdiffusion in Cu-Sn system, J. Phase Equilibria Diffus., 32(4) (2011) 309-319. 47. W. Yang, R. W. Messler, L. E. Felton, Microstructure evolution of eutectic Sn-Ag solder joints, J. Electron. Mater., 23(8) (1994) 765-772. 48. J. Yu, J. Y. Kim, Effects of residual S on Kirkendall void formation at Cu/Sn-3.5 Ag solder joints, Acta Mater., 56(19) (2008) 5514-5523. 49. J. Y. Kim, J. Yu, S. H. Kim, Effects of sulfide-forming element additions on the Kirkendall void formation and drop impact reliability of Cu/Sn-3.5 Ag solder joints, Acta Mater., 57(17) (2009) 5001–5012. 50. Y. Liu, J. Wang, L. Yin, P. Kondos, C. Parks, P. Borgesen, N. Dimitrov, Influence of plating parameters and solution chemistry on the voiding propensity at electroplated copper-solder interface, J. Appl. Electrochem., 38(12) (2008) 1695-1705. 51. Y. Liu, L. Yin, S. Bliznakov, P. Kondos, P. Borgesen, D. W. Henderson, N. Dimitrov, Improving copper electrodeposition in the microelectronics industry, IEEE Trans. Compon. Packaging Technol., 33(1) (2009) 127-137. 52. C. Yu, J. Chen, Z. Cheng, Y. Huang, J. Chen, J. Xu, H. Lu, Fine grained Cu film promoting Kirkendall voiding at Cu3Sn/Cu interface, J. Alloys Compd., 660 (2016) 80-84. 53. B. S. Berry, I. Ames, Studies of the SLT chip terminal metallurgy, IBM J. Res. Dev., 13 (1969) 286-296. 54. H. K. Kim, K. N. Tu, P. A. Totta, Ripening‐assisted asymmetric spalling of Cu‐Sn compound spheroids in solder joints on Si wafers, Appl. Phys. Lett., 68 (1996) 2204-2206. 55. A. A. Liu, H. K. Kim, K. N. Tu, P. A. Totta, Spalling of Cu6Sn5 spheroids in the soldering reaction of eutectic SnPb on Cr/Cu/Au thin films, J. Appl. Phys., 80 (1996) 2774-2780. 56. C. Y. Liu, H. K. Kim, K. N. Tu, P. A. Totta, Dewetting of molten Sn on Au/Cu/Cr thin‐film metallization, Appl. Phys. Lett., 69 (1996) 4014-4016. 57. G. Z. Pan, A. A. Liu, H. K. Kim, K. N. Tu, P. A. Totta, Microstructures of phased-in Cr-Cu/Cu/Au bump-limiting metallization and its soldering behavior with high Pb content and eutectic PbSn solders, Appl. Phys. Lett., 71 (1997) 2946-2948. 58. P. G. Kim, J. W. Jang, T. Y. Lee, K. N. Tu, Interfacial reaction and wetting behavior in eutectic SnPb solder on Ni/Ti thin films and Ni foils, J. Appl. Phys., 86 (1999) 6746-6751. 59. S. K. Lin, K. D. Chen, H. Chen, W. K. Liou, Y. W. Yen, Abnormal spalling phenomena in the Sn-0.7Cu/Au/Ni/SUS304 interfacial reactions, J. Mater. Res., 25 (2011) 2278-2286. 60. C. Y. Liu, S. J. Wang, Prevention of spalling by the self-formed reaction barrier layer on controlled collapse chip connections under bump metallization, J. Electron. Mater., 32 (2003) L1-L3. 61. H. P. Park, G. Seo, S. Kim, K. O. Ahn, Y. H. Kim, Shear strength between Sn–3.0Ag-0.5Cu solders and Cu substrate after two solid-state aging processes for fan-out package process applications, J. Mater. Sci. Mater. Electron., 30 (2019) 10550-10559. 62. C. E. Ho, Y. W. Lin, S. C. Yang, C. R. Kao, D. S. Jiang, Effects of limited Cu supply on soldering reactions between SnAgCu and Ni, J. Electron. Mater., 35 (2006) 1017-1024. 63. S. C. Yang, C. E. Ho, C. W. Chang, C. R. Kao, Massive spalling of intermetallic compounds in solder-substrate reactions due to limited supply of the active element, J. Appl. Phys., 101 (2007). 