請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86597完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊哲人(Jer-Ren Yang) | |
| dc.contributor.author | Jia-Hao Chang | en |
| dc.contributor.author | 張家豪 | zh_TW |
| dc.date.accessioned | 2023-03-20T00:05:29Z | - |
| dc.date.copyright | 2022-08-15 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-09 | |
| dc.identifier.citation | 1. Decker, R., R. Yeo, and J. Eash, CG Bieber, The maraging steels. Materials in Design Engineering, 1962. 55: p. 106. 2. Nilsson, J.-O., A. Hultin Stigenberg, and P. Liu, Isothermal formation of quasicrystalline precipitates and their effect on strength in a 12Cr-9Ni-4Mo maraging stainless steel. Metallurgical and Materials Transactions A, 1994. 25(10): p. 2225-2233. 3. Escriba, D.M., et al., Chi-phase precipitation in a duplex stainless steel. Materials Characterization, 2009. 60(11): p. 1214-1219. 4. Sha, W., A. Cerezo, and G. Smith, Phase chemistry and precipitation reactions in maraging steels: Part I. Introduction and study of Co-containing C-300 steel. Metallurgical and Materials Transactions A, 1993. 24(6): p. 1221-1232. 5. Tawancy, H., Precipitation characteristics of μ-phase in wrought nickel-base alloys and its effect on their properties. Journal of materials science, 1996. 31(15): p. 3929-3936. 6. Hsieh, C.-C. and W. Wu, Overview of Intermetallic Sigma () Phase Precipitation in Stainless Steels. ISRN Metallurgy, 2012. 2012: p. 1-16. 7. Ping, D.H., et al., Microstructural evolution in 13Cr–8Ni–2.5Mo–2Al martensitic precipitation-hardened stainless steel. Materials Science and Engineering: A, 2005. 394(1-2): p. 285-295. 8. Jiang, S., et al., Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature, 2017. 544(7651): p. 460-464. 9. Sun, L., et al., A novel ultra-high strength maraging steel with balanced ductility and creep resistance achieved by nanoscale β-NiAl and Laves phase precipitates. Acta Materialia, 2018. 149: p. 285-301. 10. Ifergane, S., et al., The relation between aging temperature, microstructure evolution and hardening of Custom 465® stainless steel. Materials Characterization, 2017. 127: p. 129-136. 11. Lian, Y., et al., Influence of Austenitizing Temperature on the Microstructure and Mechanical Properties of an Fe-Cr-Ni-Mo-Ti Maraging Stainless Steel. Journal of Materials Engineering and Performance, 2019. 28(9): p. 5466-5475. 12. Wang, L., et al., The effect of ɳ-Ni3Ti precipitates and reversed austenite on the passive film stability of nickel-rich Custom 465 steel. Corrosion Science, 2019. 154: p. 178-190. 13. Ancey-Rocchi, S., et al., Influence of Austenitization Parameters on the Precipitation Sequence and the Chemical Homogenization of Austenite in a High-Performance Fe–Ni–Cr–Al–Ti–Mo Stainless Maraging Steel. Metallurgical and Materials Transactions A, 2021. 52(10): p. 4623-4635. 14. Zhang, C., et al., Effect of aging temperature on the precipitation behavior and mechanical properties of Fe–Cr–Ni maraging stainless steel. Materials Science and Engineering: A, 2021. 806. 15. Chen, C.-Y., et al., Interaction between η-Ni3Ti and reversed austenite within Custom 465 stainless steel: experimental evidence and related patents investigation. Materials Science and Engineering: A, 2022. 839. 