請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86310完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐澔德(J Bruce H Shyu) | |
| dc.contributor.author | Chia-Lo Tsai | en |
| dc.contributor.author | 蔡加洛 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:48:20Z | - |
| dc.date.copyright | 2022-08-29 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-25 | |
| dc.identifier.citation | 日文部分: 大江二郎(1939)。臺灣地質圖:臺東圖幅說明書。臺灣總督府殖產局。 中文部分: 石再添、張瑞津、黃朝恩、石慶得、楊貴三與孫林耀明(1983)。臺灣北部與東部活斷層的地形學研究。國立臺灣師範大學地理研究報告,第9期,第20-72頁。 石再添、鄧國雄、張瑞津、石慶得與楊貴三(1986)。臺灣活斷層的地形學研究。國立臺灣師範大學地理研究報告,第12期,第1-44頁。 王源與陳文山(1993)。海岸山脈地質圖,經濟部中央地質調查所出版。 王源、楊昭男與陳文山(1992)。五萬分之一臺灣地質圖及說明書-玉里圖幅。經濟部中央地質調查所出版。 李民(1984)。臺灣東部海岸山脈南段瑞源地區的地質。國立臺灣大學地質科學研究所碩士學位論文,共54頁。 何春蓀(1969)。臺灣東部奇美火成雜岩之鉀氬年齡之地質意義。臺灣省地質調查所彙刊,第20號,第15-16、63-74頁。 杜冠穎(2013)。以河道地形分析探討臺灣西南六甲斷層的新構造特性。國立臺灣大學地質科學研究所碩士學位論文,共109頁。 沈哲緯(2017)。河道彎道水力侵蝕崩塌預測暨連結度之研究。國立臺灣大學土木工程學研究所博士學位論文,共282頁。 林啟文與林偉雄(2005)。臺灣東部鹿野地區之地質構造研究。經濟部中央地質調查所彙刊,第18號,第29-52頁。 林啟文、張徽正、盧詩丁、石同生與黃文正(2000)。臺灣活動斷層概論. 五十萬分之一臺灣活動斷層分布圖說明書,第二版。經濟部中央地質調查所特刊,第13號,共122頁。 林啟文、陳文山、劉彥求與陳柏村(2009)。鹿野斷層。經濟部中央地質調查所特刊,第23號,第81-90頁。 林偉雄、林啟文、劉彥求與陳柏村(2008)。五萬分之一臺灣地質圖及說明書-臺東、知本圖幅。經濟部中央地質調查所出版。 林朝棨(1957)。臺灣地形。臺灣通志稿卷一,土地誌,地理篇,第一冊,臺灣省文獻委員會,共424頁。 林意楨(2013)。測量學(第二版)。新北市,高立圖書有限公司。共353頁。 紀文榮(1982)。臺灣利吉層與墾丁層內之超微化石及其在地質構造上之意義。 地質,第4卷,第1期,第99-114頁。 紀權窅(2007)。南段花東縱谷之新期構造研究─利吉斷層與鹿野斷層的活動特性。國立臺灣大學地質科學研究所碩士學位論文,共84頁。 徐鐵良(1954)。臺灣東部海岸山脈地形與近期上升運動。臺灣省地質調查所彙刊,第7號,第9-18、51-57頁。 徐鐵良(1956)。臺灣東部海岸山脈地質。臺灣省地質調查所彙刊,第8號,第15-41、39-63頁。 陳文山(1988)。臺灣海岸山脈沉積盆地之演化及其在地體構造上之意義。國立臺灣大學地質科學研究所博士學位論文,共304頁。 陳文山(1991)。臺灣東部海岸山脈利吉層的成因。經濟部中央地質調查所特刊,第5號,第257-266頁。 陳文山(2016)。臺灣地質概論。中華民國地質學會出版,共204頁。 陳文山與王源(1996)。臺灣東部海岸山脈地質。經濟部中央地質調查所出版,臺灣地質系列,第7號,共101頁。 陳文山、林益正、顏一勤、楊志成、紀權窅、黃能偉、林啟文、林偉雄、侯進雄、 劉彥求、林燕慧、石同生與盧詩丁(2008)。從古地震研究與GPS資料探討縱谷斷層的分段意義。經濟部中央地質調查所特刊,第20號,第165-191 頁。 陳文山、游能悌、松多信尚與楊小青(2009)。地震地質與地變動潛勢分析計畫:斷層長期滑移速率與再現週期研究(3/4)期末報告書。經濟部中央地質調查所報告,第98-09號,計畫編號: 98-5226904000-01-01,共125頁。 陳文山、游能悌與楊小青(2014)。重要活動斷層帶構造特性調查研究計畫-斷層活動特性分析與評估(4/4)期末報告書。經濟部中央地質調查所報告,第103-05號,計畫編號: 103-5226904000-01-03,共80頁。 陳志雄(1988)。臺灣海岸山脈泰源地區上新世至更新世之生物地層研究。國立臺灣大學地質科學研究所碩士學位論文,共35頁。 陳志雄、黃敦友、陳文山與王源(1991)。臺灣東部海岸山脈泰源地區之生物地層。地質,第11卷,第2期,第133-144頁。 陳展懋(2019)。臺灣造山帶崩積物不同時間尺度下之保存與搬運。國立臺灣大學地質科學研究所碩士學位論文,共140頁。 崔秀國(2015)。荖濃溪晚第四紀階地與河流演育。國立中正大學地震學研究所碩士學位論文,共76頁。 張瑞津,石再添,沈淑敏與張政亮(1992)。花東縱谷南段河階的地形學研究。 地理學研究,第16期,第27-63頁。 張瑞津、石再添、楊淑君、林譽方與陳翰霖(1994)。花東縱谷沖積扇的地形學研究。國立臺灣師範大學地理研究報告,第21期,第43-74頁。 張徽正、林啟文、陳勉銘與盧詩丁(1998)。臺灣活動斷層概論-五十萬分之一臺灣活動斷層分布圖說明書。經濟部中央地質調查所特刊,第10號,共103頁。 葛岳淵、李彪、李思霖與張運鴻(2012)。池上斷層在玉里地區之電阻率構造。 地工技術,第131期,第97-104頁。 景國恩與孔冠傑(2014)。台灣西南部半動態基準之建立。國土測繪與空間資訊,第2卷,第2期,第85-105頁。 楊貴三(1986)。台灣活斷層的地形學研究-特論活斷層與地形面的關係。中國文化大學地理研究所博士論文,共178頁。 齊士崢、陳文山與龔琪嵐(2003)。鹿野溪與卑南溪的河階地與其新構造運動意義。環境與世界,第8期,第1-23頁。 劉平妹與謝孟龍(2007)。臺灣東部晚第四紀地質調查及地形演育研究(2/2)。經濟部中央地質調查所報告,第96-01號,共80頁。 