Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86212
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖振鐸(Chen-Tuo Liao)
dc.contributor.authorPei-Hsien Wangen
dc.contributor.author王珮仙zh_TW
dc.date.accessioned2023-03-19T23:42:36Z-
dc.date.copyright2022-09-30
dc.date.issued2022
dc.date.submitted2022-09-01
dc.identifier.citationAtanda, S.A., Olsen, M., Burgueño, J., Crossa, J., Dzidzienyo, D., Beyene, Y., Gowda, M., Kate, D., Xuecai, Z., Boddupalli, M.P., Pangirayi, T., Eric, Y.D., Gbadebo, O. & Kelly, R.R. (2014). Genomic Selection in Barley Breeding. Biotechnological Approaches to Barley Improvement, 69, 367-378. Akdemir, D., Sanchez, J.I., Jannink, J.L. (2015). Optimization of genomic selection training populations with a genetic algorithm. Genetics Selection Evolution, 47, 38. Clark, S.A., van der Werf, J. (2013). Genomic Best Linear Unbiased Prediction (gBLUP) for the Estimation of Genomic Breeding. Genome-Wide Association Studies and Genomic Prediction, 1019, 321-330. Chia, J.-M., Song, C., Bradbury, P.J., Costich, D., N. de Leon, Doebley, J., Elshire, R.J., Gaut, B., Geller, L., Glaubitz, J.C. (2012). Maize HapMap2 identifies extant variation from a genome in flux. Nat. Genet., 44, 803-807. Estaghvirou, S.B.O., Joseph, O.O., Torben, S.-S., Carsten, K., Milena, O., Andres, G. & Piepho, H.-P. (2013). Evaluation of approaches for estimating the accuracy of genomic prediction in plant breeding. BMC Genomics, 14, 860. Falconer, D.S., and Mackay, T.F.C. (1996). Introduction to quantitative genetics. Fonseca, S., and Patterson, F.L. (1968). Hybrid vigor in a seven-parent diallel cross in common winter wheat (Triticum aestivum L.). Crop Sci., 8, 85–88. Griffing, B. (1956). Concept of general and specific combining ability in relation to diallel crossing system. Aust. J. Biol. Sci., 9, 463-493. Guo, T., Yu, X., Li, X., Zhang, H., Zhu, C., Flint-Garcia, S., Michael, D. McMullen, J.B., Holland, S.J., Szalma, R.J., Yu, W.J. (2019). Optimal Designs for Genomic Selection in Hybrid Crops. Molecular Plant, 12, 390-401. Gerhard, M., Bruce, T., Crump, R.E., Mehar, S.K. & Herman, W.R. (2009). A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers. Genetics Selection Evolution, 41(1), 56. Giovanny, C.-P. (2016). Genome-assisted prediction of quantitative traits using the R package sommer. Plos One, 11(6) ): e0156744. Haile, J.K., N’Diaye, A., Clarke, F., Clarke, J., Knox, R., Rutkoski, J., Bassi, F.M., Pozniak, C.J. (2018). Genomic selection for grain yield and quality traits in durum wheat. Molecular Breeding, 38, 75. Henderson, C.R. (1975). Best linear unbiased estimation and prediction under a selection model. Biometrics, 32, 69-84. Henderson, C.R. (1977). Best linear unbiased prediction of breeding values not in the model for records. Journal of Diary Science, 60, 783-787. Henderson, C.R. (1977). Best linear unbiased prediction of breeding values not in the model for records. Journal of Diary Science, 60, 783-787. Jesse, A. Poland, T.W.R. (2012). Genotyping-by-Sequencing for Plant Breeding and Genetics. The Plant Genome. 5. Jean-Luc, J., Aaron, J., Iwata, L.H. (2010). Genomic selection in plant breeding: from theory to practice. BRIEFINGS IN FUNCTIONAL GENOMICS, 9, 166 -177. Kadkol, G.P., Anand, I.J. & Sharma, R.P. (1984). Combining ability and heterosis in sunflower. Indian J. Genet., 44, 447-451. Lee, S.H., Sam, C., Julius, H.J., van der Werf (2017). Estimation of genomic prediction accuracy from reference populations with varying degrees of relationship. PLOS ONE, 12(12): e0189775. Miller, J.F., Hammond, J.J. & Roath, W.W. (1980). Comparison of inbred vs. single-cross testers and estimation of genetic effects in sunflowers. Crop Sci., 20, 703-706. Marco, S., Ian, M., David, B. (2016). Using Genetic Distance to Infer the Accuracy of Genomic Prediction. PLOS GENETICS, 12(9): e1006288. Ou, J.H., Liao, C.T. (2019). Training set determination for genomic selection. Theoretical and Applied Genetics, 132, 2781–2792. Qurban, A., Arfan, A., Awan. M.F., Tariq M., Sajed, A., Samiullah, T.R., Saira, A., Salah ud D., Mukhtar, A., Muhammad, N.S., Muhammad, S., Nazar, H.K., Muhammad, A., Idrees, A.N. and Tayyab, H. (2014) Combining ability analysis for various physiological, grain yield and quality traits of Zea mays L. Life Science Journal, 11, 540-551. Robert, J., Elshire, J.C., Glaubitz, Q.S., Jesse, A., Poland, K.K., Edward, S.B., Sharon, E.M. (2011). A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLOS ONE, 6. Sherrif, N.M., Appadurai, R. & Rangasamy, M. (1985). Combining ability in sunflower. Indian J. Agric. Sci., 55, 315-318. Sprague, G.F., Tatum, L.A. (1942) General vs. specific combining ability in single crosses of corn. Agronomy Journal, 34, 923-932. Sikiru, A.A., Michael, O., Burgueño, J., Jose, C., Dzidzienyo, D., Beyene, Yoseph., Gowda, M., Dreher, K., Xuecai, Z., Boddupalli, M.P., Pangirayi, T., Eric, Y.D., Gbadebo, O. & Kelly, R.R. (2021). Maximizing efficiency of genomic selection in CIMMYT’s tropical maize breeding program. Theoretical and Applied Genetics, 134, 279–294. Sánchez, J.I.Y. and Deniz, A. (2021). Training Set Optimization for Sparse Phenotyping in Genomic Selection: A Conceptual Overview. Front. Plant Sci., 12: 715910. Troyer, A. F. (2006). Adaptedness and Heterosis in Corn and Mule Hybrids. Crop Sci., 46, 528-543. VanRaden, P.M., Van Tassell, C.P., Wiggans, G.R., Sonstegard, T.S., Schnabel, R.D., Taylor, J.F., Schenkel, F.S. (2009). Invited Review: Reliability of genomic predictions for North American Holstein bulls. Journal of Dairy Science, 92, 16-24. Wu, P.-Y., Tung, C.-W., Lee, C.-Y., Liao, C.-T. (2019). Genomic Prediction of Pumpkin Hybrid Performance. The Plant Genome, 12 (2). Werner, C.R., Qian, L., Voss-Fels, K.P., Abbadi, A., Leckband, G., Frisch, M., Snowdon, R.J. (2018). Genome-wide regression models considering general and specific combining ability predict hybrid performance in oilseed rape with similar accuracy regardless of trait architecture. Theor. Appl. Genet., 131(2), 299–317. Zhao, Y., Zeng, J., Fernando, R., Reif, J.C. (2013). Genomic prediction of hybrid wheat performance. Crop Sci. 53, 802.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86212-
dc.description.abstract基因體預測 (Genomic prediction) 可有效降低育種成本及縮短所需時間,因此在作物育種中,已成為一項評估子代雜交表現強而有力的工具。本次研究中共使用兩筆作物資料,分別為具有142個品系的C. Maxima南瓜資料和24個品系的玉米資料。本研究提出一個同時考慮加性及顯性效應的混合線性模型,以預測雜交後代組合的表現。我們先使用有限制最大概似(restricted maximum likelihood, REML)估計法,來估計出加性效應和顯性效應的變方成份 (variance components),再利用Henderdon’s 方程式獲得做為訓練集資料之部分雜交後代個體的加性效應和顯性效應,最後結合基因體關聯性矩陣(genomic relationship matrix),利用基因體最佳線性不偏預測模型(genomic best linear unbiased prediction model , GBLUP model)預測雜交後代表現的育種價(GEBVs),並進行優良品種的基因組選拔(GS)。而利用育種價得到雜交後代的特殊組合力(SCA)及其親本的一般組合力(GCA),則可以用來計算雜交優勢(Midparent heterosis, MPH)以及優於親本表現的雜交優勢(Better-parent heterosis, BPH)。根據我們的研究結果,發現在玉米資料中Mo17, NC350, B73, B97和 OH7B為較具潛力的親本,而P026, P227, P236, P028和P235 則為南瓜資料中較具潛力的親本。zh_TW
dc.description.abstractGenomic prediction has become an increasingly popular tool for hybrid performance evaluation in plant breeding mainly because it can reduce cost and accelerate a breeding program. We used two different crop data sets, one is the pumpkin (C. Maxima) data set consisting of 142 parental lines with 4521 filtered single nucleotide polymorphism (SNP) markers, and the other is the maize data set consisting of 24 parental lines with 46,134 filtered SNP markers. In this study, we propose a systematic procedure to predict hybrid performance using a linear mixed effects model that takes both additive and dominance marker effects into account. We first estimated the variance components of additive and dominance effects through restricted maximum likelihood estimation (REML), and used Henderdon’s equation to obtain the values of additive and dominance effects of hybrid lines which were used to build training data sets. Finally, we predict genomic estimated breeding values (GEBVs) for individual hybrid combinations and their parental lines through the genomic relationship matrix. The GEBV-based specific combining ability (SCA) for each hybrid and general combining ability (GCA) for its parental lines were then derived to quantify the degree of midparent heterosis (MPH) or better-parent heterosis (BPH) of the hybrid. According to our result, Mo17, NC350, B73, B97 and OH7B are the most potential parental lines in the maize data set; and P026, P227, P236, P028 and P235 are the most potential parental lines in the pumpkin data set.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:42:36Z (GMT). No. of bitstreams: 1
U0001-3108202213494900.pdf: 1445863 bytes, checksum: ac035d1142d2f7d7a4b30cf39ed206b8 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書……………………………….…………………… ⅰ 摘要……………………………………………….…………………… ⅱ Abstract….…………………………………………..…………….….. ⅲ List of Tables….……………………………………………………..... ⅵ List of Figures….………………………………..……………………. ⅶ 1. Introduction……………………………………………………………….. 1 2. Materials and Methods………………………………………….. 4 2.1 Pumpkin data set……………………………………………….... 4 2.1.1 Phenotype data……………………………………………… 4 2.1.2 Genotype data………………………………………………. 5 2.2 Maize data set…………………………………………………… 6 2.2.1 Phenotype data……………………………………………… 6 2.2.2 Genotype data………………………………………………. 6 2.3 Statistical models………………………………………………... 9 2.4 Estimation for marker effects…………………………………… 10 2.5 Prediction for GEBVs…………………………………………… 11 3. Result……………………………………………………………... 14 3.1 Pumpkin data analysis…………………………………………… 14 3.1.1 Prediction of potential hybrids and parental lines…………... 14 3.1.2 Variance components and heritability.………………………. 17 3.2 Maize data analysis…………………………………………….... 18 3.2.1 Prediction of potential hybrids and parental lines…………... 18 3.2.2 Variance components and heritability…………...………….. 20 4. Discussion…………………………………………………..…….. 21 References…………………………………………………………….. 27 Appendix - Rcode…………………………………………………..….31
dc.language.isoen
dc.subject特殊組合力zh_TW
dc.subject育種價zh_TW
dc.subject基因組預測zh_TW
dc.subject一般組合力zh_TW
dc.subject基因體最佳線性不偏預測模型zh_TW
dc.subjectspecific combining abilityen
dc.subjectgeneral combining abilityen
dc.subjectGenomic predictionen
dc.subjectgenomic estimated breeding valuesen
dc.subjectgenomic best linear unbiased prediction modelen
dc.title利用基因體預測評估雜交組合的表現zh_TW
dc.titleHybrid performance evaluation in plant breeding via genomic predictionen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee高振宏(Chen-Hung Kao),董致韡(Chih-Wei Tung)
dc.subject.keyword基因組預測,基因體最佳線性不偏預測模型,育種價,特殊組合力,一般組合力,zh_TW
dc.subject.keywordGenomic prediction,genomic best linear unbiased prediction model,genomic estimated breeding values,specific combining ability,general combining ability,en
dc.relation.page35
dc.identifier.doi10.6342/NTU202203014
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-01
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
dc.date.embargo-lift2022-09-30-
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
U0001-3108202213494900.pdf1.41 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved