請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86541| 標題: | 在 Wi-Fi Monitor模式下通過Sniffers使用 RSSI 指紋進行被動室內定位 Passive Indoor Positioning using RSSI Fingerprinting via Sniffers in Wi-Fi Monitor Mode |
| 作者: | Poh Yuen Chan 陳保源 |
| 指導教授: | 吳瑞北(Ruey-Beei Wu) |
| 關鍵字: | 物聯網,Wi-Fi被動室內定位系統,Wi-Fi偵測器,接收信號強度,Wi-Fi 指紋,基因演算法, Internet of Things,Wi-Fi-based passive indoor positioning system,Wi-Fi Sniffer,received signal strength,Wi-Fi fingerprints,Genetic Algorithm, |
| 出版年 : | 2022 |
| 學位: | 碩士 |
| 摘要: | 本論文旨在實現Wi-Fi被動室內定位系統(IPS),無需待測物(DUT)安裝額外應用程序,也無需用戶主動協作。 Wi-Fi 偵測器 (Sniffers)部署在實驗區域,以掃描和收集 DUT 的 Wi-Fi 接收信號強度(RSSI)作為 Wi-Fi 指紋,應用加權k最近鄰域(WKNN)方法獲得DUT位置。為了每個RP可以接收的Wi-Fi RSSI最大化,本文使用具有增強信息熵特徵的目標函數,利用改進基因演算法(GA)優化Wi-Fi偵測器的部署,實驗上使用Wi-Fi測量機器人在每個 RP 上自動收集Wi-Fi 2.4 GHz和 5 GHz RSSI 數據。初步結果表明,僅使用 20 個 Wi-Fi Sniffer 作為模型訓練的特徵,離線定位精度可以達到可接受範圍為 2.2 m。此外,在 NTU 中實施了概念驗證的真實在線被動 IPS,以顯示檢測 DUT 在線存在並隨後獲得其 RSSI作為位置估計的在線指紋的可能性。 This thesis focused on the realisation of Wi-Fi based passive indoor positioning system (IPS) without any additional application installed on the device-under-target (DUT) and without active collaboration from the user. The Wi-Fi Sniffers are deployed in an area of interest to scan and collect DUT’s Wi-Fi received signal strength (RSIS) as Wi-Fi fingerprints for mapping vectors of RSSI to each reference point (RP) in the physical world by applying the weighted k-nearest neighbourhood (WKNN) method. To maximise the Wi-Fi RSSI that can be received in each RP, optimisation of the deployment of Wi-Fi Sniffers is considered using a modified Genetic Algorithm (GA) for an objective function with the enhanced feature of information entropy. Automate data collection of RSSI at each RP is done using a surveying robot for both Wi-Fi 2.4 GHz and 5 GHz. Preliminary result shows that the off-line positioning accuracy can achieve 2.2 m which is acceptable with only 20 Wi-Fi Sniffers as features for model training. In addition, a proof-of-concept real on-line passive IPS is implemented in NTU to show the possibility of detecting the on-line presence of DUT and subsequently obtain its RSSI as on-line fingerprints for position estimation. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86541 |
| DOI: | 10.6342/NTU202202179 |
| 全文授權: | 同意授權(全球公開) |
| 電子全文公開日期: | 2022-08-23 |
| 顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0908202201552400.pdf | 4.31 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