64. C. E. Ho, S. C. Yang, C. R. Kao, Interfacial reaction issues for lead-free electronic solders, J. Mater. Sci. Mater. Electron., 18 (2007) 155-174. 65. K. Z. Wang, C. M. Chen, Intermetallic compound formation and morphology evolution in the 95Pb5Sn flip-chip solder joint with Ti/Cu/Ni under bump metallization during reflow soldering, J. Electron. Mater., 34.12 (2005) 1543-1549. 66. S. C. Yang et al., Strong Zn concentration effect on the soldering reactions between Sn-based solders and Cu, J. Mater. Res., 21(10) (2006) 2436-2439. 67. H. Chen et al., Effect of massive spalling on mechanical strength of solder joints in Pb-free solder reflowed on Co-based surface finishes, J. Alloys Compd., 671 (2016) 100-108. 68. J. W. Jang et al., Spalling of Cu3Sn intermetallics in high-lead 95Pb5Sn solder bumps on Cu under bump metallization during solid-state annealing, J. Appl. Phys., 95(12) (2004) 8286-8289. 69. W. M. Chen, S. C. Yang, M. H. Tsai, C. R. Kao, Uncovering the driving force for massive spalling in the Sn–Cu/Ni system, Scr. Mater., 63 (2010) 47-49. 70. Y. H. Wu, C. Y. Yu, C. Y. Ho, J. G. Duh, Retardation of (Cu,Ni)6Sn5 spalling in Sn-Ag-Cu/Ni solder joints via controlling the grain structure of Ni metallization layer, Mater. Lett., 105 (2013) 40-42. 71. C. H. Tsai, S. Y. Lin, P. T. Lee, C. R. Kao, A new spalling mechanism of intermetallics from the adhesion layer in the terminal-stage reaction between Cu and Sn, Intermetallics, 138 (2021) 107342. 72. S. Y. Lin, Spalling of intermetallic compounds at terminal reaction in ultra-thin micro joints, Master Thesis, National Taiwan University, 2020. 73. J. W. Yoon, S. B. Jung, Phase analysis and kinetics of solid-state ageing of Pb-free Sn-3.5Ag solder on electroless Ni-P substrate, Surf. Interface Anal., 36 (2004) 963-965. 74. X. Hu, Y. Li, Y. Liu, Y. Liu, Z. Min, Microstructure and shear strength of Sn37Pb/Cu solder joints subjected to isothermal aging, Microelectron. Reliab., 54 (8) (2014) 1575-1582. 75. C. Yang, F. Le, S. R. Lee, Experimental investigation of the failure mechanism of Cu-Sn intermetallic compounds in SAC solder joints, Microelectron. Reliab., 62 (2016) 130-140. 76. M. H. Jeong, G. T. Lim, B. J. Kim, K. W. Lee, J. D. Kim, Y. C. Joo, Y. B. Park, Interfacial reaction effect on electrical reliability of Cu pillar/Sn bumps, J. Electron. Mater., 39(11) (2010) 2368–2374. 77. W. Peng, E. Monlevade, M. E. Marques, Effect of thermal aging on the interfacial structure of SnAgCu solder joints on Cu, Microelectron. Reliab., 47(12) (2007) 2161-2168. 78. Y. W. Wang, T. L. Yang, J. Y. Wu, C. R. Kao, Pronounced effects of Zn additions on Cu-Sn microjoints for chip-stacking applications, J. Alloy. Compd., 750 (2018) 570-576. 79. B. Dimcic, R. Labie, J. De Messemaeker, K. Vanstreels, K. Croes, B. Verlinden, I. De Wolf, Diffusion growth of Cu3Sn phase in the bump and thin film Cu/Sn structures, Microelectron. Reliab., 52 (2012) 1971-1974. 80. B. H. Kwak, M. H. Jeong, J. W. Kim, B. Lee, H. J. Lee, Y. B. Park, Correlations between interfacial reactions and bonding strengths of Cu/Sn/Cu pillar bump, Microelectron. Eng., 89 (2012) 65-69. 81. C. Y. Liu, L. Ke, Y. C. Chuang, S. J. Wang, Study of electromigration-induced Cu consumption in the flip-chip SnCu solder bumps, J. Appl. Phys., 100 (2006). 82. T.T. Luu, A. Duan, K.E. Aasmundtveit, N. Hoivik, Optimized Cu-Sn wafer-level bonding using intermetallic phase characterization, J. Electron. Mater., 42 (2013) 3582-3592. 83. Hitachi high-technologies cooperation, Ion milling systems—IM4000 series, HTD-E229, 2016. 84. K. K. Hong, J. B. Ryu, C. Y. Park, J. Y. Huh, Effect of cross-interaction between Ni and Cu on growth kinetics of intermetallic compounds in Ni/Sn/Cu diffusion couples during aging, J. Electron. Mater., 37 (2007) 61-72. 85. K.N. Tu, Interdiffusion and reaction in bimetallic Cu-Sn thin films, Acta Metallurgica, 21 (1973) 347-354. 86. M. Moriyama, S. Konishi, S. Tsukimoto, M. Murakami, Effect of organic additives on formation and growth behavior of micro-void in electroplating copper films, Mater. Trans. 45(11) (2004) 3172-3176. 87. J. J. Kelly, A. C. West, Copper deposition in the presence of polyethylene glycol: II. Electrochemical impedance spectroscopy, J. Electrochem. Soc., 145(10) (1998) 3477-3481. 88. H. Nawafune, H. Kitamura, S. Mizumoto, E. Uchida and T. Okada, Electrodeposition of void-free copper from ethylenediamine complex bath for ULSI metallization, J. Surf. Finishing Soc. Jpn. 51,(11) (2000) 1142–1147. 89. Y. B. Ou, T. L. Yang, W. C. Wu, B. T. Chen, K. Y. Lee, H. L. Huang, H. Ku, Study of interface micro-voids between sputter Cu & plating Cu: The role of photoresist, in: 2018 IEEE 68th Electronic Components and Technology Conference, ECTC 2018, pp. 735-740. 90. W. L. Chiu, C. M. Liu, Y. S. Haung, C. Chen, Formation of nearly void-free Cu3Sn intermetallic joints using nanotwinned Cu metallization, Appl. Phys. Lett., 104 (2014) 171902. 91. I. Panchenko, K. Croes, I. De Wolf, J. De Messemaeker, E. Beyne, K. J. Wolter, Degradation of Cu6Sn5 intermetallic compound by pore formation in solid-liquid interdiffusion Cu/Sn microbump interconnects, Microelectron. Eng., 117 (2014) 26-34. 92. C. Chen, D. Yu, K. N. Chen, Vertical interconnects of microbumps in 3D integration, MRS Bull., 40 (2015) 257-263. 93. D. T. Chu, Y. C. Chu, J. A. Lin, Y. T. Chen, C. C. Wang, Y. F. Song, C. C. Chiang, C. Chen, K.N. Tu, Growth competition between layer-type and porous-type Cu3Sn in microbumps, Microelectron. Reliab., 79 (2017) 32-37. 94. A. Paul, C. Ghosh, W. J. Boettinger, Diffusion parameters and growth mechanism of phases in the Cu-Sn system, Metall. Mater. Trans. A, 42 (2011) 952-963. 95. S. Konishi, M. Moriyama, M. Murakami, Effect of annealing atmosphere on void formation in copper interconnects, Mater. Trans., 43(7) (2002) 1624-1628. 96. Y. J. Chen, C. K. Chung, C. R. Yang, C. R. Kao, Single-joint shear strength of micro Cu pillar solder bumps with different amounts of intermetallics, Microelectron. Reliab., 53(1) (2013) 47-52. 97. B. S. Lee, J. W. Yoon, Cu-Sn intermetallic compound joints for high-temperature power electronics applications, J. Electron. Mater., 47(1) (2018) 430-435. 98. C. W. Kao, P. Y. Kung, C. C. Chang, W. C. Huang, F. L. Chang, C. R. Kao, Highly robust Ti adhesion layer during terminal reaction in micro-bumps, Materials, 15(12) (2022) 4297. 99. C. W. Kao, P. Y. Kung, C. C. Chang, C. R. Kao, Terminal reaction behaviors in micro bumps: Comparison of Ti and Cr adhesion layers, in: 2022 IEEE International Conference on Electronics Packaging, ICEP 2022, pp. 45-46.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86689-
dc.description.abstract近年來,隨著數位通訊與智慧手機的進步,輕量、薄型化、多功能的消費性電子產品變為半導體業的主要發展走向。為了達到高密度堆疊與異質整合之目標,以矽穿孔與微銲點為主體架構之三維晶片整合是微電子封裝最具潛力的發展方向。其中,微銲點體積與傳統覆晶銲點有近三個數量級之差異,空間限制效應不僅將使得微銲點會在短時間內演變為與傳統大尺寸銲點迥然不同的微觀形貌,亦因接點進入微米尺度而凸顯放大特殊的微觀物理現象。過去對於封裝接點之研究僅聚焦在界面反應前中期之形貌發展,對銲錫完全耗盡且轉變為全介金屬接點後的界面反應終端行為及其對可靠度之影響一直以來是疏於探討的領域,至今對於微米尺度接點之顯微組織演變、介金屬粗化合併機制、界面剝離等終端行為的瞭解仍不夠完備。基於評估三維晶片整合封裝可靠度之需求,對微銲點界面反應最終端行為及微銲點界面強度的完整瞭解至關重要,亦是當今微電子封裝產業密切關注的議題。 在上述提到的問題中,最重要的議題是作為連接使用的微銲點將會很容易導致全介金屬化合物焊點。並且再更進一步,潤濕層的完全消耗將會使介金屬化合物 (IMC) 與黏著層直接接觸,可能會帶來嚴重的可靠性問題。因此,在本研究中,通過在 200 °C 時效處理研究了 Ti 黏著層與 Cu-Sn IMCs 的界面終端反應。經過 0到 72 小時的熱時效處理後,儘管微銲點全部轉變為介金屬化合物結構 (IMC),但它們對 Ti 黏著層仍表現出很強的附著力。此外,Cu和Sn之間擴散速率的差異會導致時效過程中引起孔洞的形成。這些孔洞會隨著銅層的耗盡而發展到銲點的中心,然而,它們既不影響 IMC 與黏著層之間的附著,也不降低銲點的強度。總而言之,使用 Ti 作為黏著層與使用 Cr 相比,將會有與 IMC 更好的附著行為。zh_TW
dc.description.abstractIn recent years, with the advancement of digital communication and smartphones, lightweight, miniaturization, and multi-functional consumer electronic products have become the main development trend in the semiconductor industry. Aiming to realize the goal of high-density stacking and heterogeneous integration, three-dimensional chip integration with TSV and micro joints is the most potential development of microelectronic packaging. Among them, almost three orders of magnitude are different in the volume of the micro joint and the traditional solder joint. The space confinement effect will not only make the micro joint evolve into a microscopic morphology that is completely different from the traditional large-size solder joint in a short period of reaction time, but also amplification of special microphysical phenomena by such micrometer-scale joints. In the past, the research on solder joints only focused on the morphology development in the early and middle stages of the interfacial reaction. The terminal behavior of the interfacial reaction after the solder is completely exhausted and transformed into a full-intermetallic joint and its reliability have been incomplete. Based on the need to evaluate the reliability of 3D chip integrated packaging, a complete insight into the terminal behavior of interfacial reaction and the strength of the micro joint is crucial. It is a topic that is closely watched by the microelectronic industry today. According to the problems mentioned above, the most important issue is the easy formation of full-intermetallic structure in micro joints. Furthermore, complete depletion of the wetting layer will bring the intermetallic compound (IMC) directly adjacent to the adhesion layer, potentially causing serious reliability problems. Therefore, in this research, the terminal behavior of interfacial reaction between Cu-Sn IMCs and the Ti adhesion layer is investigated by 200 °C aging. After thermal aging from 0 to 72 hours, although they were all converted to an IMCs structure, the micro joints show strong adhesion to the Ti adhesion layer, which has a significant difference from the Cr system that spalled the IMCs from the substrate. Additionally, the voids formation in the aging period was found owing to the unbalance diffusion in Cu-Sn IMCs. As the Cu layer depleted, the development of these voids would proceed to the whole bump. However, they neither influence the adhesion between the IMCs and the Ti layer nor reduce the strength of the micro joint. In conclusion, the Ti adhesion layer will have better adhesion properties with Cu-Sn IMCs than the Cr system.en
