請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86541完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳瑞北(Ruey-Beei Wu) | |
| dc.contributor.author | Poh Yuen Chan | en |
| dc.contributor.author | 陳保源 | zh_TW |
| dc.date.accessioned | 2023-03-20T00:02:03Z | - |
| dc.date.copyright | 2022-08-23 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-12 | |
| dc.identifier.citation | 1. K. Pahlavan and P. Krishnamurthy, 'Evolution and impact of Wi-Fi technology and applications: a historical perspective,' Int. J. Wireless Inf. Netw., vol. 28, no. 1, pp. 3-19, 2021, doi: 10.1007/s10776-020-00501-8. 2. 'The economic value of Wi-Fi: a global view 2021-2025', [Online] Available: https://www.wi-fi.org/news-events/newsroom/wi-fi-global-economic-value-to-reach-5-trillion-in-2025 [Accessed: May. 2, 2022] 3. F. Restuccia, 'IEEE 802.11bf: Toward ubiquitous Wi-Fi sensing,' CoRR, vol. abs/2103.14918, 2021. [Online]. Available: https://arxiv.org/abs/2103.14918. 4. Wi-Fi Alliance, 'Enabling new applications of WLAN technology: WLAN sensing', Wi-Fi Alliance, 2021. [Online] Available: https://beyondstandards.ieee.org/ieee-802-11bf-aims-to-enable-a-new-application-of-wlan-technology-wlan-sensing/ [Accessed: May. 5, 2022] 5. P. Enge and P. Misra, 'Special issue on global positioning system,' Proc. IEEE, vol. 87, no. 1, pp. 3-15, 1999, doi: 10.1109/JPROC.1999.736338. 6. F. L. Piccolo, 'A new cooperative localization method for UMTS cellular networks,' 2008 IEEE Glob. Commun. Conf. , pp. 1-5, doi: 10.1109/GLOCOM.2008.ECP.458. 7. VELUX, 'The indoor generation – read more about how life indoor effects us,' VELUX, 2019. [Online] Available: https://www.veluxusa.com/indoorgeneration [Accessed: Apr. 15, 2022] 8. N. E. Klepeis, W. C. Nelson, W. Ott, and J. P. Robinson, 'The national human activity pattern survey (NHAPS): a resource for assessing exposure to environmental pollutants,' J. Expo. Sci. Environ. Epidemiol., vol. 11, no. 3, pp. 231-252, 2001, doi: 10.1038/sj.jea.7500165. 9. D. Mishra, 'World development report 2016: digital dividends,' World Bank, 2016, Washington, DC. [Online]. Available: https://www.worldbank.org/en/publication/wdr2016 [Accessed: Apr. 21, 2022] 10. World Bank, 'Europe and central asia economic update, spring 2021 : data, digitalization, and governance,' World Bank, 2021, Washington, DC. [Online]. Available: https://openknowledge.worldbank.org/handle/10986/35273 [Accessed: Apr. 21, 2022] 11. S. Gibney and T. Mccarthy, 'Profile of smartphone ownership and use in Ireland', Dublin, Ireland, Research Services and Policy Unit, Research & Development and Health Analytics Division. [Online]: Available: https://assets.gov.ie/81401/e6c10ac5-e6b4-438e-b31d-30cd2b241f7c.pdf [Accessed: Apr. 26, 2022] 12. Y. F. Chan, S. Narasuman, N. Abdul Aziz, S. Mustafa, and T. H. Cheong, 'Smart phone use among university students,' Asian J. Univ. Educ., vol. 17, pp. 282, 2021, doi: 10.24191/ajue.v17i1.12622. 13. F. Liu, J. Liu, Y. Yin, W. Wang, D. Hu, and P. Chen , 'Survey on WiFi-based indoor positioning techniques,' IET Commun., vol. 14, no. 9, pp. 1372-1383, 2020, doi: https://doi.org/10.1049/iet-com.2019.1059. 14. J. Kim and D. Han, 'Passive WiFi fingerprinting method,' 2018 IPIN, pp. 1-8, doi: 10.1109/IPIN.2018.8533788. 15. G. Deak, K. Curran, and J. Condell, 'Review: a survey of active and passive indoor localisation systems,' Comput. Commun., vol. 35, 2012, doi: 10.1016/j.comcom.2012.06.004. 