16. Floreen, S., The physical metallurgy of maraging steels. Metallurgical Reviews, 1968. 13(1): p. 115-128. 17. Sha, W., et al., Phase transformations in maraging steels, in Phase Transformations in Steels. 2012. p. 332-362. 18. Bhadeshia, H.K.D.H., Worked examples in the Geometry of Crystals. 2001. 19. Abbaschian, R., L. Abbaschian, and R.E. Reed-Hill, Physical Metallurgy Principles. 2008. 20. Bunshah, R.F. and R.F. Mehl, Rate of propagation of martensite. Transactions of the AIME, 1953. 193: p. 1251–1258. 21. Cohen, M., Strengthening of steel. Transactions of the metallurgical society of Aime, 1962. 224: p. 638 – 657. 22. Bhadeshia, H.K.D.H. and R.W.K. Honeycombe, Steels Microstructure and Properties. 2017. 23. Peters, C., P. Bolton, and A. Miodownik, The effect of magnetic fields on isothermal martensitic transformations. Acta metallurgica, 1972. 20(7): p. 881-886. 24. Martin, D.S., et al., The isothermal martensite formation in a maraging steel: A magnetic study. Materials Science and Engineering: A, 2008. 481-482: p. 757-761. 25. Bain, E.C. and N. Dunkirk, The nature of martensite. trans. AIME, 1924. 70(1): p. 25-47. 26. Bhadeshia, H.K.D.H., Theory of Transformations in Steels. 2021. 27. Chatterjee, S., et al., Mechanical stabilisation of austenite. Materials Science and Technology, 2013. 22(6): p. 641-644. 28. He, B., et al., High dislocation density–induced large ductility in deformed and partitioned steels. Science, 2017. 357(6355): p. 1029-1032. 29. Huang, J. and Z. Xu, Effect of dynamically recrystallized austenite on the martensite start temperature of martensitic transformation. Materials Science and Engineering: A, 2006. 438: p. 254-257. 30. Lee, S.J. and Y.K. Lee. Effect of austenite grain size on martensitic transformation of a low alloy steel. in Materials Science Forum. 2005. Trans Tech Publ. 31. Brofman, P. and G. Ansell, On the effect of fine grain size on the Ms temperature in Fe-27Ni-0.025 C alloys. Metallurgical transactions A, 1983. 14(9): p. 1929-1931. 32. Pietikäinen, J., Thermal stabilization of austenite in high nickel-carbon steels. Le Journal de Physique Colloques, 1982. 43(C4): p. C4-479-C4-484. 33. Ansell, G., et al., The Effect of Austenite Strength on the Transformation to Martensite in Fe--Ni and Fe--Ni--C Alloys. ICOMAT 1979. Martensitic Transformations, 1979: p. 350-355. 34. Maki, T., et al., The morphology of strain-induced martensite and thermally transformed martensite in Fe–Ni–C alloys. Transactions of the Japan Institute of Metals, 1972. 13(6): p. 400-407. 35. Ankara, O., A. Sastri, and D. West, Some Effects of Austenitizing Conditions on Martensite formation in an Iron-20 percent Nickel Alloy. IRON STEEL INST J, 1966. 204(5): p. 509-511. 36. Sastri, A. and D. West, Effect of austenitizing conditions on kinetics of martensite formation in certain medium-alloy steels. Journal of the Iron and Steel Institute, 1965. 203: p. 138-&. 37. Ghosh, G. and G. Olson, Kinetics of FCC→ BCC heterogeneous martensitic nucleation—I. The critical driving force for athermal nucleation. Acta Metallurgica et Materialia, 1994. 42(10): p. 3361-3370. 38. Steven, W., The temperature of formation of martensite and bainite in low alloy steels, some effects of chemical composition. Journal of the Iron and Steel Institute, 1956. 