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摘要 

 

基因體預測 (Genomic prediction) 可有效降低育種成本及縮短所需時間，因此在

作物育種中，已成為一項評估子代雜交表現強而有力的工具。本次研究中共使用

兩筆作物資料，分別為具有 142個品系的 C. Maxima南瓜資料和 24個品系的玉

米資料。本研究提出一個同時考慮加性及顯性效應的混合線性模型，以預測雜交

後代組合的表現。我們先使用有限制最大概似(restricted maximum likelihood, 

REML)估計法，來估計出加性效應和顯性效應的變方成份 (variance components)，

再利用 Henderdon’s 方程式獲得做為訓練集資料之部分雜交後代個體的加性效

應和顯性效應，最後結合基因體關聯性矩陣(genomic relationship matrix)，利用基

因體最佳線性不偏預測模型(genomic best linear unbiased prediction model , GBLUP 

model)預測雜交後代表現的育種價(GEBVs)，並進行優良品種的基因組選拔(GS)。

而利用育種價得到雜交後代的特殊組合力(SCA)及其親本的一般組合力(GCA)，

則可以用來計算雜交優勢(Midparent heterosis, MPH)以及優於親本表現的雜交優

勢(Better-parent heterosis, BPH)。根據我們的研究結果，發現在玉米資料中 Mo17, 

NC350, B73, B97和 OH7B為較具潛力的親本，而 P026, P227, P236, P028 和 P235 

則為南瓜資料中較具潛力的親本。 

 

關鍵字：基因組預測、基因體最佳線性不偏預測模型、育種價、特殊組合力、

一般組合力 
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Abstract 

 

Genomic prediction has become an increasingly popular tool for hybrid performance 

evaluation in plant breeding mainly because it can reduce cost and accelerate a breeding 

program. We used two different crop data sets, one is the pumpkin (C. Maxima) data 

set consisting of 142 parental lines with 4521 filtered single nucleotide polymorphism 

(SNP) markers, and the other is the maize data set consisting of 24 parental lines with 

46,134 filtered SNP markers. In this study, we propose a systematic procedure to predict 

hybrid performance using a linear mixed effects model that takes both additive and 

dominance marker effects into account. We first estimated the variance components of 

additive and dominance effects through restricted maximum likelihood estimation 

(REML), and used Henderdon’s equation to obtain the values of additive and 

dominance effects of hybrid lines which were used to build training data sets. Finally, 

we predict genomic estimated breeding values (GEBVs) for individual hybrid 

combinations and their parental lines through the genomic relationship matrix. The 

GEBV-based specific combining ability (SCA) for each hybrid and general combining 

ability (GCA) for its parental lines were then derived to quantify the degree of  

midparent heterosis (MPH) or better-parent heterosis (BPH) of the hybrid. According 

to our result, Mo17, NC350, B73, B97 and OH7B are the most potential parental lines 

in the maize data set; and P026, P227, P236, P028 and P235 are the most potential 

parental lines in the pumpkin data set. 

 

Keywords: Genomic prediction, genomic best linear unbiased prediction model, 

genomic estimated breeding values, specific combining ability, general combining 

ability. 
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Introduction 

Heterosis refers to the phenomenon that diverse offspring of crosses between species 

exhibit greater biological quality, speed of development, and fertility than both parents. 

Hybrid breeding is a potential method that employs heterosis to promote genetic 

divergence among parents, to optimize the exploitation of heterosis and hybrid 

performance, and to boost yield stability or fruit quality. For example, United States 

annual corn production had increased from 2 billion bushels to 11.8 billion bushels on 

22% less surface area planted since hybrid corn became available for 2000 to 2006 

 (Troyer, 2006). 

Diallel method has been extensively used to evaluate the combining ability of parents 

in hybrids to understand the expression of quantitative traits and to predict the hybrid 

performances (Miller et al., 1980; Kadkol et al., 1984; Sherrif et al., 1985). Griffing 

(1956) proposed a method by separating the total genetic variation into general 

combining ability (GCA) of the parental lines and specific combining ability (SCA) of 

the hybrid combinations to analyze diallel cross. The GCA is a measure of additive 

gene activity that relates to the average performance of a particular inbred in a series 

of hybrid combinations, whereas the SCA is the performance of a parent in reference 

to general combining ability that linked to the non-additive effects (dominance and 

epistatic effects), which is a key measure to produce superior hybrid combinations 

https://acsess.onlinelibrary.wiley.com/doi/full/10.2135/cropsci2005.0065?casa_token=hQ0ofZjvURsAAAAA%3AZs1kgARbRFFmR-M05aZnlWgGMnhODxfgbKTULsXk_xfih4wiYOe6WIhpRNl68zSut8WuB4JxS_XVXQ#bib122
https://www.researchgate.net/profile/Thitiporn-Machikowa/publication/228493978_General_and_Specific_Combining_Ability_for_Quantitative_Characters_in_Sunflower/links/579b4a3208ae5d5e1e1374f4/General-and-Specific-Combining-Ability-for-Quantitative-Characters-in-Sunflower.pdf
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(Sprague and Tatum, 1942; Ali et al., 2014). The mid-parent heterosis (MPH) is defined 

as the difference between the hybrid performance and the average of its parental lines 

(Falconer and Mackay, 1996), and best-parent heterosis (BPH) is defined as the hybrid 

performance superior to the higher or better parental line (Fonseca and Patterson, 1968). 

