請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86632完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭宗記(Tzong-Jih Cheng) | |
| dc.contributor.author | Guan-Ye Li | en |
| dc.contributor.author | 李冠燁 | zh_TW |
| dc.date.accessioned | 2023-03-20T00:07:45Z | - |
| dc.date.copyright | 2022-08-10 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-04 | |
| dc.identifier.citation | 1.Alexander, C. M., Teller, L. E., and Gross, J. B. (1989). Principles of Pulse Oximetry - Theoretical and Practical Considerations. Anesthesia and Analgesia, 68(3), 368-376. 2.Amelink, A., Christiaanse, T., and Sterenborg, H. J. C. M. (2009). Effect of hemoglobin extinction spectra on optical spectroscopic measurements of blood oxygen saturation. Optics Letters, 34(10), 1525-1527. 3.Annex of ISO9919-2005(E) - pulse oximeter. 4.Barker, S.J., Curry, J., Redford, D., and Morgan, S. (2006). Measurement of Carboxyhemoglobin and Methemoglobin by Pluse Oximetry A Human Volunteer Study. The Journal of the American Society of Anesthesiologists, 105(5), 892-897. 5.Borovoi, A. G., Naats, E. I., and Oppel, U. G. (1998). Scattering of light by a red blood cell. J Biomed Opt, 3(3), 364-372. 6.Bülbül, A. and Küçük, S. (2016). Pulse Oximeter Manufacturing and Wireless Telemetry for Ventilation Oxygen Support. International Journal of Applied Mathematics, Electronics and Computers. 211-211. 7.Carp, S. A., Roche-Labarbe, N., Franceschini, M. A., Srinivasan, V. J., Sakadzic, S., and Boas, D. A. (2011). Due to intravascular multiple sequential scattering, Diffuse Correlation Spectroscopy of tissue primarily measures relative red blood cell motion within vessels. Biomedical Optics Express, 2(7), 2047-2054. 8.Chatterjee, S. and Phillips, J. (2016). Monte Carlo investigation of the effect of blood volume and oxygen saturation on optical path in reflectance pulse oximetry. Biomedical Physics and Engineering Express. 2. 065018. 9.Chen, W., Ayoola, I., Bambang O. S., and Feijs, L. (2010). Non-invasive blood oxygen saturation monitoring for neonates using reflectance pulse oximeter. Proceedings -Design, Automation and Test in Europe, DATE. 1530-1535. 10.Chinchilla, L., Armstrong, C., Mehri, R., Savoia, A. S., Fenech, M., and Franceschini, E. (2021). Numerical investigations of anisotropic structures of red blood cell aggregates on ultrasonic backscattering. J Acoust Soc Am, 149(4), 2415. 11.CysewskaSobusiak, A. (1997). One-dimensional representation of light-tissue interaction for application in noninvasive oximetry. Optical Engineering, 36(4), 1225-1233. 12.Damodaran, M., Amelink, A., and de Boer, J. F. (2018). Optimal wavelengths for subdiffuse scanning laser oximetry of the human retina. Journal of biomedical optics, 23(8), 1–15. 13.de Kock, J. P., and Tarassenko, L. (1993). Pulse oximetry: theoretical and experimental models. Medical and biological engineering and computing, 31(3), 291–300. 14.Duadi, H., Fixler, D., and Popovtzer, R. (2013). Dependence of light scattering profile in tissue on blood vessel diameter and distribution: a computer simulation study. Journal of Biomedical Optics, 18(11). 15.Eason, G., Veitch, A., Nisbet, R., and Turnbull, F. (2001). The theory of the back-scattering of light by blood. Journal of Physics D: Applied Physics. 11. 1463. 16.Edrich, T., Flaig, M., Knitza, R., and Rall, G. (2000). Pulse oximetry: An improved in vitro model that reduces blood flow-related artifacts. Ieee Transactions on Biomedical Engineering, 47(3), 338-343. 17.Faber, D. J., Aalders, M. C. G., Mik, E. G., Hooper, B. A., van Gemert, M. J. C., and van Leeuwen, T. G. (2004). Oxygen saturation-dependent absorption and scattering of blood. Physical Review Letters, 93(2). 18.Feder, I., Duadi, H., Fridman, M., Dreifuss, T., and Fixler, D. (2016). Experimentally testing the role of blood vessels in the full scattering profile: solid phantom measurements. Journal of Biomedical Photonics and Engineering. 2. 040301. 19.Fine, I., and Kaminsky, A. (2007). In vivo dynamic light scattering measurements of red blood cell aggregation (Vol. 6436): SPIE. 20.Friebel, M., Helfmann, J., Netz, U., and Meinke, M. (2009). Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2,000 nm. J Biomed Opt, 14(3), 034001. 21.Friebel, M., Roggan, A., Muller, G., and Meinke, M. (2006). Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase function. Journal of Biomedical Optics, 11(3). 22.Gao, F., Peng, Q. W., Feng, X. H., Gao, B., and Zheng, Y. J. (2016). Single-Wavelength Blood Oxygen Saturation Sensing With Combined Optical Absorption and Scattering. Ieee Sensors Journal, 16(7), 1943-1948. 23.Gell, D. A. (2018). Structure and function of haemoglobins. Blood Cells Molecules and Diseases, 70, 13-42. 24.Gilev, K. V., Yurkin, M. A., Chernyshova, E. S., Strokotov, D. I., Chernyshev, A. V., and Maltsev, V. P. (2016). Mature red blood cells: from optical model to inverse light-scattering problem. Biomedical Optics Express, 7(4), 1305-1310. 25.Hammer, M., Schweitzer, D., Michel, B., Thamm, E., and Kolb, A. (1998). Single scattering by red blood cells. Appl Opt, 37(31), 7410-7418. 26.Hay, O. Y., Cohen, M., Nitzan, I., Kasirer, Y., Shahroor-Karni, S., Yitzhaky, Y., . . . Nitzan, M. (2018). Pulse Oximetry with Two Infrared Wavelengths without Calibration in Extracted Arterial Blood. Sensors, 18(10). 27.He, J. P., Karlsson, A., Swartling, J., and Andersson-Engels, S. (2004). Light scattering by multiple red blood cells. Journal of the Optical Society of America a-Optics Image Science and Vision, 21(10), 1953-1961. 28.Hornberger, C., Knoop, P., Matz, H., Dorries, F., Konecny, E., Gehring, H., . . . Weininger, S. (2002). A prototype device for standardized calibration of pulse oximeters II. J Clin Monit Comput, 17(3-4), 203-209. 29.Hornberger, C., Knoop, P., Nahm, W., Matz, H., Konecny, E., Gehring, H., . . . Weininger, S. (2000). A prototype device for standardized calibration of pulse oximeters. J Clin Monit Comput, 16(3), 161-169. 30.Hull, E. L., Nichols, M. G., and Foster, T. H. (1998). Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes. Physics in Medicine and Biology, 43(11), 3381-3404. 31.Janssen, F. J. (1972). A study of the absorption and scattering factors of light in whole blood. Med Biol Eng, 10(2), 231-240. doi:10.1007/BF02474113 32.Jubran, A. (2015). Pulse oximetry. Crit Care, 19, 272. 33.Karlsson, A., He, J., Swartling, J., and Andersson-Engels, S. (2005). Numerical simulations of light scattering by red blood cells. IEEE Trans Biomed Eng, 52(1), 13-18. 34.Kienle, A., Patterson, M. S., Ott, L., and Steiner, R. (1996). Determination of the scattering coefficient and the anisotropy factor from laser Doppler spectra of liquids including blood. Appl Opt, 35(19), 3404-3412. 35.Kinnunen, M., Kauppila, A., Karmenyan, A., and Myllyla, R. (2011). Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level. Biomedical Optics Express, 2(7), 1803-1814. 36.Kisch-Wedel, H., Kemming, G., Bernreuter, P., Albert, M., and Zwissler, B. (2006). A comparison of reflectance pulse oximetry and near infrared spectroscopy for the determination of the fraction of oxygenated haemoglobin at low oxygen saturations in an animal study. Journal of near Infrared Spectroscopy, 14(5), 307-315. 37.Laqua, D., Brieskorn, C., Koch, J., Rothmayer, M., Zeiske, S., Böttrich, M., . . . Husar, P. (2015). FPGA controlled artificial vascular system. Current Directions in Biomedical Engineering, 1(1), 446-449. 38.Laqua, D., Pollnow, S., Fischer, J., Ley, S., and Husar, P. (2014). A phantom with pulsating artificial vessels for non-invasive fetal pulse oximetry. Annu Int Conf IEEE Eng Med Biol Soc, 2014, 5631-5634. 39.Lee, V. S., and Tarassenko, L. (1991). Absorption and multiple scattering by suspensions of aligned red blood cells. Journal of the Optical Society of America a-Optics Image Science and Vision, 8(7), 1135-1141. 40.Lindberg, L. G., Vegfors, M., Lennmarken, C., and Oberg, P. A. (1995). Pulse Oximeter Signal at Various Blood-Flow Conditions in an in-Vitro Model. Medical and Biological Engineering and Computing, 33(1), 87-91. 41.Lovell, A., Hebden, J., Goldstone, J., and Cope, M. (1999). Determination of the transport scattering coefficient of red blood cells (Vol. 3597): SPIE. 42.Mannheimer, P. D. (2007). The Light-Tissue Interaction of Pulse Oximetry. Anesthesia and Analgesia, 105, S10-S17. 43.Mannheimer, P. D., Batchelder, P. B., Larsen, M., Gehring, H., and Konecny, E. (2004). The Use of Pulse Oximeter Functional Testers in Evaluating Spo2 Accuracy. Anesthesia and Analgesia, 99(6), 1871. 44.Mannheimer, P. D., Casciani, J. R., Fein, M. E., and Nierlich, S. L. (1997). Wavelength selection for low-saturation pulse oximetry. Ieee Transactions on Biomedical Engineering, 44(3), 148-158. 45.Mauer, J., Peltomaki, M., Poblete, S., Gompper, G., and Fedosov, D. A. (2017). Static and dynamic light scattering by red blood cells: A numerical study. Plos One, 12(5). 46.McMorrow, R. C. N., and Mythen, M. G. (2006). Pulse oximetry. Current Opinion in Critical Care, 12(3), 269-271. 47.Mendelson, Y., and Kent, J. C. (1989). An in vitro tissue model for evaluating the effect of carboxyhemoglobin concentration on pulse oximetry. IEEE Trans Biomed Eng, 36(6), 625-627. 48.Milner, Q. J. W., and Mathews, G. R. (2012). An assessment of the accuracy of pulse oximeters. Anaesthesia, 67(4), 396-401. 49.Perutz, M. F., and Lehmann, H. (1968). Molecular pathology of human haemoglobin. Nature, 219(5157), 50.Plummer, J. L., Zakaria, A. Z., Ilsley, A. H., Fronsko, R. R. L., and Owen, H. (1995). Evaluation of the Influence of Movement on Saturation Readings from Pulse Oximeters. Anaesthesia, 50(5), 423-426. 51.Pologe, J. A. (1987). Pulse Oximetry - Technical Aspects of Machine-Design. International Anesthesiology Clinics, 25(3), 137-153. 52.Poorzargar, K., Pham, C., Ariaratnam, J., Lee, K., Parotto, M., Englesakis, M., . . . Nagappa, M. (2022). Accuracy of pulse oximeters in measuring oxygen saturation in patients with poor peripheral perfusion: a systematic review. Journal of Clinical Monitoring and Computing. 53.Quaresima, V., and Ferrari, M. (2020). COVID-19: efficacy of prehospital pulse oximetry for early detection of silent hypoxemia. Critical Care, 24(1). 54.Reynolds, K. J., Moyle, J. T. B., Sykes, M. K., and Hahn, C. E. W. (1992). Response of 10 Pulse Oximeters to an Invitro Test System. British Journal of Anaesthesia, 68(4), 365-369. 55.Reynolds, K. J., Moyle, J. T., Gale, L. B., Sykes, M. K., and Hahn, C. E. (1992). In vitro performance test system for pulse oximeters. Medical and Biological Engineering and Computing, 30(6), 629-635. 56.Roggan, A., Friebel, M., Do Rschel, K., Hahn, A., and Mu Ller, G. (1999). Optical Properties of Circulating Human Blood in the Wavelength Range 400-2500 nm. J Biomed Opt, 4(1), 36-46. 57.Shvartsman, L., and Fine, I. (2000). RBC aggregation effects on light scattering from blood (Vol. 4162): SPIE. 58.Smuda, K., Gienger, J., Honicke, P., and Neukammer, J. (2021). Function of Hemoglobin-Based Oxygen Carriers: Determination of Methemoglobin Content by Spectral Extinction Measurements. International Journal of Molecular Sciences, 22(4). 59.Steenbergen, W., Kolkman, R., and de Mul, F. (1999). Light-scattering properties of undiluted human blood subjected to simple shear. J Opt Soc Am A Opt Image Sci Vis, 16(12), 2959-2967. 60.Steinke, J. M., and Shepherd, A. P. (1986). Role of Light-Scattering in Whole-Blood Oximetry. Ieee Transactions on Biomedical Engineering, 33(3), 294-301. 61.Taylor, M. B., and Whitwam, J. G. (1988). The Accuracy of Pulse Oximeters - a Comparative Clinical-Evaluation of 5 Pulse Oximeters. Anaesthesia, 43(3), 229-232. 62.Twersky, V. (1962). Multiple scattering of waves and optical phenomena. J Opt Soc Am, 52, 145-171. 63.Vegfors, M., Lindberg, L. G., Oberg, P. A., and Lennmarken, C. (1993). Accuracy of pulse oximetry at various haematocrits and during haemolysis in an in vitro model. Medical and biological engineering and computing, 31(2), 135–141. 64.Verkruysse, W., Bartula, M., Bresch, E., Rocque, M., Meftah, M., and Kirenko, I. (2017). Calibration of Contactless Pulse Oximetry. Anesth Analg, 124(1), 136-145. 65.Webster J.G. et al., (1997). Design of Pulse Oximeters. Florida, United States: CRC Press. 66.Wukitsch, M. W. (1987). Pulse oximetry: historical review and Ohmeda functional analysis. Int J Clin Monit Comput, 4(3), 161-166. 67.Yaroslavsky, A., Yaroslavsky, I., Goldbach, T., and Schwarzmaier, H.-J. (1996). Optical properties of blood in the near-infrared spectral range (Vol. 2678): SPIE. 68.Yastrebova, E. S., Dolgikh, I., Gilev, K. V., Vakhrusheva, I. V., Liz, E., Litvinenko, A. L., . . . Maltsev, V. P. (2021). Spectral approach to recognize spherical particles among non-spherical ones by angle-resolved light scattering. Optics and Laser Technology, 135. 69.Zdrojkowski, R. J., and Pisharoty, N. R. (1970). Optical transmission and reflection by blood. IEEE Trans Biomed Eng, 17(2), 122-128. 70.Zijlstra, W. G., and Buursma, A. (1987). Spectrophotometry of hemoglobin: a comparison of dog and man. Comp Biochem Physiol B, 88(1), 251-255. 71.Zijlstra, W. G., and Buursma, A. (1997). Spectrophotometry of hemoglobin: Absorption spectra of bovine oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin. Comparative Biochemistry and Physiology B-Biochemistry and Molecular Biology, 118(4), 743-749. 72.Zijlstra, W. G., Buursma, A., Falke, H. E., and Catsburg, J. F. (1994). Spectrophotometry of Hemoglobin - Absorption-Spectra of Rat Oxyhemoglobin, Deoxyhemoglobin, Carboxyhemoglobin, and Methemoglobin. Comparative Biochemistry and Physiology B-Biochemistry and Molecular Biology, 107(1), 161-166. 73.Zohdi, T. I., and Kuypers, F. A. (2006). Modelling and rapid simulation of multiple red blood cell light scattering. Journal of the Royal Society Interface, 3(11), 823-831. 74.OGI School of Science and Enginneering. (2021). Optical Properties. Retrieved from https://omlc.org/classroom/ece532/class3/index.html. (2021/12/16) 75.臺灣血液基金會。2022。血液基本介紹。台北:臺灣血液基金會。網址: https://www.blood.org.tw/Internet/main/docDetail.aspx?uid=6536andpid=6387anddocid=23909。上網日期:2022-05-13。 76.謝嘉晏。2017。脈動血氧飽和度測定法之評估假體系統建立。碩士論文。臺北:國立臺灣大學生物產業機電工程學研究所。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86632 | - |
| dc.description.abstract | 脈動血氧濃度是臨床上非侵入式方法判斷患者缺氧的重要依據之一,傳統血中含氧測定儀是利用紅光波段與近紅光波段所計算出來的R-ratio值進行換算而得,醫療用血氧儀需經過臨床測試其準確性後才可獲得上市許可。然而,臨床測試卻存在著高成本、高風險、高難度等缺點。因此,我們使用了脈動血氧假體系統來消弭以上所提缺點,來達到低成本、低風險、低操作難度的特性。本假體系統主體為黑色不透光壓克力,實驗溶液為0.02 mM去氧血紅蛋白與0.02 mM氧合血紅蛋白,利用透光度80%之衰光片模擬血液散射性質並使用凸輪機構模擬人類心律,結果顯示,假體系統可模擬脈動血氧濃度70%~100%,並將心律固定在85 bpm有效取代臨床測試。此外,利用市售六台血中含氧測定儀進行分析其量測準確性,由分析結果顯示,醫療級血氧儀在準確度上醫療級血氧儀(2%~2.75%)明顯高於指尖式血氧機(3.2%~4.2%)。我們相信我們所提出的假體系統在將成為後續取代高成本、高風險的臨床測試的起點。 | zh_TW |
| dc.description.abstract | Peripheral oxygen saturation is a critical basis for a clinical non-invasive method of deciding on patients with hypoxia. The typical pulse oximeter is based on converting the R-ratio value from red and near-red light. Medical oximeters must be clinical trial tested for accuracy before getting the listing permit. However, clinical testing has disadvantages such as high cost, high risk, and great difficulty. Phantom systems could solve the shortcomings of high risk, high price, and great hardship. The phantom system is structured by black opaque acrylic with two flexible chambers, an optical fader, and a pulsed flow generator. The two chambers are filled with 0.02 mM deoxyhemoglobin and oxyhemoglobin, respectively. A neutral density filter with 80% transmittance mimics the blood scattering properties. And the cam mechanism is used to simulate the human heart rhythm in a pulsed flow generator. The results show that the phantom system can mimic 70% to 100% of peripheral oxygen Saturation, effectively replacing clinical tests. In addition, the measurement performance of six commercially available pulse oximeters was evaluated by the proposed phantom. The results show the accuracy of medical-grade oximeters (2%~2.75%) is better than that of fingertip oximeters (3.2%~4.2%) when SpO2 is less than 80%. Therefore, we believe that the proposed phantom system will become the starting point for the subsequent replacement of high-cost and high-risk clinical tests. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:07:45Z (GMT). No. of bitstreams: 1 U0001-0408202214452600.pdf: 9077963 bytes, checksum: 47ac2b093b9f94a02d0a9d7030da790f (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 目錄 誌謝...i 摘要...ii Abstract...iii 目錄...iv 圖目錄...ix 表目錄...xiii 第ㄧ章 前言...1 1.1 研究背景...1 1.2 研究目的...2 1.3研究架構...2 第二章 文獻探討...4 2.1 脈動血氧飽和度...4 2.1.1 臨床上常用血氧飽和度之比較...5 2.2脈動血氧飽和度評估方法...6 2.2.1臨床測試...6 2.2.2動物模型...6 2.2.3體外評估-血液循環系統...7 2.2.4體外評估-光電訊號系統...9 2.2.5體外評估綜合比較...10 2.2.6 探針(probes)量測方法演進...11 2.2.7 近期研究與產品發展...12 2.3血液特性...12 2.3.1紅血球與血紅蛋白...13 2.3.2血紅蛋白之衍生物光學性質...14 2.3.3 大鼠血紅蛋白與人類血紅蛋白光學特性探討...15 2.4脈動血氧飽和度量測原理...16 2.4.1組織動態訊號與靜態訊號...18 2.4.2脈動血氧飽和度理論曲線之建立...19 2.5血液散射特性...21 2.5.1 體外評估方法...22 2.5.2具備散射性質效應的雙腔室系統...24 2.5.3吸光係數與散射係數之特性...24 2.5.3.1血比容比例對吸光係數與散射係數之關係...25 2.5.3.2 脈動血氧濃度對吸光係數與散射係數之關係...26 2.5.4 脈動血氧公式與散射效應之關係...27 2.5.4.1 光密度(Optical density, O.D.)...27 2.5.4.2 特沃斯基方程式(Twersky’s equation)...28 2.5.4.3茲德羅伊科夫斯基 -皮沙羅迪方程式(Zdrojkowski and Pisharoty’s equation)...29 第三章 材料與方法...30 3.1 實驗藥品與儀器...30 3.1.1實驗藥品與材料...30 3.1.2實驗儀器與設備...30 3.1.3 實驗動物...31 3.2取得健康人類受試者光學特性...31 3.3血紅蛋白溶液配製...33 3.4血液光學特性...34 3.4.1 紅血球細胞計數...34 3.4.2 血紅蛋白濃度與散射性質...36 3.4.3血比容與散射性質...36 3.4.4 散射實驗容器...37 3.5 人類脈動訊號模擬機構...37 3.6 子系統整合...39 3.7系統測試與查證...40 3.8 系統驗證...41 第四章 結果與討論...42 4.1 健康人類受試者動態光學訊號...42 4.1.1健康人類受試者基本資料...42 4.1.2健康人類受試者靜態訊號(DC值)與動態訊號(AC值)...43 4.1.3 LEDs驅動電流之影響...47 4.1.4 LEDs驅動電流工作點選擇...50 4.1.5小結...53 4.2血紅蛋白溶液配方...54 4.2.1血紅蛋白溶液濃度...54 4.2.2 血紅蛋白氧合機...55 4.2.3變性血紅蛋白的還原與去氧血紅蛋白氧合過程...57 4.2.4氧合血紅蛋白配製方法...59 4.2.5去氧血紅蛋白配製方法...61 4.2.6氧合血紅蛋白與去氧血紅蛋白最佳配製方法...63 4.2.7小結...65 4.3血液光學特性...66 4.3.1 紅血球細胞計數...66 4.3.2 血紅蛋白與紅血球之間的光學特性...67 4.3.2.1 LEDs驅動電流之效應...68 4.3.2.2 血紅蛋白溶液濃度之效應...70 4.3.2.3 光學路徑之效應...72 4.3.3血比容與散射所導致的光密度之關係...73 4.3.4小結...75 4.4脈動血氧濃度假體系統脈動訊號產生器...76 4.4.1假體系統脈動訊號產生器凸輪設計...76 4.4.2 假體系統脈動訊號產生器機構架設...77 4.4.3 凸輪產生的脈動訊號結果...79 4.4.4小結...81 4.5脈動血氧假體系統各系統分析...82 4.5.1模擬人類手指頭假體腔室...82 4.5.2利用衰光片模擬血液散射性質...83 4.5.3模擬人類脈動訊號...87 4.5.4血紅蛋白配製...92 4.5.5 小結...93 4.6 系統查證...94 4.6.1 脈動血氧假體系統與健康人類受試者光學性質查證...94 4.6.2 脈動血氧假體系統脈動訊號心律查證...95 4.6.3 脈動血氧假體系統血紅蛋白溶液配方查證...95 4.6.3.1比色槽空氣/液體體積比0:1與比色槽氮氣填充方法與原先配方之比較...98 4.6.3.2還原劑濃度對去氧血紅蛋白穩定度之探討...100 4.6.4 小結...102 4.7系統驗證...103 4.7.1心律與脈動血氧濃度之關係...103 4.7.2 市售血氧機使用脈動血氧假體系統進行量測...105 4.7.3小結...110 第五章 結論...112 第六章 參考文獻...114 附錄 A...123 A.1 光學模組檢測...123 A.1.1 Nellcor DS100A血氧夾產品規格...123 A.1.2 光學感測模組(AFE44x0SPO2EVM GUI) 使用介面...124 A.2 市售血氧機簡易規格說明...127 A.2.1 Nellcor N-595 (醫療級血氧儀_公司總部:美國)...127 A.2.2 Radical-7 Pulse CO-Oximeter (醫療級血氧儀_公司總部:美國)...129 A.2.3 Mindray iMEC8 (醫療級三合一生理監視器_公司總部:中國)...131 A.2.4 OStar SportMate (指尖式血氧機_公司總部:臺灣)...134 A.2.5 North-vision血氧濃度機(Wrist-100) (指尖式血氧機_公司總部:臺灣)...136 A.2.6 Yonker Ver.1.0 (指尖式血氧機_公司總部:中國)...138 A.3 大鼠生理學數值...139 A.4 動物實驗申請同意書...143 | |
| dc.language.iso | zh-TW | |
| dc.subject | 脈動血氧飽和度 | zh_TW |
| dc.subject | 血紅蛋白 | zh_TW |
| dc.subject | 假體系統 | zh_TW |
| dc.subject | 散射性質 | zh_TW |
| dc.subject | 血中含氧測定儀 | zh_TW |
| dc.subject | 脈動血氧飽和度 | zh_TW |
| dc.subject | 血紅蛋白 | zh_TW |
| dc.subject | 假體系統 | zh_TW |
| dc.subject | 散射性質 | zh_TW |
| dc.subject | 血中含氧測定儀 | zh_TW |
| dc.subject | hemoglobin | en |
| dc.subject | pulse oximeter | en |
| dc.subject | scattering | en |
| dc.subject | oxygen saturation | en |
| dc.subject | hemoglobin | en |
| dc.subject | phantom system | en |
| dc.subject | scattering | en |
| dc.subject | pulse oximeter | en |
| dc.subject | phantom system | en |
| dc.subject | oxygen saturation | en |
| dc.title | 用於評估脈動血氧量測性能之具備散射校正的假體系統 | zh_TW |
| dc.title | A phantom system with a scattering correction for evaluating performance of pulse oximetry | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許文賢(Wen-Hsien Hsu),杜翌群(Yi-Chun Tu),蔡正倫(Cheng-Lun Tsai),龔毅(Kung Yi) | |
| dc.subject.keyword | 脈動血氧飽和度,血紅蛋白,假體系統,散射性質,血中含氧測定儀, | zh_TW |
| dc.subject.keyword | oxygen saturation,hemoglobin,phantom system,scattering,pulse oximeter, | en |
| dc.relation.page | 143 | |
| dc.identifier.doi | 10.6342/NTU202202059 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-05 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物機電工程學系 | zh_TW |
| dc.date.embargo-lift | 2024-08-08 | - |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0408202214452600.pdf | 8.87 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