鄧屬予(1981)。淺論利吉層的成因及其在大地構造上的意義。地質,第3卷, 第51-61頁。 謝孟龍(2007)。臺灣河階地形研究的回顧、檢討與展望。經濟部中央地質調查所特刊,第18號,第209-242頁。 謝孟龍(2019)。環境變遷下的草嶺。地質,第38卷,第1期,第50-53頁。 謝孟龍、李坤修、傅君與葉長庚(2010)。卑南地區史前聚落遷移與河流環境變遷的初探。2010年臺灣考古工作會報研討會論文集上冊,第5-Ⅲ節,第1-14頁。 龔琪嵐與齊士崢(2012)。縱谷斷層南段的階地對比及新構造運動研究。環境與世界,第24-25期,第93-114頁。 英文部分: Angelier, J., Chu, H. T., & Lee, J. C. (1997). Shear concentration in a collision zone: kinematics of the Chihshang Fault as revealed by outcrop-scale quantification of active faulting, Longitudinal Valley, eastern Taiwan. Tectonophysics, 274(1), 117-143. doi:10.1016/S0040-1951(96)00301-0 Barrier, E., & Muller, C. (1984). New observations and discussion on the origin and age of the Lichi Mélange. Mem. Geol. Soc. China, 6, 303-326. Bevington, P. B., & Robinson, D. K. (2003). Data Reduction and Error Analysis for the Physical Sciences, third edition. McGraw Hill, New York, pp.36-50. Blum, M. D., & Törnqvist, T. E. (2000). Fluvial responses to climate and sea-level change: a review and look forward. Sedimentology, 47(s1), 2-48. doi:10.1046/j.1365-3091.2000.00008.x Burbank, D. W., Leland, J., Fielding, E., Anderson, R. S., Brozovic, N., Reid, M. R., & Duncan, C. (1996). Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature, 379(6565), 505-510. doi:10.1038/379505a0 Burbank, D.W. & Anderson, R. S. (2001). Tectonic Geomorphology. Blackwell, Oxford. pp.1-174. Chang, L. S. (1967). A biostratigraphic study of the Tertiary in the Coastal Range, eastern Taiwan, based on smaller foraminifera (Ⅰ: Southern Part). Proc. Geol. Soc. China, 10, 64-76. Chang, L. S. (1968). A biostratigraphic study of the Tertiary in the Coastal Range, eastern Taiwan, based on smaller foraminifera (Ⅱ: Northern Part). Proc. Geol. Soc. China, 11, 19-33. Chen, H. Y., Yu, S. B., Kuo, L. C., & Liu, C. C. (2006). Coseismic and postseismic surface displacements of the 10 December 2003 (MW 6.5) Chengkung, eastern Taiwan, earthquake. Earth Planets Space, 58(1), 5-21. doi:10.1186/BF03351908 Chen, R. F., Chang, K. J., Angelier, J., Chan, Y. C., Deffontaines, B., Lee, C. T., & Lin, M. L. (2006). Topographical changes revealed by high-resolution airborne LiDAR data: The 1999 Tsaoling landslide induced by the Chi–Chi earthquake. Eng. Geol., 88(3-4), 160-172. doi:10.1016/j.enggeo.2006.09.008 Chen, W. S., & Wang, Y. (1988). The Plio-Pleistocene basin development in the Coastal Range of Taiwan. Acta Geol. Taiwanica, 26, 37-56. Chi, W. R., Namson, J., & Suppe, J. (1981). Record of Plate interactions in the Coastal Range, eastern Taiwan. Mem. Geol. Soc. China, 4, 155-194. Chi, W. R., Huang, H. M., & Wu, J. C. (1983). Ages of the Milun and Pinanshan conglomerates and their bearings on the quaternary movement of eastern Taiwan. Proc. Geol. Soc. China, 26, 67-75. Chigira, M., Wang, W. N., Furuya, T., & Kamai, T. (2003). Geological causes and geomorphological precursors of the Tsaoling landslide triggered by the 1999 Chi-Chi earthquake, Taiwan. Eng. Geol., 68(3-4), 259-273. doi:10.1016/S0013-7952(02)00232-6 Chuang, R. Y., Miller, M. M., Chen, Y. G., Chen, H. Y., Shyu, J. B. H., Yu, S. B., Rubin C. M., Sieh, K. and Chung, L. H. (2012). Interseismic Deformation and Earthquake Hazard along the Southernmost Longitudinal Valley Fault, Eastern Taiwan. B. Seismo. Soc. Am., 102(4), 1569-1582. doi:10.1785/0120110262 Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Lin, J. C., Hsu, M. L., Lin, C. W., Horng, M. J., Chen, T. C., Milliman, J. and Stark, C. P. (2004). Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology, 32(8), 733-736. doi: 10.1130/G20639.1 Dai, L., Fan, X., Jansen, J. D., & Xu, Q. (2021). Landslides and fluvial response to landsliding induced by the 1933 Diexi earthquake, Minjiang River, eastern Tibetan Plateau. Landslides, 18(9), 3011-3025. doi: 10.1007/s10346-021-01717-2 Franke, R. (1982). Smooth interpolation of scattered data by local thin plate splines. Comput. Math. Appl., 8(4), 273-281. doi:10.1016/0898-1221(82)90009-8 Hack, J. T. (1975). Dynamic equilibrium and landscape evolution. Theories landform de., 1, 87-102. Hancock, G. S., & Anderson, R. S. (2002). Numerical modeling of fluvial strath-terrace formation in response to oscillating climate. Geol. Soc. Am. Bull., 114(9), 1131-1142. doi:10.1130/0016-7606(2002)114%3C1131:NMOFST%3E2.0.CO;2 Hovius, N., Stark, C. P., & Allen, P. A. (1997). Sediment flux from a mountain belt derived by landslide mapping. Geology, 25(3), 231-234. doi: 10.1130/0091-7613(1997)025%3C0231:SFFAMB%3E2.3.CO;2 Hsieh, M. L., & Knuepfer, P. L. K. (2002). Synchroneity and morphology of Holocene river terraces in the southern Western Foothills, Taiwan: A guide to interpreting and correlating erosional river terraces across growing anticlines. In Geology and Geophysics of an Arc-Continent Collision, Taiwan, Geol. Soc. Am. Spec. Pap., 358, Byrne, TB, Liu, C-S (eds); 59-78. doi:10.1130/0-8137-2358-2.55 Hsieh, M. L., Lai, L. S. H., Lin, C. D. J., & Shyu, J. B. H. (2012). Late Quaternary landscape evolution and genesis of the 2009 catastrophic landslide in the Hsiao-lin area, southwestern Taiwan. Geomorphology, 179, 225-239. doi: 10.1016/j.geomorph.2012.08.014 Hsieh, M. L., Hogg, A., Song, S. R., Kang, S. C., & Chou, C. Y. (2017). A mass-wasting dominated Quaternary mountain range, the Coastal Range in eastern Taiwan. Quaternary Sci. Rev., 177, 276-298. doi: 10.1016/j.quascirev.2017.10.019 Huang, T. Y. (1969). Some planktonic foraminifers from a bore at Shihshan, near Taitung, Taiwan. Proc. Geol. Soc. China, 12, 103-119. Huggett, R. J. (2011). Fundamentals of geomorphology (Third Edition). Routledge, London, pp.187-246. Kuo-Chen, H., Wu, F. T., & Roecker, S. W. (2012). Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. J. Geophys. Res. Solid Earth., 117, B06306. doi: 10.1029/2011JB009108 Laser Technology, Inc. (2017) LTI TruPulse 360/360B, User’s Manual Third Edition. p.6. Lee, J. C., Angelier, J., Chu, H. T., Hu, J. C., & Jeng, F. S. (2001). Continuous monitoring of an active fault in a plate suture zone: a creepmeter study of the Chihshang Fault, eastern Taiwan. Tectonophysics, 333(1), 219-240. doi:10.1016/S0040-1951(00)00276-6 Lee, J. C., Angelier, J., Chu, H. T., Hu, J. C., Jeng, F. S., & Rau, R. J. (2003). Active fault creep variations at Chihshang, Taiwan, revealed by creep meter monitoring, 1998–2001. J. Geophys. Res. Solid Earth, 108, B11, 2528. doi: 10.1029/2003JB002394 Matheron, G. (1963). Principles of geostatistics. Econ. Geol., 58(8), 1246-1266. doi: 10.2113/gsecongeo.58.8.1246 McClain, K. P., Yıldırım, C., Çiner, A., Sarıkaya, M. A., Özcan, O., Görüm, T., Köse, O., Şahin, S., Kıyak, N. G., and Öztürk, T. (2021). River, alluvial fan and landslide interactions in a tributary junction setting: Implications for tectonic controls on Quaternary fluvial landscape development (Central Anatolian Plateau northern margin, Turkey). Geomorphology, 376, 107567. doi: 10.1016/j.geomorph.2020.107567 Merritts, D. J., Vincent, K. R., & Wohl, E. E. (1994). Long river profiles, tectonism, and eustasy: A guide to interpreting fluvial terraces. J. Geophys. Res. Solid Earth, 99(B7), 14031-14050. doi: 10.1029/94JB00857 Montgomery, D. R., & Brandon, M. T. (2002). Topographic controls on erosion rates in tectonically active mountain ranges. Earth Planet. Sci. Lett., 201(3-4), 481-489. doi: 10.1016/S0012-821X(02)00725-2 Ouimet, W. B., Whipple, K. X., Crosby, B. T., Johnson, J. P., & Schildgen, T. F. (2008). Epigenetic gorges in fluvial landscapes. Earth Surf. Proc. Land., 33(13), 1993-2009. doi: 10.1002/esp.1650 Page, B. M., & Suppe J. (1981). The Pliocene Lichi Melange of Taiwan: its plate tectonic and olistostromal origin. Am. J. Sci., 281(3), 193-227. doi: 10.2475/ajs.281.3.193 Pazzaglia, F. J., Gardner, T. W., & Merritts, D. J. (1998). Bedrock Fluvial Incision and Longitudinal Profile Development Over Geologic Time Scales Determined by Fluvial Terraces. In Bedrock Channels, Geoph. Monog. Series, 107. Wohl E, Tinkler K (eds). American Geophysical Union: Washington, DC; 207-235. doi: 10.1029/GM107p0207 Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Ramsey, C. B., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Buntgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Kohler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., and Talamo, S. (2020). The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon, 