183: p. 349-359. 39. Tsai, M., et al., Phase transformation in AISI 410 stainless steel. Materials Science and Engineering: A, 2002. 332(1-2): p. 1-10. 40. Kurdyumov, G. and O. Maksimova. Kinetics of the transformation of austenite into martensite at low temperatures. in Dokl. Akad. Nauk SSSR. 1948. 41. Wakasa, K. and C. Wayman, Crystallography and morphology of ferrous lath martensite. Metallography, 1981. 14(1): p. 49-60. 42. Ullakko, K., B. Sundqvist, and J. Pietikäinen, Isothermal Martensite Transformation of Fe-Ni-C Alloys as a Function of Hydrostatic Pressure. 1990. 43. Ullakko, K., M. Nieminen, and J. Pietikäinen. Prevention of martensitic transformation during rapid cooling. in Materials Science Forum. 1990. Trans Tech Publ. 44. Tsuzaki, K., et al. The effect of Ni content on the isothermal character of lath martensitic transformation in Fe-Ni alloys. in Materials Science Forum. 1990. Trans Tech Publ. 45. Sarma, D., J. Whiteman, and S. Keown, The structure of burst and isothermal martensites in an Fe-24 wt% Ni-0.5 wt% C alloy. Journal of Materials Science, 1979. 14(3): p. 693-698. 46. Raghavan, V. and A. Entwisle, Isothermal martensite kinetics in iron alloys. Iron and Steel Institute, 1965: p. 30-37. 47. Okamoto, H. and M. Oka, Isothermal martensite transformation in a 1.80 Wt Pct C steel. Metallurgical Transactions A, 1985. 16(12): p. 2257-2262. 48. Kajiwara, S., Mechanism of isothermal martensitic transformation. Materials transactions, JIM, 1992. 33(11): p. 1027-1034. 49. Kajiwara, S., Continuous observation of isothermal martensite formation in Fe-Ni-Mn alloys. Acta Metallurgica, 1984. 32(3): p. 407-413. 50. Kajiwara, S., Morphology and crystallography of the isothermal martensite transformation in Fe—Ni—Mn alloys. Philosophical Magazine A, 1981. 43(6): p. 1483-1503. 51. Ghosh, G., Effect of pre-strain on the kinetics of isothermal martensitic transformation. Philosophical Magazine A, 1995. 71(2): p. 333-345. 52. Edwards, R.H., The isothermal transformation of austenite at temperatures near Ms. 1970. 53. Yeo, R., Isothermal martensite transformation in iron-base alloys of low carbon content. TRANSACTIONS OF THE METALLURGICAL SOCIETY OF AIME, 1962. 224(6): p. 1222-&. 54. Machlin, E. and M. Cohen, Isothermal mode of the martensitic transformation. JOM, 1952. 4(5): p. 489-500. 55. Shih, C., B. Averbach, and M. Cohen, Some characteristics of the isothermal martensitic transformation. JOM, 1955. 7(1): p. 183-187. 56. Magee, C., The nucleation of martensite. Phase transformations, 1970. 57. Sato, H. and S. Zaefferer, A study on the formation mechanisms of butterfly-type martensite in Fe–30% Ni alloy using EBSD-based orientation microscopy. Acta Materialia, 2009. 57(6): p. 1931-1937. 58. Maki, T., et al., Formation Temperature and Growth Behavior of Thin Plate Martensite in Fe-Ni-C Alloys. 1975. 59. Güner, M., et al., Some aspects of thermally induced martensite in Fe–30% Ni–5% Cu alloy. Physica B: Condensed Matter, 2007. 395(1-2): p. 16-19. 60. Cottrell, A.H. and B.A. Bilby, LX. A mechanism for the growth of deformation twins in crystals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2010. 42(329): p. 573-581. 