請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86325完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 高振宏(Chen-Hung Kao) | |
| dc.contributor.author | Ching-Han Huang | en |
| dc.contributor.author | 黃靜涵 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:49:11Z | - |
| dc.date.copyright | 2022-09-06 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-25 | |
| dc.identifier.citation | 1. Tu, K.N., Reliability challenges in 3D IC packaging technology. Microelectronics Reliability, 2011. 51(3): p. 517-523. 2. Lau, J.H. TSV manufacturing yield and hidden costs for 3D IC integration. in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC). 2010. 3. Banijamali, B., et al. Outstanding and innovative reliability study of 3D TSV interposer and fine pitch solder micro-bumps. in 2012 IEEE 62nd Electronic Components and Technology Conference, ECTC 2012. 2012. San Diego, CA. 4. Tu, K.N., H.-Y. Hsiao, and C. Chen, Transition from flip chip solder joint to 3D IC microbump: Its effect on microstructure anisotropy. Microelectronics Reliability, 2013. 53(1): p. 2-6. 5. Roy, C.K., et al., Investigation into the application of low melting temperature alloys as wet thermal interface materials. International Journal of Heat and Mass Transfer, 2015. 85: p. 996-1002. 6. Li, Y. and D. Goyal, 3D microelectronic packaging: from fundamentals to applications. Vol. 57. 2017: Springer. 7. Chen, K.-N., et al., Morphology and bond strength of copper wafer bonding. Electrochemical and Solid-State Letters, 2003. 7(1): p. G14. 8. Tang, Y.-S., Y.-J. Chang, and K.-N. Chen, Wafer-level Cu–Cu bonding technology. Microelectronics Reliability, 2012. 52(2): p. 312-320. 9. Liu, C.-M., et al., Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu. Scientific Reports, 2015. 5(1): p. 9734. 10. Gill, T.M., et al., Conformal electroless nickel plating on silicon wafers, convex and concave pyramids, and ultralong nanowires. ACS applied materials & interfaces, 2018. 10(26): p. 22834-22840. 11. Kao, L., et al. Bonding of Copper Pillars Using Electroless Cu Plating. in 2019 International Conference on Electronics Packaging (ICEP). 2019. IEEE. 12. Tan, C., et al., Observation of interfacial void formation in bonded copper layers. Applied Physics Letters, 2005. 87(20): p. 201909. 13. Zhang, C., H. Li, and M. Li, Detailed Evolution Mechanism of Interfacial Void Morphology in Diffusion Bonding. Journal of Materials Science & Technology, 2016. 32(3): p. 259-264. 14. Ma, R., et al., Modeling of void closure in diffusion bonding process based on dynamic conditions. Science China Technological Sciences, 2012. 55(9): p. 2420-2431. 15. Wu, Y.S., et al., Effect of Compressive Stress on Evolution and Healing Kinetics of Artificial Voids in Highly (111)-Oriented Cu-Cu Wafer Bonding at 300 °C. ECS Journal of Solid State Science and Technology, 2021. 10(4): p. 044004. 16. Osborn, T., et al., All-Copper Chip-to-Substrate interconnects part i. Fabrication and characterization. Journal of The Electrochemical Society, 2008. 155(4): p. D308. 17. Koo, H.-C., C. Lightsey, and P.A. Kohl, Affect of Anneal Temperature on All-Copper Flip-Chip Connections Formed via Electroless Copper Deposition. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011. 2(1): p. 79-84. 18. Liu, H.-C., et al., Interfacial void ripening in CuCu joints. Materials Characterization, 2021. 181: p. 111459. 19. Liu, H.-C., et al., Evolution of interfacial voids in Cu-to-Cu joints. Materials Characterization, 2022: p. 112085. 20. Raj, S. and T. Langdon, Creep behavior of copper at intermediate temperatures—I. Mechanical characteristics. Acta Metallurgica, 1989. 37(3): p. 843-852. 21. Rida, A., Study of the Mechanical Properties of Nanocrystalline Materials by Molecular Dynamics Simulations. 2018, Troyes. 22. Han, H., et al., Cu to Cu direct bonding at low temperature with high density defect in electrodeposited Cu. Applied Surface Science, 2021. 550: p. 149337. 23. Rebhan, B. and K. Hingerl, Physical mechanisms of copper-copper wafer bonding. Journal of Applied Physics, 2015. 118(13): p. 135301. 24. Hasegawa, M., et al., Orientation-controlled nanotwinned copper prepared by electrodeposition. Electrochimica Acta, 2015. 178: p. 458-467. 25. Panigrahy, A.K. and K.-N. Chen, Low temperature Cu–Cu bonding technology in three-dimensional integration: An extensive review. Journal of Electronic packaging, 2018. 140(1). 26. Jang, E.-J., et al., Annealing temperature effect on the Cu-Cu bonding energy for 3D-IC integration. Metals and Materials International, 2011. 17(1): p. 105-109. 27. Kim, Y., S.-K. Kang, and S.E. Kim, Study of thinned Si wafer warpage in 3D stacked wafers. Microelectronics Reliability, 2010. 50(12): p. 1988-1993. 28. Lim, D., et al., Cu passivation for enhanced low temperature (⩽ 300 C) bonding in 3D integration. Microelectronic Engineering, 2013. 106: p. 144-148. 29. Xie, Z.-Y., et al. Influence of Grain Refinement on Direct Bonding for Electrodeposited Copper. in 2019 International Conference on Electronics Packaging (ICEP). 2019. IEEE. 30. Peng, L., et al., Effect of prebonding anneal on the microstructure evolution and Cu–Cu diffusion bonding quality for three-dimensional integration. Journal of electronic materials, 2012. 41(9): p. 2567-2572. 31. Martinez, M., et al., Mechanisms of copper direct bonding observed by in-situ and quantitative transmission electron microscopy. Thin Solid Films, 2013. 530: p. 96-99. 32. Ong, J.J., et al. Fabrication and Reliability Analysis of Quasi-single Crystalline Cu Joints Using Highly <111>-oriented Nanotwinned Cu. in 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC). 2022. 33. Chen, K.-N., et al., Bonding parameters of blanket copper wafer bonding. Journal of electronic materials, 2006. 35(2): p. 230-234. 34. Chen, K.-N., et al., Investigations of strength of copper-bonded wafers with several quantitative and qualitative tests. Journal of electronic materials, 2006. 35(5): p. 1082-1086. 35. Harper, J., et al., Mechanisms for microstructure evolution in electroplated copper thin films near room temperature. Journal of applied physics, 1999. 86(5): p. 2516-2525. 36. Chu, Y.-C. and C. Chen, Anisotropic grain growth to eliminate bonding interfaces in direct copper-to-copper joints using< 111>-oriented nanotwinned copper films. Thin Solid Films, 2018. 667: p. 55-58. 37. Lagrange, S., et al., Self-annealing characterization of electroplated copper films. Microelectronic Engineering, 2000. 50(1-4): p. 449-457. 38. Ho, C.-E., et al., In-situ study on the self-annealing behavior of electroplated Cu through the cantilever method, XRD, and EBSD. Surface and Coatings Technology, 2016. 303: p. 86-93. 39. Yang, C., et al., In-situ characterization of the microstructure transition of electroplating Cu during self-annealing and its effect on the substrate warpage. Surface and Coatings Technology, 2019. 364: p. 383-391. 40. Detavernier, C., et al., Thermodynamics and kinetics of room-temperature microstructural evolution in copper films. Journal of applied physics, 2003. 94(5): p. 2874-2881. 41. Lin, J.-H., et al., Interfacial mechanism studies of electroless plated Cu films on a-Ta: N layers catalyzed by PIII. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2002. 20(3): p. 733-740. 42. Hsu, H.-H., et al., Electroless copper deposition for ultralarge-scale integration. Journal of the electrochemical society, 2001. 148(1): p. C47. 43. Cui, X., D.A. Hutt, and P.P. Conway, Evolution of microstructure and electrical conductivity of electroless copper deposits on a glass substrate. Thin Solid Films, 2012. 520(19): p. 6095-6099. 44. Yang, J., et al., A new method to obtain Cu films with lower resistivity and higher interface adhesion on different substrates. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1995. 13(2): p. 481-484. 45. Chang, S.-C., et al., Roles of copper mechanical characteristics in electropolishing. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2004. 22(1): p. 116-119. 46. Misra, A., et al., Electrical resistivity of sputtered Cu/Cr multilayered thin films. Journal of applied physics, 1999. 85(1): p. 302-309. 47. Song, Y.-J., et al., Electrical Properties of Electroplated Cu Thin Film by Electrolyte Composite. Korean Journal of Materials Research, 2009. 19(6): p. 344-348. 48. Teh, W., et al., Study of microstructure and resistivity evolution for electroplated copper films at near-room temperature. Microelectronics Journal, 2001. 32(7): p. 579-585. 49. Hara, T., H. Toida, and Y. Shimura, The self-annealing phenomenon in copper interconnection. Electrochemical and solid-state letters, 2003. 6(7): p. G98. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86325 | - |
| dc.description.abstract | 現今為了滿足人們對電子產品運算效能更好、損耗與更低的需求,三維積體電路(3D ICs)的概念被提出並且被認為是最有希望進一步遵守摩爾定律的封裝技術。3D ICs利用垂直方向地來堆疊晶片,使得此技術能夠同時實現尺寸微縮以及異質整合的優勢,進一步提升接點的數量、降低能耗並縮小晶片面積。在所有作為接點的材料中,銅具有優良的導電性和良好的機械性質,因此被認為是目前最合適的接點材料。除此之外,由於銅-銅的熱壓接合製程簡單且成本要求也低,所以工業界和學術界對此方向已有所研究與開發。然而,在所有製備銅的方法中,無電鍍法具有製程簡單、鍍膜均勻性高及成本低的優勢。無電鍍銅的製程可在大氣環境下進行,且不需使用外部電源,即可利用自催化的行為來大量生產均勻的銅層,這個特性將有利於無電鍍銅在工業量產的應用。因此,本研究意於開發無電鍍銅的銅-銅的熱壓接合技術,希望探索無電鍍銅作為接點材料的可能性。 本研究採用兩種表面的樣品分別為粗糙表面和平坦表面的銅薄膜。表面平坦的銅膜是用來做為研究無電鍍銅成功達成接合所需的最低溫度及接合前與後微結構的演變所需的樣品。而若是為了研究熱處理的參數對孔洞的影響,則選擇使用粗糙的銅膜以便更明顯地觀察孔洞。本研究亦對孔洞隨時間演變的機制做了說明,並透過聚焦離子束及背向電子繞射儀來分析無電鍍銅膜的微結構、結晶取向和晶粒尺寸。除此之外,若要將無電鍍銅作為接點材料,其導電性至關重要,於是本研究也利用范德堡法測量電阻率並與文獻數值比對。總結上述所言,本研究開發了無電鍍銅應用於作為晶片內連線的並使用銅對銅熱壓接合的可能性,也探討了影響接點中位於介面之孔洞的要素,以及其貢獻和演變機制。本研究之無電鍍銅其電阻率相較文獻數值低,也與其他種類的銅之電阻率在相同數量級,因此其有潛力應用於未來晶片封裝的接點材料。此無電鍍銅之銅-銅熱壓接合已成功在250 ℃ 5 MPa 下於15分鐘完成且接合環境要求只需使用機械幫浦所達到的真空度(10-2 torr)。 | zh_TW |
| dc.description.abstract | Since there have been more and more demands on electronic products featured lower consumption and higher performance, people have proposed the concept of three-dimensional integrated circuits (3D ICs). It has been considered as the most encouraging technique for further catching up Moore’s law. With the help of vertically stacking chips, the 3D IC technology allows heterogeneous integration and small form factor as well. Among all materials applied on interconnections of chips, copper spotlights outstanding electrical conductivity and also good mechanical property. Hence, it is considered as the most promising material for chip interconnections. Also, with the replacement of solder, Cu enables fine pitch of interconnections, which can further increase the density of I/O. Moreover, the industry and academia have developed Cu-Cu thermocompression bonding owing to its low-cost requirements and simple process. Copper could be fabricated through many approaches. Among them, electrolessly deposition features the advantages of high uniformity, easy production process and low cost. The characteristic of autocatalytic reaction in electroless plating demonstrates the capability of massively producing uniform Cu layers under atmospheric environment without using exterior electrical energy, which is advantageous from the aspect of convenience and simplicity. Hence, it is worth to develop Cu-Cu bonding technique using electrolessly deposited Cu for future applications on three-dimensional integration. Direct Cu-Cu bonding is well accomplished under 10-2 torr at 250 ℃ 5 MPa for 15 min with the utilization of electrolessly deposited Cu. Numerous effected factors on the voids within bonded joints including surface roughness, bonding temperature, pressure, and time are discussed. In this study, flattened and rough copper blanket layers on silicon substrates were respectively employed to discover the minimum required temperature of Cu-Cu direct thermo-compression bonding, and to inspect the effects of variables during bonding process on interfacial voids. Several variables concerning the shrinkage of voids within joints are studied and the mechanisms are explained. The microstructure, grain size and crystallographic orientation of this electrolessly deposited Cu were also discussed. The electrical resistivity of the electrolessly plated Cu layer was quantified by van der Pauw method. In summary, a novel Cu-Cu thermo-compression bonding using electrolessly fabricated Cu is developed and the process of healing interfacial voids is optimized. Resistivity of the electroless Cu is low enough to be potential material for future chip interconnections. The Cu-Cu thermocompression bonding of electroless Cu is successfully completed at 250 ℃ 5 MPa within 15 min and the bonding environment only requires vacuum reached by mechanical pump (10-2 torr). | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:49:11Z (GMT). No. of bitstreams: 1 U0001-2408202223100100.pdf: 3829944 bytes, checksum: ad34e881ff2859485a18234ec55e474f (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝 III 摘要 V Abstract VII List of Figures XI List of Tables XIV Chapter1 Introduction 1 1.1 3D IC Integration Technology 1 1.2 Issues when using solder bump in 3D IC integration 3 Chapter2 Literature review 5 Chapter3 Motivation and objective 8 Chapter4 Experimental procedure 10 4.1 Electroless Cu plating 11 4.2 (Optional) CMP treatment 11 4.3 Cu-Cu thermo-compression bonding 11 4.4 Metallographic preparation and cross-sectional ion milling 12 4.5 Microstructure and Analysis 13 Chapter5 Results and discussion 14 5.1 Effects of surface roughness and bonding parameters on voids within bonding interface 14 5.1.1 Surface roughness 14 5.1.2 Bonding temperature 16 5.1.3 Bonding pressure 18 5.1.4 Bonding time 18 5.2 Void evolution of bonded electroless Cu joint 21 5.2.1 Cross-section of bonded electroless Cu joint after post-bonding annealing at 350 ℃ 22 5.2.2 Cross-section of bonded electroless Cu joint after post-bonding annealing at 350 ℃ 20 MPa 24 5.2.3 Cross-section of bonded electroless Cu joint after post-bonding annealing at 200 ℃ 20 MPa 25 5.3 Direct Cu-Cu bonding utilizing flattened electrolessly deposited Cu 27 5.3.1 Microstructure of the as-deposited electroless Cu layer 27 5.3.2 Crystallographic orientation and grain size distribution of the electroless Cu film before TC bonding 28 5.3.3 Flatten Cu films after Cu-Cu thermo-compression bonding 31 5.3.4 Cross-sectional crystallographic orientation analysis and grain size measurements 36 5.3.4 Comparison with other types of Cu 40 5.4 Resistivity measurement of electroless Cu film 47 Chapter6 Conclusion 48 References 49 | |
| dc.language.iso | en | |
| dc.subject | 銅對銅接合 | zh_TW |
| dc.subject | 熱壓接合 | zh_TW |
| dc.subject | 無電鍍銅 | zh_TW |
| dc.subject | 孔洞 | zh_TW |
| dc.subject | direct Cu-Cu bonding | en |
| dc.subject | electroless Cu deposition | en |
| dc.subject | void | en |
| dc.subject | thermo-compression bonding | en |
| dc.title | 無電鍍銅之銅-銅熱壓接合與接合面之孔洞演變 | zh_TW |
| dc.title | Thermal Compression Cu-Cu bonding using electroless Cu and the evolution of voids within bonding interface | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 高金利(Jing-Li Kao),顏怡文(Yee-Wen Yen) | |
| dc.subject.keyword | 無電鍍銅,熱壓接合,銅對銅接合,孔洞, | zh_TW |
| dc.subject.keyword | electroless Cu deposition,thermo-compression bonding,direct Cu-Cu bonding,void, | en |
| dc.relation.page | 54 | |
| dc.identifier.doi | 10.6342/NTU202202787 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-26 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-09-06 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2408202223100100.pdf | 3.74 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