62(4), 725-757. doi: 10.1017/RDC.2020.41 Shyu, J. B. H., Sieh, K., Chen, Y. G., & Liu, C. S. (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes. J. Geophys. Re. Solid Earth, 110, B08402. doi: 10.1029/2004JB003251 Shyu, J. B. H., Sieh, K., Chen, Y. G., Chuang, R. Y., Wang, Y., & Chung, L. H. (2008). Geomorphology of the southernmost Longitudinal Valley fault: Implications for evolution of the active suture of eastern Taiwan. Tectonics, 27(1), TC1019. doi: 10.1029/2006TC002060 Shyu, J. B. H., Chuang, Y. R., Chen, Y. L., Lee, Y. R., & Cheng, C. T. (2016). A New On-Land Seismogenic Structure Source Database from the Taiwan Earthquake Model (TEM) Project for Seismic Hazard Analysis of Taiwan. Terr. Atmos. Ocean. Sci., 27(3), 311-323. doi: 10.3319/TAO.2015.11.27.02(TEM) Sibson, R. (1981). A brief description of natural neighbor interpolation. Interpreting Multivariate Data, John Wiley & Sons, New York, pp.21-36. Stuiver, M., & Reimer, P. J. (1993). Extended 14C Data Base and Revised CALIB 3.0 14C Age Calibration Program. Radiocarbon, 35(1), 215-230. doi: 10.1017/S0033822200013904 Teng, L. S. (1979). Petrographical study of the Neogene sandstones of the Coastal Range, eastern Taiwan (I. Northern Part). Acta Geol. Taiwanica, 20, 129-156. Teng, L. S. (1980). Lithology and provenance of the Fanshuliao Formation, northern Coastal Range, eastern Taiwan. Proc. Geol. Soc. China, 23, 118-129. Teng, L. S., Chen, W. S., Wang, Y., Song, S. R. & Lo, H. J. (1988). Toward a comprehensive stratigraphic system of the Coastal Range, eastern Taiwan. Acta Geol. Taiwanica, 23, 77-98. Watson, D. F., & Philip, G. M. (1985). A refinement of inverse distance weighted interpolation. Geo-processing, 2(4), 315-327. Whipple, K. X. (2004). Bedrock Rivers and the Geomorphology of Active Orogens. Annu. Rev. Earth Pl. Sci., 32(1), 151-185. doi: 10.1146/annurev.earth.32.101802.120356 Whipple, K. X., Snyder, N. P., & Dollenmayer, K. (2000). Rates and processes of bedrock incision by the Upper Ukak River since the 1912 Novarupta ash flow in the Valley of Ten Thousand Smokes, Alaska. Geology, 28(9), 835-838. doi: 10.1130/0091-7613(2000)28<835:RAPOBI>2.0.CO;2 Yen, T. P. (1967). A geologic consideration on the basic and ultrabasic plutonic rocks of the Coastal Range, eastern Taiwan. Proc. Geol. Soc. China, 10, 25-39. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86310 | - |
| dc.description.abstract | 河流作用是地表侵蝕與堆積最主要的營力之一,因此河流地形之相關研究長期以來皆是地質學家所重視的議題;另一方面,臺灣地處活躍造山帶,山崩事件是影響地形演育的重要地表作用,主控了侵蝕作用與河流系統的沉積物供應,是臺灣中低海拔地形演化的一個主要因素。臺東鹿野地區的鹿野溪與卑南溪匯流處附近,有一系列發育良好的河階地形,地形上同時顯示過去曾有一個規模極大的古山崩事件(鸞山山崩),過去雖然曾經有針對兩者地形分別進行的研究,但並未詳細探討河流地形變化是否與山崩事件的發生具有因果關係,或是山崩事件崩落後對該處河流系統是否造成影響。有鑑於此,本研究的目的為藉由鸞山山崩與周圍河流階地的地形幾何、層位關係、以及其相對年代,來釐清鹿野地區河流系統的演育歷史,瞭解這些地表作用在河流演育的過程中其交互的影響。 應用即時動態全球定位系統(RTK-GPS)與雷射測距儀在野外進行山崩堆積物與其底岩間交界面的高程測量,再透過高精度數值地形模型進行地形分析,本研究得到過去山崩未發生前的古地形面。結果顯示兩千多年前山崩事件發生前,卑南溪主流古河道可能流於目前河道東側數百公尺處,此古河道於山崩發生時遭到山崩堆積物掩埋,使得河流改道至現今卑南溪河道所在位置,並下切形成外成峽谷。另一方面,本研究綜合前人的觀察與資料,推測兩千多年前此山壁內的古河道也並非是長久以來卑南溪所流經的位置,而可能是當鹿野溪大規模沖積扇(龍田階地)快速堆積發育時,大量的沉積物加積使得兩千多年前之卑南溪河道向東遷徙300至700公尺,流到位於縱谷斷層上盤的古河道處。其後又由於這個側向遷徙造成海岸山脈西翼邊坡過陡,引發了鸞山山崩事件。依據本研究發現的外成峽谷地形可得知,若利用現今卑南溪河岸的底岩階地比高計算長期底岩下切速率,可能會高估其數值。但經本研究觀察到卑南溪古河道與現今河道的高差計算得出此地長期河流下切速率為14-19.6 mm/yr,可對於鹿野鸞山地區估計河流下切速率時提供一個參考根據。整體來說,鹿野地區河流地形作用與山崩事件經過一系列的相互影響,才形成了目前所見的地貌。 | zh_TW |
| dc.description.abstract | Landsliding is an important surface process in landscape evolution, and controls the erosion and sediment supply in river systems in active orogenic belts. A series of river terraces is situated near the confluence of the Luyeh River and Peinan River in Taitung Luyeh area and is neighbored by a landform showing an enormous landslide event (Luanshan landslide). Although there have been separate studies on the two landforms in the past, there has not been a detailed analysis on whether the change in river topography is related to the occurrence of the landslide, or vice versa. The purpose of this study is thus to understand the evolutionary history of the river system in Luyeh area and delineate the effects of surface processes on river evolution with the analysis of topography, stratigraphic relationship, and the ages of the Luanshan landslide and its surrounding river terraces. Real-time kinematic GPS and laser rangefinder were used in the field to measure the elevation of the contact between the landslide deposits and the bedrock strath. Then, topographic analysis was conducted with a digital elevation model to obtain the ancient land surface before the occurrence of the landslide. The results indicated that the Peinan River, a paleo-channel, might have been flowing down several hundred meters to the east of the current channel where the landslide event occurred at two thousand years ago. This paleo-channel was buried by landslide deposits when the landslide took place. Therefore, the Peinan River moved back to the current position and incised to the formation of an epigenetic gorge. Based on the previous and the current studies, the paleo-channel of the Peinan River was not the original location of the river. Longtian terrace, an enormous alluvial fan with a large amount of sediments was developed by the Luyeh River, which might have pushed the Peinan River channel to migrate about 300 to 700 meters eastward and then flowed onto the hanging-wall block of the Longitudinal Valley fault. The western slope of the Coastal Range became rising at a sharp angle because of the eastward migration and lateral erosion, which might have triggered the Luanshan landslide. According to the epigenetic gorge found in this study, the long-term bedrock incision rate might be overestimated if the height of the strath terrace was used to calculate the incision rate. A long-term incision rate of the Peinan River at the Luanshan landslide could be estimated at 14-19.6 mm/yr by calculating the elevation difference of the paleo-channel observed in this study and the current river channel. This can provide a basis for estimating the incision rate of Peinan River in Luanshan area. In summary, fluvial processes and landslides have interacted with each other to form the current landscapes in the Luyeh area. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:48:20Z (GMT). No. of bitstreams: 1 U0001-1808202216055400.pdf: 23768383 bytes, checksum: 382c232858728091537b915240d6367a (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 I 誌謝 II 中文摘要 III 英文摘要 V 目錄 VII 圖目錄 IX 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 區域地質概況 8 2.1 地形 8 2.2 地質 14 2.2.1 紅葉層(Hy) 15 2.2.2 都鑾山層(Tl) 15 2.2.3 蕃薯寮層(Fs) 16 2.2.4 八里灣層(Pw) 16 2.2.5 利吉層(Lc) 17 2.2.6 卑南山礫岩(Pn) 18 2.3 構造 20 2.3.1 鹿野斷層 20 2.3.2 利吉斷層 21 2.4 河階與崩積層年代 23 第三章 野外地形測量 25 3.1 研究方法 25 3.1.1 研究流程 25 3.1.2 測量儀器 27 3.2 野外測量結果 31 3.3 野外剖面結果 33 3.3.1 剖面A-A’ 33 3.3.2 剖面B – B’ 39 3.3.3 剖面C-C’ 40 3.3.4 剖面D-D’ 42 3.3.5 剖面E-E’ 43 3.4 剖面結果討論 46 3.4.1 河道縱剖面誤差 46 3.4.2 古地形面推測 48 第四章 區域古地形重建 49 4.1 內插分析方法 49 4.1.1 反距離權重內插法 50 4.1.2 曲規線內插法 51 4.1.3 自然鄰域內插法 52 4.1.4 克利金內插法 53 4.2 高程修正點位增加 54 4.3 古地形內插估計修正 63 第五章 區域地形演化歷史 65 5.1 卑南溪河道演育 65 5.2 卑南溪古河道與鸞山山崩 71 5.3 比較前人研究的河流下切速率 77 第六章 結論 80 參考文獻 81 附錄一、河流縱剖面之數據資料 91 附錄二、底岩與上覆沉積物間交界面之數據資料 95 附錄三、高程修正點之數據資料 98 | |
| dc.language.iso | zh-TW | |
| dc.subject | 山崩 | zh_TW |
| dc.subject | 沖積扇 | zh_TW |
| dc.subject | 卑南溪 | zh_TW |
| dc.subject | 鹿野地區 | zh_TW |
| dc.subject | 河流地形作用 | zh_TW |
| dc.subject | Peinan River | en |
| dc.subject | Alluvial fan | en |
| dc.subject | Fluvial processes | en |
| dc.subject | Landslides | en |
| dc.subject | Luyeh area | en |
| dc.title | 臺東鹿野地區河流地形作用與山崩事件之交互影響 | zh_TW |
| dc.title | The interaction between fluvial processes and landslide events in Luyeh area, Taitung | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張中白(Chung-Pai Chang),謝孟龍(Meng-Long Hsieh),齊士崢(Shyh-Jeng Chyi),鍾令和(Ling-Ho Chung) | |
| dc.subject.keyword | 沖積扇,河流地形作用,山崩,鹿野地區,卑南溪, | zh_TW |
| dc.subject.keyword | Alluvial fan,Fluvial processes,Landslides,Luyeh area,Peinan River, | en |
| dc.relation.page | 101 | |
| dc.identifier.doi | 10.6342/NTU202202549 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-08-26 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-29 | - |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1808202216055400.pdf | 23.21 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