dc.description.provenanceMade available in DSpace on 2023-03-20T00:11:25Z (GMT). No. of bitstreams: 1
U0001-2507202219221500.pdf: 6765934 bytes, checksum: 40fc94262620197bc6ebddda68e32ae4 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsContents 誌謝 i 摘要 iii Abstract iv Contents vi List of Figures ix List of Tables xvii Chapter 1 Introduction 1 1.1 Development of Micro Joints 1 1-2 Under Bump Metallurgy (UBM) 6 1-3 Interfacial Reactions in Cu-Sn Micro Joints 11 Chapter 2 Literature Review 17 2.1 Kirkendall Voiding 17 2.2 Interfacial Stability between IMCs and UBM in Solid-liquid Reaction 25 2.2.1 Regular Spalling 25 2.2.2 Massive Spalling 33 2.3 Interfacial Stability between IMCs and UBM in Solid-state Reaction 37 Chapter 3 Research Objectives 41 Chapter 4 Experimental Procedures 43 4.1 Sample Preparation 43 4.2 Cross-sectional Milling and Microstructure Observation 47 4.3 Growth Behavior and Theories of IMC 49 4.4 Calculation of Porosity 50 4.5 Die Shear Test 51 Chapter 5 Results and Discussion 52 5.1 Microstructure Evolution of Cu-Sn Micro Bumps 52 5.1.1 As-plated Cu-Sn Micro Bumps 52 5.1.2 Cu-Sn Micro Bumps under 200 °C Aging for 24 hours 55 5.1.4 Cu-Sn Micro Bumps under 200 °C Aging for 36 hours 57 5.1.5 Cu-Sn Micro Bumps under 200 °C Aging for 42 hours 60 5.1.6 Cu-Sn Micro Bumps under 200 °C Aging for 48 & 72 hours 62 5.2 Micro Bumps Cross-Section by FIB 67 5.3 Interface Observation by TEM 70 5.4 Growth Behavior of IMCs 72 5.5 Porosity and Its Relevance 76 5.6 Die Shear Test Analysis 79 5.6.1 Fracture Surface of Sn/Cu Micro Bumps with Different Aging Times 79 5.6.2 Variation of Shear Strength 82 5.6.3 Proposed Crack Propagation of Sn/Cu Micro Bumps 84 Chapter 6 Conclusions 86 Reference 88
dc.language.isoen
dc.subject固態反應zh_TW
dc.subject微銲點zh_TW
dc.subject固態反應zh_TW
dc.subject介金屬化合物zh_TW
dc.subject介金屬化合物zh_TW
dc.subject黏著層zh_TW
dc.subject微銲點zh_TW
dc.subject黏著層zh_TW
dc.subjectIntermetallic Compoundsen
dc.subjectIntermetallic Compoundsen
dc.subjectMicro Jointsen
dc.subjectAdhesion Layersen
dc.subjectAdhesion Layersen
dc.subjectSolid-state Reactionen
dc.subjectSolid-state Reactionen
dc.subjectMicro Jointsen
dc.title使用Ti作為黏著層在微銲點介面反應最終端行為之研究zh_TW
dc.titleA Study of Using Ti as Adhesion Layer during Terminal Reaction in Micro Bumpsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee顏怡文(Yee-Wen Yen),高金利(Jin-Li Kao)
dc.subject.keyword微銲點,固態反應,介金屬化合物,黏著層,zh_TW
dc.subject.keywordMicro Joints,Solid-state Reaction,Intermetallic Compounds,Adhesion Layers,en
dc.relation.page103
dc.identifier.doi10.6342/NTU202201710
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-08-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
dc.date.embargo-lift2022-08-10-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
U0001-2507202219221500.pdf6.61 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved