請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86671完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 澤大衛(David Zelený) | |
| dc.contributor.author | Yu-Pei Tseng | en |
| dc.contributor.author | 曾宇霈 | zh_TW |
| dc.date.accessioned | 2023-03-20T00:10:16Z | - |
| dc.date.copyright | 2022-09-30 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-27 | |
| dc.identifier.citation | Allouche, O., Kalyuzhny, M., Moreno-Rueda, G., Pizarro, M., & Kadmon, R. (2012). Area–heterogeneity tradeoff and the diversity of ecological communities. Proceedings of the National Academy of Sciences, 109, 17495-17500. Bernaschini, M. L., Trumper, E., Valladares, G., & Salvo, A. (2019). Are all edges equal? Microclimatic conditions, geographical orientation and biological implications in a fragmented forest. Agriculture, Ecosystems & Environment, 280, 142-151. Bruijnzeel, L. A., & Veneklaas, E. J. (1998). Climatic conditions and tropical montane forest productivity: the fog has not lifted yet. Ecology, 79, 3-9. Butaye, J., Jacquemyn, H., Honnay, O., & Hermy, M. (2002). The species pool concept applied to forests in a fragmented landscape: dispersal limitation versus habitat limitation. Journal of vegetation science, 13, 27-34. Cantrell, R. S., Cosner, C., & Fagan, W. F. (1998). Competitive reversals inside ecological reserves: the role of external habitat degradation. Journal of Mathematical Biology, 37, 491-533. Chen, J., Franklin, J. F., & Spies, T. A. (1995). Growing‐season microclimatic gradients from clearcut edges into old‐growth Douglas‐fir forests. Ecological applications, 5, 74-86. Chen, T. I. (2006). Monitoring of the Chamaecyparis Forest in Chi-Lan Shan (950522-2). Veterans Affairs Council - Forest Conservation and Management Administration (In Chinese). Chiou, C. R., Hsieh, C. F., Wang, J. C., Chen, M. Y., Liu, H. Y., Yeh, C. L., ... & Song, G. Z. M. (2009). The first national vegetation inventory in Taiwan. Taiwan Journal of Forest Science, 24, 295-302. Connor, E. F., & McCoy, E. D. (1979). The statistics and biology of the species-area relationship. The American Naturalist, 113, 791-833. Currie, D. J. (1991). Energy and large-scale patterns of animal-and plant-species richness. The American Naturalist, 137, 27-49. Curtis, J. T. (1959). The vegetation of Wisconsin: an ordination of plant communities. University of Wisconsin Pres. Eller, C. B., Meireles, L. D., Sitch, S., Burgess, S. S., & Oliveira, R. S. (2020). How climate shapes the functioning of tropical montane cloud forests. Current Forestry Reports, 6, 97-114. Ewers, R. M., & Didham, R. K. (2006). Confounding factors in the detection of species responses to habitat fragmentation. Biological reviews, 81, 117-142. Fagan, W. F., Cantrell, R. S., & Cosner, C. (1999). How habitat edges change species interactions. The American Naturalist, 153, 165-182. Fernández, C., Acosta, F. J., Abellá, G., López, F., & Dı́az, M. (2002). Complex edge effect fields as additive processes in patches of ecological systems. Ecological Modelling, 149, 273-283. Fischer, J., & Lindenmayer, D. B. (2007). Landscape modification and habitat fragmentation: a synthesis. Global Ecology and Biogeography, 16, 265-280. Fletcher Jr, R. J. (2005). Multiple edge effects and their implications in fragmented landscapes. Journal of Animal Ecology, 74, 342-352. Fletcher Jr, R. J., & Koford, R. R. (2003). Spatial responses of bobolinks (Dolichonyx oryzivorus) near different types of edges in northern Iowa. The Auk, 120, 799-810. Fletcher, Jr, R. J., Ries, L., Battin, J., & Chalfoun, A. D. (2007). The role of habitat area and edge in fragmented landscapes: definitively distinct or inevitably intertwined. Canadian Journal of Zoology, 85, 1017-1030. Gaston, K. J. (2000). Global patterns in biodiversity. Nature, 405, 220-227. Hamilton, L. S., Juvik, J. O., & Scatena, F. N. (1995). The Puerto Rico tropical cloud forest symposium: introduction and workshop synthesis. In Tropical Montane Cloud Forests (pp. 1-18). Springer, New York, NY. Harper, K. A., Macdonald, S. E., Burton, P. J., Chen, J., Brosofske, K. D., Saunders, S. C., ... & Esseen, P. A. (2005). Edge influence on forest structure and composition in fragmented landscapes. Conservation Biology, 19, 768-782. Helsen, K., Shen, Y. C., Lin, T. Y., Chen, C. F., Huang, C. M., Li, C. F., & Zelený, D. (2022). Climate and soil differentially affect species, trait and diversity patterns of woody overstorey and fern understory in a subtropical forest along an elevation gradient in Taiwan. Journal of Vegetation Science, 33, e13130. Honnay, O., Hermy, M., & Coppin, P. (1999). Impact of habitat quality on forest plant species colonization. Forest Ecology and Management, 115, 157-170. Hughes, C., & Eastwood, R. (2006). Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences, 103, 10334-10339. Hutchinson, G. E. (1959). Homage to Santa Rosalia or why are there so many kinds of animals. The American Naturalist, 93, 145-159. Kallimanis, A. S., Bergmeier, E., Panitsa, M., Georghiou, K., Delipetrou, P., & Dimopoulos, P. (2010). Biogeographical determinants for total and endemic species richness in a continental archipelago. Biodiversity and Conservation, 19, 1225-1235. Karger, D. N., Kessler, M., Lehnert, M., & Jetz, W. (2021). Limited protection and ongoing loss of tropical cloud forest biodiversity and ecosystems worldwide. Nature Ecology & Evolution, 5, 854-862. Kiviniemi, K., & Eriksson, O. (2002). Size‐related deterioration of semi‐natural grassland fragments in Sweden. Diversity and Distributions, 8, 21-29. Lai, I. L., Chang, S. C., Lin, P. H., Chou, C. H., Wu, J. T. (2006) Climatic characteristics of the subtropical mountainous cloud forest at the Yuanyang Lake long-term ecological research site, Taiwan. Taiwania, 2006, 51.4: 317-329. Lawton, J. H. (1999). Are there general laws in ecology. Oikos, 177-192. Levine, J. M. (2000). Species diversity and biological invasions: relating local process to community pattern. Science, 288, 852-854. Li, C. F., Chytrý, M., Zelený, D., Chen, M. Y., Chen, T. Y., Chiou, C. R., ... & Hsieh, C. F. (2013). Classification of Taiwan forest vegetation. Applied Vegetation Science, 16, 698-719. Li, C. F., Zelený, D., Chytrý, M., Chen, M. Y., Chen, T. Y., Chiou, C. R., ... & Hsieh, C. F. (2015). Chamaecyparis montane cloud forest in Taiwan: ecology and vegetation classification. Ecological Research, 30, 771-791. Lin, H. Y. (2020). Predicting the potential distributions of plant species and forests in Taiwan under present and future climates [Doctoral thesis, National Taiwan University]. National Digital Library of Theses and Dissertations in Taiwan. https://hdl.handle.net/11296/b4w9tm Lindborg, R., Helm, A., Bommarco, R., Heikkinen, R. K., Kühn, I., Pykälä, J., & Pärtel, M. (2012). Effect of habitat area and isolation on plant trait distribution in European forests and grasslands. Ecography, 35, 356-363. Marini, L., Scotton, M., Klimek, S., Isselstein, J., & Pecile, A. (2007). Effects of local factors on plant species richness and composition of Alpine meadows. Agriculture, Ecosystems & Environment, 119, 281-288. Matthews, J. W., Peralta, A. L., Flanagan, D. N., Baldwin, P. M., Soni, A., Kent, A. D., & Endress, A. G. (2009). Relative influence of landscape vs. local factors on plant community assembly in restored wetlands. Ecological Applications, 19, 2108-2123. McGarigal, K. (1995). FRAGSTATS: spatial pattern analysis program for quantifying landscape structure (Vol. 351). US Department of Agriculture, Forest Service, Pacific Northwest Research Station. Mendes, C. B., & Prevedello, J. A. (2020). Does habitat fragmentation affect landscape-level temperatures. A global analysis. Landscape Ecology, 35, 1743-1756. Myklestad, Å., & Sætersdal, M. (2004). The importance of traditional meadow management techniques for conservation of vascular plant species richness in Norway. Biological Conservation, 118, 133-139. R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Rescia, A. J., Schmitz, M. F., de Agar, M. M., De Pablo, C. L., & Pineda, F. D. (1995). Ascribing plant diversity values to historical changes in landscape: a methodological approach. Landscape and Urban Planning, 31, 181-194. Ries, L., Fletcher Jr, R. J., Battin, J., & Sisk, T. D. (2004). Ecological responses to habitat edges: mechanisms, models, and variability explained. Annual Review of Ecology, Evolution, and Systematics, 491-522. Riley, S. J., DeGloria, S. D., & Elliot, R. (1999). Index that quantifies topographic heterogeneity. Intermountain Journal of Sciences, 5, 23-27. Rocha-Santos, L., Pessoa, M. S., Cassano, C. R., Talora, D. C., Orihuela, R. L., Mariano-Neto, E., ... & Cazetta, E. (2016). The shrinkage of a forest: Landscape-scale deforestation leading to overall changes in local forest structure. Biological Conservation, 196, 1-9. Rosenzweig, M. L. (1995). Species diversity in space and time. Cambridge university press. Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 1-36. Schmucki, R., Reimark, J., Lindborg, R., & Cousins, S. A. (2012). Landscape context and management regime structure plant diversity in grassland communities. Journal of Ecology, 100, 1164-1173. Schulz, H. M., Li, C. F., Thies, B., Chang, S. C., & Bendix, J. (2017). Mapping the montane cloud forest of Taiwan using 12 year MODIS-derived ground fog frequency data. PLoS One, 12, e0172663. Schulz, H. M., Thies, B., Chang, S. C., & Bendix, J. (2016). Detection of ground fog in mountainous areas from MODIS (Collection 051) daytime data using a statistical approach. Atmospheric Measurement Techniques, 9, 1135-1152. Shipley, B. (2016). Cause and correlation in biology: a user's guide to path analysis, structural equations and causal inference with R. Cambridge University Press. Somanathan, H., & Borges, R. M. (2000). Influence of exploitation on population structure, spatial distribution and reproductive success of dioecious species in a fragmented cloud forest in India. Biological Conservation, 94, 243-256. Stadtmüller, T. (1987). Cloud forests in the humid tropics: a bibliographic review. Still, C. J., Foster, P. N., & Schneider, S. H. (1999). Simulating the effects of climate change on tropical montane cloud forests. Nature, 398, 608-610. Su, H. J. (1984). Studies on the climate and vegetation types of the natural forest in Taiwan: (II) Altitudinal vegetation zones in relation to temperature gradient. Quarterly Journal Chinese Forestr, 17, 57-73. Su, H. J. (1985). Studies on the Climate and Vegetation Types of the Natrual Forests in Taiwan:(III) A Scheme of Geographical Climatic Regions. Quarterly Journal Chinese Forestry, 18, 33-44. Suzuki, T. 1952. The forest vegetation of East Asia. Kokin-Shoin, Tokyo, JP (In Japanese). Taiwan Forestry Bureau (2011). Actual Vegetation Maps for the National Forest Lands of Taiwan. Taiwan: Taiwan Forestry Bureau, Council of Agriculture, Taipei. Tamme, R., Hiiesalu, I., Laanisto, L., Szava‐Kovats, R., & Pärtel, M. (2010). Environmental heterogeneity, species diversity and co‐existence at different spatial scales. Journal of Vegetation Science, 21, 796-801. Terborgh, J. W., & Faaborg, J. (1980). Saturation of bird communities in the West Indies. The American Naturalist, 116, 178-195. Thies, C., & Tscharntke, T. (1999). Landscape structure and biological control in agroecosystems. Science, 285, 893-895. Torras, O., Gil-Tena, A., & Saura, S. (2008). How does forest landscape structure explain tree species richness in a Mediterranean context. Biodiversity and Conservation, 17, 1227-1240. Tscharntke, T., Tylianakis, J. M., Rand, T. A., Didham, R. K., Fahrig, L., Batáry, P., ... & Westphal, C. (2012). Landscape moderation of biodiversity patterns and processes‐eight hypotheses. Biological Reviews, 87, 661-685. Wey, T. H., Lai, Y. J., Chang, C. S., Shen, C. W., Hong, C. Y., Wang, Y. N. & Chen, M. C. (2011). Preliminary studies on fog characteristics at Xitou region of central Taiwan. Journal of the Experimental Forest of National Taiwan University, 25, 149-160. Williams-Linera, G. (2002). Tree species richness complementarity, disturbance and fragmentation in a Mexican tropical montane cloud forest. Biodiversity & Conservation, 11, 1825-1843. Williams, C. B. (1964). Patterns in the balance of nature and related problems of quantitative ecology. Academic Press. Wilson, E. O., & MacArthur, R. H. (1967). The theory of island biogeography. Princeton, NJ: Princeton University Press. Zheng, D., & Chen, J. (2000). Edge effects in fragmented landscapes: a generic model for delineating area of edge influences (D-AEI). Ecological Modelling, 132, 175-190. Zuckerberg, B., Cohen, J. M., Nunes, L. A., Bernath-Plaisted, J., Clare, J. D., Gilbert, N. A., ... & Desrochers, A. (2020). A review of overlapping landscapes: pseudoreplication or a red herring in landscape ecology. Current Landscape Ecology Reports, 5, 140-148. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86671 | - |
| dc.description.abstract | 亞熱帶山地雲霧森林(subtropical montane cloud forests, SMCFs)因其獨特之地理與氣候條件,使其終年雲霧繚繞。特殊的環境使其棲地與周圍的棲地大不相同,加上台灣複雜的地形,造就了此棲地分布不連續,形成棲地區塊。過去研究顯示,地景構型在此種不連續的棲地區塊中對於局域植物群集的組成及豐富度有著重要的影響,且對於僅適合生存於該棲地之狹幅種尤為重要。這些地景構型因子包含棲地的面積效應、棲地內環境異質性以及棲地的邊緣效應(edge effect),這些因子可直接影響局域物種豐富度,也可以藉由影響區域物種庫再經由物種庫效應(species pool effect)間接影響局域物種豐富度。根據理論,對於狹幅種而言,其局域物種豐富度與棲地面積效應以及棲地內環境異質性呈現正相關,與棲地之邊際效應呈現負相關。本研究以分佈於台海拔1400-2600 公尺之SMCFs為例,針對僅適合生存於雲霧林帶的雲霧森林木本狹幅種,旨在探討其局域物種豐富度是否受其周圍之地景構型影響。 首先,使用植物標本館資料庫中,每種植物之出現點位及其點位對應之雲霧頻度定義雲霧森林木本狹幅種。接著,從臺灣國家植群資料庫中,篩選出 108 個 20 m × 20 m 的樣區,並計算每個樣區中雲霧森林木本狹幅種之物種豐富度。而後,使用以雲霧頻度及植群資料預測之台灣雲霧森林分佈圖,以樣區為中心,分別以 500、750 及 1000 公尺之半徑,向外畫出圓形緩衝帶,並定義緩衝帶包含之雲霧森林為影響雲霧森林木本狹幅種之物種豐富度的棲地區塊,進而計算棲地區塊之地景構型參數值。本研究使用棲地區塊之地景構型參數包含了面積效應(SMCFs於緩衝帶面積比例以及連接度)、邊緣效應(樣區距離SMCFs邊緣的最近距離及緩衝帶內SMCFs 之邊緣比例)和環境異質性(地形異質性及植群型多樣性)相關參數。最後使用結構方程模型(structural equation modeling, SEM)進行分析。 結果顯示,500 及 750 公尺半徑的緩衝帶之資料有較佳的模型適配度。SMCFs之邊緣比例對於樣區中木本狹幅種之局域物種豐富度有顯著且直接的負影響,而樣區距離SMCFs邊緣的最近距離及面積效應與SMCFs之邊緣比例有顯著負相關。根據結果,我們推測,若樣區距離邊緣越近,SMCFs 面積及連接度越小,邊緣比例越高,木本狹幅種之局域物種豐富度越低,反之,若樣區距離邊緣越遠,SMCFs 面積及連接度越大,邊緣比例越低,木本狹幅種之局域物種豐富度越高。在SMCFs中,木本狹幅種之局域物種豐富度受到面積效應及邊緣效應的影響。相關研究顯示,臺灣的SMCFs在近年將面臨棲地面積減少的威脅,基於本研究結果,建議未來保育雲霧森林木本狹幅種之局域物種豐富度可優先保護大面積且較少邊緣之棲地。 | zh_TW |
| dc.description.abstract | Subtropical montane cloud forests (SMCFs) are frequently immersed in fog. In Taiwan, their distribution is restricted in a narrow elevation band between 1400 and 2600 m a.s.l., and due to complex topography is considerably patchy. Within this kind of discontinuous habitat, we hypothesize that landscape structure is an important factor that affects richness of local plant communities (defined as the number of species per fixed area plot). Here we specifically focus on specialists of SMCFs, i.e., species preferring to grow in the SMCFs habitat, for which surrounding habitats are unsuitable. The area, the edge and environmental heterogeneity are major landscape structures of SMCFs habitat patches that affect local species richness, either directly or indirectly through the species pool effect. We hypothesize that for cloud forest specialists, the area and environmental heterogeneity have a positive effect on local species richness, while the edge effect has a negative effect. This study focuses on SMCFs distributed in Taiwan and aims to explore how the landscape structure of the surrounding SMCFs habitat patch affects the local species richness of woody specialists in vegetation plots located within SMCFs habitat patches. Firstly, we used occurrence data from several major herbaria databases to identify specialists of SMCFs in Taiwan. Secondly, we selected 108 20 m × 20 m forest vegetation plots from the National Vegetation Database of Taiwan, and calculated the richness of woody specialists in each of them. Thirdly, we used a published predicted MCFs distribution map to estimate the landscape context of SMCFs around each vegetation plot within circular buffer zones of increasing radius (500, 750 and 1000 m). The variables of landscape structure include 1) the area of SMCFs habitat and its connectivity, both related to the area effect, 2) the nearest distance to the edge from the plot, related to the edge effect, 3) the proportion of edges, related to both area effect and edge effect, and 4) vegetation diversity and topographical heterogeneity, both related to the environmental heterogeneity effect. We used structural equation model to investigate which of the three mechanisms of landscape context has the strongest effect on the local richness of specialists. Results show that only the proportion of edges has a direct significant negative effect on local species richness of specialists in SMCFs. The latent variable of area effect and nearest distance to the edge also show significant relationship to the proportion of edges. We infer that higher edge proportion within the habitat patch, lower patch area effect and lower nearest distance of the plot to the edge correspond with lower local species richness in a vegetation plot. Both edge effect and area effect are important to the local species richness of woody specialists in SMCFs in Taiwan. SMCFs in Taiwan have been predicted to undergo habitat loss with ongoing climate change within relatively near future. If the decision about establishing protected areas within SMCF is focused on the protection of the richness of woody specialists, it will be better to choose larger and less discontinuous patches of SMCFs. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:10:16Z (GMT). No. of bitstreams: 1 U0001-2609202222301700.pdf: 2699347 bytes, checksum: 80e15d8b4d816955c6debb4ae0ae93b4 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 中文摘要…………………………………………………………………………………I Abstract………………………………………………………………………………III Contents………………………………………………………………………………V List of Figures…………………………………………………………………………VI List of Tables…………………………………………………………………………VI Introduction……………………………………………………………………………1 Materials and Methods…………………………………………………………………9 Study area………………………………………………………………………9 Vegetation database and plot selection…………………………………………11 Species richness of MCFs specialists…………………………………………13 Landscape analysis……………………………………………………………14 Statistical analysis………………………………………………………………17 Results…………………………………………………………………………………21 Discussion……………………………………………………………………………24 Conclusions……………………………………………………………………………31 References……………………………………………………………………………33 Appendices……………………………………………………………………………44 Appendix 1: Supplementary results…………………………………………………42 Appendix 2: R code……………………………………………………………………55 | |
| dc.language.iso | en | |
| dc.subject | 臺灣國家植群資料庫 | zh_TW |
| dc.subject | 面積效應 | zh_TW |
| dc.subject | 邊緣效應 | zh_TW |
| dc.subject | 結構方程模型 | zh_TW |
| dc.subject | 環境異質性 | zh_TW |
| dc.subject | 面積效應 | zh_TW |
| dc.subject | 邊緣效應 | zh_TW |
| dc.subject | 臺灣國家植群資料庫 | zh_TW |
| dc.subject | 結構方程模型 | zh_TW |
| dc.subject | 環境異質性 | zh_TW |
| dc.subject | National Vegetation Database of Taiwan | en |
| dc.subject | area effect | en |
| dc.subject | edge effect | en |
| dc.subject | structural equation model | en |
| dc.subject | area effect | en |
| dc.subject | environmental heterogeneity | en |
| dc.subject | structural equation model | en |
| dc.subject | National Vegetation Database of Taiwan | en |
| dc.subject | edge effect | en |
| dc.subject | environmental heterogeneity | en |
| dc.title | 地景對台灣亞熱帶山地雲霧森林木本狹幅種之局域物種豐富度影響 | zh_TW |
| dc.title | Landscape effects on local species richness of woody specialists in Subtropical Montane Cloud Forest of Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 柯柏如(Po-Ju Ke),Julian Schrader(Julian Schrader),Martin Večeřa(Martin Večeřa) | |
| dc.subject.keyword | 面積效應,邊緣效應,臺灣國家植群資料庫,結構方程模型,環境異質性, | zh_TW |
| dc.subject.keyword | area effect,edge effect,National Vegetation Database of Taiwan,structural equation model,environmental heterogeneity, | en |
| dc.relation.page | 63 | |
| dc.identifier.doi | 10.6342/NTU202204126 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-09-28 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-09-30 | - |
| 顯示於系所單位: | 生態學與演化生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2609202222301700.pdf | 2.64 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