16. M. Youssef, M. Mah, and A. Agrawala, 'Challenges: device-free passive localization for wireless environments,' Proc. 13th Annu. ACM Int. Conf. Mobil. Comput. Netw., Montréal, Québec, Canada, 2007. [Online]. Available: https://doi.org/10.1145/1287853.1287880. 17. A. E. Kosba, A. Abdelkader, and M. Youssef, 'Analysis of a device-free passive tracking system in typical wireless environments,' 2009 3rd Int. Conf. New Technol., Mobil. Secur., , pp. 1-5, doi: 10.1109/NTMS.2009.5384738. 18. H. Aly and M. Youssef, 'New insights into wifi-based device-free localization,' Proc. 2013 ACM UbiComp, Zurich, Switzerland, 2013. [Online]. Available: https://doi.org/10.1145/2494091.2497612. 19. R. Collins, A. J. Lipton, T. Kanade, and H. Fujiyoshi, 'A system for video surveillance and monitoring,' Robot. Inst., vol. 5, 2000. 20. G. Ciaparrone, F. Luque Sánchez, S. Tabik, L. Troiano, R. Tagliaferri, and F. Herrera, 'Deep learning in video multi-object tracking: a survey,' Neurocomputing, vol. 381, 2019, doi: 10.1016/j.neucom.2019.11.023. 21. P. Bahl and V. N. Padmanabhan, 'RADAR: an in-building RF-based user location and tracking system,' Proc. IEEE INFOCOM 2000 , vol. 2, pp. 775-784, doi: 10.1109/INFCOM.2000.832252. 22. V. Bahl and V. N. Padmanabhan, 'Enhancements to the RADARuser location and tracking system,' 2000. 23. M. Emery and M. K. Denko, 'IEEE 802.11 WLAN based real-time location tracking in indoor and outdoor environments,' 2007 Can. Conf. Electr. Comput. Eng, pp. 1062-1065, doi: 10.1109/CCECE.2007.271. 24. X. Guo, N. Ansari, F. Hu, Y. Shao, N. R. Elikplim, and L. Li, 'A survey on fusion-based indoor positioning,' IEEE Commun. Surv. Tutor., vol. 22, no. 1, pp. 566-594, 2020, doi: 10.1109/COMST.2019.2951036. 25. N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, 'The Cricket location-support system,' Proc. 6th Annu. Int. Conf. Mobil. Comput. Netw., Boston, Massachusetts, USA, 2000. [Online]. Available: https://doi.org/10.1145/345910.345917. 26. H. Liu, H. Darabi, P. Banerjee, and J. Liu, 'Survey of wireless indoor positioning techniques and systems,' IEEE Trans. Syst. Man Cybern., vol. 37, no. 6, pp. 1067-1080, 2007, doi: 10.1109/TSMCC.2007.905750. 27. S.-C. Lin, 'A scalable Wi-Fi RSS fingerprinting positioning system for processing cumulative data,' M.S. thesis, GICE, National Taiwan Univ, Taipei, Taiwan, 2019. [Online]. Available: https://hdl.handle.net/11296/33u95p 28. A. Yassin et al., 'Recent advances in indoor localization: a survey on theoretical approaches and applications,' IEEE Commun. Surv. Tutor., vol. 19, no. 2, pp. 1327-1346, 2017, doi: 10.1109/COMST.2016.2632427. 29. M. Kanaan and K. Pahlavan, 'A comparison of wireless geolocation algorithms in the indoor environment,' 2004 IEEE Wirel. Commun. Netw. Conf., , vol. 1, pp. 177-182, doi: 10.1109/WCNC.2004.1311539. 30. S. Amirisoori, S. Mohd Daud, N. A. Ahmad, S. Natasha, N. Sa'at, and N. Noor, 'WI-FI based indoor positioning using fingerprinting methods (KNN algorithm) in real environment,' Int. J. Future Gener. Commun. Netw., vol. 10, pp. 23-36, 2017, doi: 10.14257/ijfgcn.2017.10.9.03. 31. K. Kaemarungsi and P. Krishnamurthy, 'Properties of indoor received signal strength for WLAN location fingerprinting,' MOBIQUITOUS 2004, pp. 14-23, doi: 10.1109/MOBIQ.2004.1331706. 32. M. Youssef and A. Agrawala, 'The Horus WLAN location determination system,' Proc. 3rd Int. Conf. Mobil. Syst., Seattle, Washington, 2005, doi: https://doi.org/10.1145/1067170.1067193. 33. S. Lee, J. Kim, and N. Moon, 'Random forest and WiFi fingerprint-based indoor location recognition system using smart watch,' Hum.-centric Comput. Inf. Sci., vol. 9, no. 1, pp. 6, 2019, doi: 10.1186/s13673-019-0168-7. 34. E. Jedari, W. Zheng, R. Rashidzadeh, and M. Saif, 'Wi-Fi based indoor location positioning employing random forest classifier,' 2015 IPIN, pp. 1-5, doi: 10.1109/IPIN.2015.7346754. 35. Z. E. Khatab, A. Hajihoseini, and S. A. Ghorashi, 'A fingerprint method for indoor localization using autoencoder based deep extreme learning machine,' IEEE Sens. Lett., vol. 2, no. 1, pp. 1-4, 2018, doi: 10.1109/LSENS.2017.2787651. 36. Y. Wang, C. Xiu, X. Zhang, and D. Yang, 'WiFi indoor localization with CSI fingerprinting-based random forest,' Sensors, vol. 18, no. 9, p. 2869, 2018. [Online]. Available: https://www.mdpi.com/1424-8220/18/9/2869. 37. A. Poulose and D. S. Han, 'Hybrid deep learning model based indoor positioning using Wi-Fi RSSI heat maps for autonomous applications,' Electronics, vol. 10, no. 1, p. 2, 2021. [Online]. Available: https://www.mdpi.com/2079-9292/10/1/2. 38. S. Fang and T. Lin, 'Indoor location system based on discriminant-adaptive neural network in IEEE 802.11 environments,' IEEE Trans. Neural Netw., vol. 19, no. 11, pp. 1973-1978, 2008, doi: 10.1109/TNN.2008.2005494. 39. C. -L. Wu, L. -C. Fu, and F. -L. Lian, 'WLAN location determination in e-home via support vector classification,' in IEEE Inter. Conf. Netw., Sens. Contr., 2004, vol. 2, pp. 1026-1031, doi: 10.1109/ICNSC.2004.1297088. 40. G. Nuno and J. P. Borrallo, 'A new location estimation system for wireless networks based on linear discriminant functions and hidden Markov models,' EURASIP J. Appl. Signal Process., vol. 2006, pp. 159-159, 2006, doi: 10.1155/ASP/2006/68154. 41. Y. Gao, J. Niu, R. Zhou, and G. Xing, 'ZiFind: Exploiting cross-technology interference signatures for energy-efficient indoor localization,' 2013 Proc. IEEE INFOCOM, , pp. 2940-2948, doi: 10.1109/INFCOM.2013.6567105. 42. J. Saldana, L. Sequeira, J. Ruiz-Mas, and J. F. Navajas, 'D3.3 Specification of smart AP solutions version 2,' H2020 Wi-5, 2016. [Online]. Available: https://www.researchgate.net/publication/317889249_D33_Specification_of_Smart_AP_solutions_version_2 43. A. B. M. Musa and J. Eriksson, 'Tracking unmodified smartphones using Wi-Fi monitors,' Proc. 10th ACM Conf. Embedded Netw. Sensor Syst., 2012, doi: https://doi.org/10.1145/2426656.2426685. 44. M. Kim, D. Kotz, and S. Kim, 'Extracting a mobility model from real user traces,', 25th IEEE Inter. Conf. Comp. Commun., 2006, pp. 1-13, doi: 10.1109/INFOCOM.2006.173. 45. J. Scheuner, G. Mazlami, D. Schoni, S. Stephan, A. D. Carli, T. Bocek, and B. Stiller, 'Probr - A generic and passive WiFi tracking system,' 2016 IEEE 41st LCN, pp. 495-502, doi: 10.1109/LCN.2016.30. 46. C. Luo, L. Cheng, M. C. Chan, Y. Gu, J. Li, and Z. Ming, 'Pallas: Self-bootstrapping fine-grained passive indoor localization using WiFi monitors,' IEEE Trans. Mobil. Comput., vol. 16, no. 2, pp. 466-481, 2017, doi: 10.1109/TMC.2016.2550452. 47. M. Hoang, B. Yuen, K. Ren, A. Elmoogy, X. Dong, T. Lu, R. Westendrop, and K. Tarimala , 'Passive indoor localization with WiFi fingerprints.' arXiv preprint arXiv:2111.14281, 2021. 48. Y. Duan et al., 'Data rate fingerprinting: A WLAN-based indoor positioning technique for passive localization,' IEEE Sens J., vol. 19, no. 15, pp. 6517-6529, 2019, doi: 10.1109/JSEN.2019.2911690. 49. Meshlium, 'Meshlium smartphone detection', Meshlium, 2020, [Online] Available: https://development.libelium.com/meshlium-technical-guide/smartphone [Accessed: Jun. 16, 2022] 50. iBwave, 'In-building wireless network design and deployment solutions: iBwave,' iBwave. [Online] Available: https://ibwave.com/ [Accessed: Jun. 3, 2022] 51. iBwave, 'No, not all prediction methods are the same,' iBwave. [Online] Available: https://blog.ibwave.com/not-all-prediction-methods-are-the-same/ [Accessed: Jun. 3, 2022] 52. iBwave, '6 ways iBwave focuses on prediction accuracy,' iBwave. [Online] Available: https://blog.ibwave.com/6-ways-ibwave-focuses-on-prediction-accuracy/ [Accessed: Jun. 3, 2022] 53. A. H. Ismail, R. Tasaki, H. Kitagawa, and K. Terashima, 'Optimum placement of wireless access point for mobile robot positioning in an indoor environment,' J. Robot. Mechatron, vol. 28, no. 2, pp. 162-172, 2016, doi: 10.20965/jrm.2016.p0162. 54. T. Ibrahim, H. A. Farouk, and A. F. A. Moneim, 'Optimal wireless access points placement in a manufacturing facility using genetic algorithm,' 2018. 55. Ameba ARDUINO: getting started with BW16 [Online] Available: https://www.amebaiot.com/en/amebad-bw16-arduino-getting-started/. 56. I. E. Bagci, U. Roedig, I. Martinovic, M. Schulz, and M. Hollick, 'Using channel state information for tamper detection in the Internet of things,' Proc. 31st Annu. Comput. Secur. Appl. Conf., Los Angeles, CA, USA, 2015. [Online]. Available: https://doi.org/10.1145/2818000.2818028. 57. E. Dehmollaian, B. Etzlinger, N. B. Torres, and A. Springer, 'Using channel state information for physical tamper attack detection in OFDM systems: a deep learning approach,' IEEE Wirel. Commun. Lett., pp. 1-1, 2021, doi: 10.1109/LWC.2021.3072937. 58. P. Y. Chan, A. I.-C. Lai, P.-Y. Wu, and R.-B. Wu, 'Physical tampering detection using single COTS Wi-Fi endpoint,' Sensors, vol. 21, no. 16, p. 5665, 2021. [Online]. Available: https://www.mdpi.com/1424-8220/21/16/5665. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86541 | - |
| dc.description.abstract | 本論文旨在實現Wi-Fi被動室內定位系統(IPS),無需待測物(DUT)安裝額外應用程序,也無需用戶主動協作。 Wi-Fi 偵測器 (Sniffers)部署在實驗區域,以掃描和收集 DUT 的 Wi-Fi 接收信號強度(RSSI)作為 Wi-Fi 指紋,應用加權k最近鄰域(WKNN)方法獲得DUT位置。為了每個RP可以接收的Wi-Fi RSSI最大化,本文使用具有增強信息熵特徵的目標函數,利用改進基因演算法(GA)優化Wi-Fi偵測器的部署,實驗上使用Wi-Fi測量機器人在每個 RP 上自動收集Wi-Fi 2.4 GHz和 5 GHz RSSI 數據。初步結果表明,僅使用 20 個 Wi-Fi Sniffer 作為模型訓練的特徵,離線定位精度可以達到可接受範圍為 2.2 m。此外,在 NTU 中實施了概念驗證的真實在線被動 IPS,以顯示檢測 DUT 在線存在並隨後獲得其 RSSI作為位置估計的在線指紋的可能性。 | zh_TW |
| dc.description.abstract | This thesis focused on the realisation of Wi-Fi based passive indoor positioning system (IPS) without any additional application installed on the device-under-target (DUT) and without active collaboration from the user. The Wi-Fi Sniffers are deployed in an area of interest to scan and collect DUT’s Wi-Fi received signal strength (RSIS) as Wi-Fi fingerprints for mapping vectors of RSSI to each reference point (RP) in the physical world by applying the weighted k-nearest neighbourhood (WKNN) method. To maximise the Wi-Fi RSSI that can be received in each RP, optimisation of the deployment of Wi-Fi Sniffers is considered using a modified Genetic Algorithm (GA) for an objective function with the enhanced feature of information entropy. Automate data collection of RSSI at each RP is done using a surveying robot for both Wi-Fi 2.4 GHz and 5 GHz. Preliminary result shows that the off-line positioning accuracy can achieve 2.2 m which is acceptable with only 20 Wi-Fi Sniffers as features for model training. In addition, a proof-of-concept real on-line passive IPS is implemented in NTU to show the possibility of detecting the on-line presence of DUT and subsequently obtain its RSSI as on-line fingerprints for position estimation. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-20T00:02:03Z (GMT). No. of bitstreams: 1 U0001-0908202201552400.pdf: 4417262 bytes, checksum: 61172b6b69f79be7e80dc8284490d922 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENTS i 摘要 ii ABSTRACT iii TABLE OF CONTENTS iv LIST OF FIGURES vi LIST OF TABLES viii CHAPTER 1 : INTRODUCTION 1 1.1. Introduction 1 1.2. Wi-Fi Sensing for Indoor Positioning 2 1.3. Motivation 5 1.4. Main Contributions 6 1.5. Organisation of the Thesis 6 CHAPTER 2 : LITERATURE REVIEW 8 2.1 Wireless Sensing Modalities for Indoor Positioning 8 2.1.1 Device-free Passive (DfP) 8 2.1.2 Wi-Fi 10 2.1.3 Fusion System 11 2.2 Algorithms for Indoor Positioning 12 2.2.1 Ranging Technique 13 2.2.1.1 Trilateration 13 2.2.1.2 Triangulation 15 2.2.2 Scene Analysis 15 2.2.2.1 Deterministic 16 2.2.2.2 Probabilistic 17 2.2.2.3 Pattern Recognition 17 2.3 Passive Positioning System 17 CHAPTER 3 : RESEARCH METHODOLOGY 21 3.1 Project Overview 21 3.2 Simulation of Wi-Fi RSSI Using iBwave Wi-Fi Suite 22 3.3 Optimised Placement of Wi-Fi Sniffers Using GA with Entropy 25 3.4 Overview of Hardware Used in The Passive System 32 3.5 Design of Passive Wi-Fi MAC Address Extraction System 34 CHAPTER 4 : RESULTS AND DISCUSSION 38 4.1 Introduction 38 4.2 Automate Wi-Fi Fingerprints Training Data Extraction System 38 4.3 Positioning Algorithm 41 4.4 Positioning Accuracy with Simulated and Off-line Measured Data 43 4.5 On-line Passive IPS Demonstration 47 CHAPTER 5 : CONCLUSIONS AND FUTURE WORK 52 5.1 Conclusions 52 5.2 Future Work 52 REFERENCES 54 APPENDIX 58 | |
| dc.language.iso | en | |
| dc.subject | Wi-Fi被動室內定位系統 | zh_TW |
| dc.subject | 物聯網 | zh_TW |
| dc.subject | Wi-Fi 指紋 | zh_TW |
| dc.subject | Wi-Fi偵測器 | zh_TW |
| dc.subject | 基因演算法 | zh_TW |
| dc.subject | Wi-Fi被動室內定位系統 | zh_TW |
| dc.subject | 物聯網 | zh_TW |
| dc.subject | 基因演算法 | zh_TW |
| dc.subject | Wi-Fi 指紋 | zh_TW |
| dc.subject | 接收信號強度 | zh_TW |
| dc.subject | 接收信號強度 | zh_TW |
| dc.subject | Wi-Fi偵測器 | zh_TW |
| dc.subject | Wi-Fi-based passive indoor positioning system | en |
| dc.subject | Internet of Things | en |
| dc.subject | Wi-Fi Sniffer | en |
| dc.subject | received signal strength | en |
| dc.subject | Wi-Fi fingerprints | en |
| dc.subject | Genetic Algorithm | en |
| dc.subject | Internet of Things | en |
| dc.subject | Wi-Fi-based passive indoor positioning system | en |
| dc.subject | Wi-Fi Sniffer | en |
| dc.subject | received signal strength | en |
| dc.subject | Wi-Fi fingerprints | en |
| dc.subject | Genetic Algorithm | en |
| dc.title | 在 Wi-Fi Monitor模式下通過Sniffers使用 RSSI 指紋進行被動室內定位 | zh_TW |
| dc.title | Passive Indoor Positioning using RSSI Fingerprinting via Sniffers in Wi-Fi Monitor Mode | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張盛富(Sheng-Fuh Chang),王垂堂(Chuei-Tang Wang),曾祥峻(Jeans Tseng),賴怡吉(Alexander I-Chi Lai) | |
| dc.subject.keyword | 物聯網,Wi-Fi被動室內定位系統,Wi-Fi偵測器,接收信號強度,Wi-Fi 指紋,基因演算法, | zh_TW |
| dc.subject.keyword | Internet of Things,Wi-Fi-based passive indoor positioning system,Wi-Fi Sniffer,received signal strength,Wi-Fi fingerprints,Genetic Algorithm, | en |
| dc.relation.page | 59 | |
| dc.identifier.doi | 10.6342/NTU202202179 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-15 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-23 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0908202201552400.pdf | 4.31 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