61. Shibata, A., et al., Substructures of lenticular martensites with different martensite start temperatures in ferrous alloys. Acta Materialia, 2009. 57(2): p. 483-492. 62. Ping, D.H., et al., Lath formation mechanisms and twinning as lath martensite substructures in an ultra low-carbon iron alloy. Sci Rep, 2018. 8(1): p. 14264. 63. Zhang, P., et al., Twin structure of the lath martensite in low carbon steel. Progress in Natural Science: Materials International, 2016. 26(2): p. 169-172. 64. Ping, D.H. and W.T. Geng, A popular metastable omega phase in body-centered cubic steels. Materials Chemistry and Physics, 2013. 139(2-3): p. 830-835. 65. Ryder, P., W. Pitsch, and R. Mehl, Crystallography of the precipitation of ferrite on austenite grain boundaries in a Co+ 20% Fe alloy. Acta Metallurgica, 1967. 15(9): p. 1431-1440. 66. Ryder, P. and W. Pitsch, The crystallographic analysis of grain-boundary precipitation. Acta Metallurgica, 1966. 14(11): p. 1437-1448. 67. Kitahara, H., et al., Crystallographic features of lath martensite in low-carbon steel. Acta Materialia, 2006. 54(5): p. 1279-1288. 68. Kelly, P., A. Jostsons, and R. Blake, The orientation relationship between lath martensite and austenite in low carbon, low alloy steels. Acta metallurgica et materialia, 1990. 38(6): p. 1075-1081. 69. Kurdjumov, G. and G. Sachs, Over the mechanisms of steel hardening. Z. Phys, 1930. 64(325-343). 70. Morito, S., et al., The morphology and crystallography of lath martensite in Fe-C alloys. Acta materialia, 2003. 51(6): p. 1789-1799. 71. Krauss, G., Tempering of Lath Martensite in Low and Medium Carbon Steels: Assessment and Challenges. steel research international, 2017. 88(10). 72. Cheng, M.-Y. and J.-R. Yang, Structures of Lath Martensite in 22MnB5 Low Carbon Steel, in Department of Materials Science and Engineering. 2021, National Taiwan University. 73. Morito, S., et al., The morphology and crystallography of lath martensite in alloy steels. Acta Materialia, 2006. 54(19): p. 5323-5331. 74. Morito, S., et al., Effect of block size on the strength of lath martensite in low carbon steels. Materials Science and Engineering: A, 2006. 438-440: p. 237-240. 75. Stormvinter, A., et al., Effect of carbon content on variant pairing of martensite in Fe–C alloys. Acta materialia, 2012. 60(20): p. 7265-7274. 76. Galindo-Nava, E.I. and P.E.J. Rivera-Díaz-del-Castillo, A model for the microstructure behaviour and strength evolution in lath martensite. Acta Materialia, 2015. 98: p. 81-93. 77. Hall, E., The deformation and ageing of mild steel: III discussion of results. Proceedings of the Physical Society. Section B, 1951. 64(9): p. 747. 78. Petch, N., The cleavage strength of polycrystals. Journal of the iron and steel institute, 1953. 174: p. 25-28. 79. Hagihara, K., T. Nakano, and Y. Umakoshi, Plastic deformation behaviour in Ni3Ti single crystals with D024 structure. Acta Materialia, 2003. 51(9): p. 2623-2637. 80. Shekhter, A., et al., Effect of aging and deformation on the microstructure and properties of Fe-Ni-Ti maraging steel. Metallurgical and Materials Transactions A, 2004. 35(3): p. 973-983. 81. Vijay K. Vasudevan, S.J.K., C.M. Wayman, Precipitation Reactions and Strengthening Behavior in 18 Wt Pct Nickel Maraging Steels. Metallurgical Transactions A 1990. 21: p. 2655–2668 82. Taylor, G.I., The formation of emulsions in definable fields of flow. Proceedings of the Royal Society of London. Series A, containing papers of a mathematical and physical character, 1934. 146(858): p. 501-523. 83. Lu, S.Y., P.H. Liu, and J.R. Yang, Deform structure in IF steel. 2022. 84. Howie, A. and M.J. Whelan, Diffraction contrast of electron microscope images of crystal lattice defects. III. Results and experimental confirmation of the dynamical theory of dislocation image contrast. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1962. 267(1329): p. 206-230. 85. Howie, A. and M.J. Whelan, Diffraction contrast of electron microscope images of crystal lattice defects-II. The development of a dynamical theory. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1961. 263(1313): p. 217-237. 86. Yang, J. and H. Bhadeshia, The dislocation density of acicular ferrite in steel welds. Weld. J, 1990. 69: p. 305-307. 87. Malis, T., S.C. Cheng, and R.F. Egerton, EELS log-ratio technique for specimen-thickness measurement in the TEM. J Electron Microsc Tech, 1988. 8(2): p. 193-200. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86597 | - |
| dc.description.abstract | 465麻時效不鏽鋼在工業中,常會在時效處理前,先施行冷加工至所需形狀,以降低加工成本。然而,過去卻僅有少數文獻,具系統性的探討此材料施行冷加工後的析出行為。因此,本研究引入40%冷滾軋,並透過熱膨脹儀、OM、XRD、EBSD、TEM等儀器,研究本材料在熱處理各階段的相變特性、顯微結構,以及時效處理各階段的析出行為。 首先,本研究利用熱膨脹儀,首次於此材料中,發現特殊的恆溫麻田散鐵相變現象,並觀察、量化麻田散鐵基地之層次結構、次結構的變化。接著對於沃斯田鐵在時效過程中的成長趨勢及析出特性進行研究。最後,利用晶體結構學的知識,配合TEM在[211]α晶帶軸所拍攝η-Ni3Ti析出物之中心暗場影像,精準量化析出物的尺寸分布,發現引入40%冷滾軋所導致的差排密度上升,將因為管道擴散效應,使η-Ni3Ti析出物迅速成長,並且抑制逆沃斯田鐵生成,證明了η-Ni3Ti析出物與逆沃斯田鐵之間的析出競爭關係。 本研究亦透過高解析穿透式電子顯微鏡,在[111]α晶帶軸發現η-Ni3Ti析出物之V5、V6變體傾向依附生長,並在析出物中形成以(11̅02̅)η為雙晶面的雙晶結構。 | zh_TW |
| dc.description.abstract | 465 maraging stainless steel is often formed to the desired shape before conducting aging treatment in order to reduce processing cost. However, there are only few literatures have systematically investigated the precipitation behavior of 465 maraging stainless steel after cold working. Therefore, this study introduced 40% cold rolling then investigated the phase transformation, microstructure and precipitation behavior of 465 maraging stainless steel provided by Gloria Material Technology Corp. at each heat treatment stage by dilatometer, OM, XRD, EBSD, and TEM. First of all, this study derived the isothermal martensite transformation in this material for the first time by dilatometer then observed and quantified the changes of the hierarchical structure and substructure of martensite. After that, we studied the precipitating characteristics of reversed austenite during the aging process. Finally, by using the knowledge of crystallography, this study precisely quantify the size distribution of precipitation. It was found that the increase in dislocation density caused by introducing 40% cold rolling will promote the growth rate of η-Ni3Ti due to pipe diffusion and inhibit the forming of reversed austenite, therefore, proof the competition relationship between η-Ni3Ti and reversed austenite. In this work, the V5 and V6 variants of η-Ni3Ti were also found to grow in pair by using HRTEM at [111]α zone axis, and formed a twinning structure with (11̅02̅)η as twinning plane in the precipitation. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:05:29Z (GMT). No. of bitstreams: 1 U0001-0408202214033700.pdf: 18241818 bytes, checksum: 8be817a0f9445c9c83ae36eb6c8004ba (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝 i 摘要 iii Abstract iv 目錄 v 圖目錄 viii 表目錄 xviii 第一章 前言 1 第二章 文獻回顧 3 2.1 麻時效不鏽鋼簡介 3 2.2 麻田散鐵基地 6 2.2.1 麻田散鐵相變 6 2.2.2 麻田散鐵相變起始溫度MS 11 2.2.3 恆溫麻田散鐵相變 14 2.2.4 麻田散鐵種類 17 2.2.5 板條狀麻田散鐵方位關係 21 2.2.6 板條狀麻田散鐵層次結構 28 2.2.7 板條狀麻田散鐵機械性質 37 2.3 η-Ni3Ti析出物 41 2.3.1 η-Ni3Ti析出物晶體結構、方位關係 41 2.3.2 η-Ni3Ti析出物異質成核、成長 44 第三章 研究方法 46 3.1 實驗材料 46 3.2 熱處理 46 3.3 儀器與試片製備 49 3.3.1 熱膨脹儀 49 3.3.2 光學金相顯微鏡OM 49 3.3.3 X光繞射儀XRD 50 3.3.4 電子背向散射繞射儀EBSD 50 3.3.5 穿透式電子顯微鏡TEM 51 3.3.6 維氏硬度測試 51 3.4 分析軟體 52 3.4.1 Fiji (ImageJ 2.0) 52 3.4.2 CaRIne Crystallography 3.1 52 3.4.3 TSL OIM Analysis 7 53 3.4.4 Digital Micrograph 53 3.4.5 Origin 2019b 53 第四章 結果與討論 54 4.1 Thermo – Calc 54 4.2 維式硬度測試 56 4.3 麻田散鐵相變 60 4.3.1 熱膨脹曲線 60 4.3.2 恆溫麻田散鐵相變 63 4.4 板條狀麻田散鐵 68 4.4.1 前沃斯田鐵晶粒、塊體金相 68 4.4.2 塊體厚度統計 71 4.4.3 時效處理對麻田散鐵應力釋放之影響 76 4.4.4 差排分布 83 4.4.5 差排密度統計 85 4.4.6 互相穿刺雙晶 96 4.5 沃斯田鐵 98 4.5.1 時效處理溫度對尖峰時效沃斯田鐵含量影響 98 4.5.2 冷滾軋對沃斯田鐵含量影響 101 4.5.3 沃斯田鐵次結構 114 4.6 η-Ni3Ti析出物 118 4.6.1 η-Ni3Ti析出物形貌 118 4.6.2 η-Ni3Ti析出物尺寸統計 125 4.6.3 η-Ni3Ti析出物結構 144 第五章 結論 148 第六章 未來展望 150 參考文獻 151 | |
| dc.language.iso | zh-TW | |
| dc.subject | 雙晶 | zh_TW |
| dc.subject | 方位關係 | zh_TW |
| dc.subject | 恆溫麻田散鐵相變 | zh_TW |
| dc.subject | η-Ni3Ti析出物 | zh_TW |
| dc.subject | 逆沃斯田鐵 | zh_TW |
| dc.subject | 板條狀麻田散鐵 | zh_TW |
| dc.subject | 465麻時效不鏽鋼 | zh_TW |
| dc.subject | 管道擴散 | zh_TW |
| dc.subject | 雙晶 | zh_TW |
| dc.subject | 方位關係 | zh_TW |
| dc.subject | 恆溫麻田散鐵相變 | zh_TW |
| dc.subject | η-Ni3Ti析出物 | zh_TW |
| dc.subject | 逆沃斯田鐵 | zh_TW |
| dc.subject | 465麻時效不鏽鋼 | zh_TW |
| dc.subject | 板條狀麻田散鐵 | zh_TW |
| dc.subject | 管道擴散 | zh_TW |
| dc.subject | orientation relationship | en |
| dc.subject | 465 maraging stainless steel | en |
| dc.subject | lath martensite | en |
| dc.subject | reversed austenite | en |
| dc.subject | η-Ni3Ti | en |
| dc.subject | isothermal martensite transformation | en |
| dc.subject | twin | en |
| dc.subject | pipe diffusion | en |
| dc.subject | 465 maraging stainless steel | en |
| dc.subject | lath martensite | en |
| dc.subject | reversed austenite | en |
| dc.subject | η-Ni3Ti | en |
| dc.subject | isothermal martensite transformation | en |
| dc.subject | orientation relationship | en |
| dc.subject | twin | en |
| dc.subject | pipe diffusion | en |
| dc.title | 冷滾軋對於465麻時效不鏽鋼之顯微結構與析出行為影響 | zh_TW |
| dc.title | Effects of Cold Rolling on The Microstructure and Precipitation Behavior of 465 Maraging Stainless Steel | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王星豪(Shing-Hoa Wang),林東毅(Dong-Yih Lin),張君華(Jyun-Hua Chang),陳志遠(Chih-Yuan Chen) | |
| dc.subject.keyword | 465麻時效不鏽鋼,板條狀麻田散鐵,逆沃斯田鐵,η-Ni3Ti析出物,恆溫麻田散鐵相變,方位關係,雙晶,管道擴散, | zh_TW |
| dc.subject.keyword | 465 maraging stainless steel,lath martensite,reversed austenite,η-Ni3Ti,isothermal martensite transformation,orientation relationship,twin,pipe diffusion, | en |
| dc.relation.page | 159 | |
| dc.identifier.doi | 10.6342/NTU202202055 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-15 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0408202214033700.pdf | 17.81 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