However, the number of single-cross combinations can increase dramatically as the 

number of parental lines increase, it will be unrealistic and costly to have all possible 

hybrids in the field experiment. With the development of genotyping-by-sequencing 

(GBS) (Elshire et al., 2011), it is achievable to detect enough polymorphic markers 

covering the entire genome to explore within-species diversity, the most common 

markers are single nucleotide polymorphisms (SNPs). Due to the high-density SNP 

markers across an entire genome, genomic selection (GS) becomes a suitable method  

for plant breeding to reduce cost and accelerate breeding programs (Poland and  

Trevor, 2012).  

The concept of GS is to utilizes a training population with known both genotype and 

phenotype data to build a model that takes untested individuals with known genotypic 

data only to predict genomic estimated breeding values (GEBVs) (Jannink et al., 2010). 

In general, considering both additive and dominance marker effects into a GS model 

for hybrid performance could provide sufficient prediction accuracy (Wu et al., 2019). 

GS has been applied to predict hybrid performance for several crops, such as durum 

https://www.peertechzpublications.com/articles/OJPS-6-143.php
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0019379
https://acsess.onlinelibrary.wiley.com/doi/full/10.3835/plantgenome2012.05.0005
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wheat (Haile et al., 2018), tropical maize (Atanda et al., 2021), and barley  

(Schmid and Thorwarth, 2014). 

The data sets we used in this study are the hybrids selection of pumpkin (Cucurbita 

spp, 2n = 40) that belongs to Cucurbitaceae family (Wu et al., 2019) and the hybrids 

selection of maize (Zea mays L., 2n = 20) that belongs to Poaceae family (Guo et al., 

2019). Pumpkin is a major global economic crop in the Cucurbita genus, growing on a 

global scale of around 3 million hectares, and yielding 27.832 million tons in 2021 

(http://faostat.fao.orge). Maize is the most produced and third most consumed cereal 

crop in the world, after wheat and rice, and maize is also the main staple food crop of  

more than 300 million Africans, especially in Sub-Saharan Africa. 

Genomic best linear unbiased prediction (gBLUP) is a method that uses genomic 

relationships to estimate the breeding values of an individual (Clerk and Werf, 2013), 

and it has been demonstrated in many research that gBLUP has more accurate breeding 

values than pedigree-based BLUP or has little difference between using gBLUP and 

the nonlinear models (Moser et al., 2009; VanRaden et al., 2009). In this study, we are 

going to use two datasets of pumpkin and maize. First of all, we built a gBLUP model 

for each dataset. Secondly, we used the trained model to predict the GEBVs for all 

possible hybrid combinations. Lastly, we estimated GCAs for all the parental lines, and 

SCAs for all the hybrid combinations. In practice, this procedure would provide 

https://link.springer.com/article/10.1007/s11032-018-0818-x
https://link.springer.com/article/10.1007/s00122-020-03696-9
https://link.springer.com/chapter/10.1007/978-3-662-44406-1_19
http://faostat.fao.orge/
https://link.springer.com/protocol/10.1007/978-1-62703-447-0_13
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advantageous information for breeders to select potential hybrids and superior parental  

lines. 

Materials and Methods 

2.1 Pumpkin data set 

  2.1.1 Phenotype data  

We used 119 pumpkin intra-crossing hybrid lines of C.maxima as our training data set. 

The collected phenotypic trait was fruit weight (FWT), which is a quantitative data 

measured in continuous scale for the hybrids (Wu et al., 2019). The phenotypic data 

are historical data from 1988 to 2016 and provided by Known-You Seed Co., Ltd. All 

the trials were conducted in southern Taiwan, so it can be treated as a single location 

experiment. Every hybrid had six to ten observations at each time points, and the 

average of them was used as the phenotypic observation for the hybrid of the year. 

Because the phenotypic values of every hybrid were observed for more than one year, 

the year effects of phenotypic values need to be removed. Wu. et al (2019) assumed 

that the year effects were random effects which followed a normal distribution 

𝑁(0, 𝜎𝑇
2) ; then the variance component 𝜎𝑇

2  was estimated by gathering all years  

sample variances of hybrids as follows: 

�̂�𝑇
2 =

∑ (𝑘𝑖 − 1)𝑠𝑖
2𝑛

𝑖=1

(𝑘𝑖 − 1)
, 
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where 𝑘𝑖 is the phenotypic values form 1988 to 2016 for hybrid i and 𝑠𝑖
2 is its sample 

variance. The resulted �̂�𝑇
2 is 0.076 for the trait FWT of intra-crossing hybrid lines 

C.maxima; then the estimated year effects will be generated from 𝑁(0, �̂�𝑇
2) .  

  2.1.2 Genotype data 

The germplasm collection of the pumpkin set we used consisted of 320 parental lines, 

which were classified into three clusters according to PCA: C.maxima with 142 

inbreeding lines, C.pepo with 60 inbreeding lines and C.moschata with 118 inbreeding 

lines (Wu et al., 2019). We only used the 142 inbreeding lines of C.maxima as our 

parental lines to carry on the following GS analysis. Single-cross hybrids of these 

inbreds were developed in a half diallel mating scheme, generating 10,011 C.maxima 

× C.maxima intra-crossing hybrids. The genomic data for the 324 parental lines were 

extracted 76,815 SNPs after SNP calling, only 61,179 SNP markers remained after 

filtered by missing rate ≥ 0.05. Wu et al. (2019) further filtered the 61,179 SNP by 

MAF < 0.05 and LD blocks within each cluster and obtained 4,521 SNPs remaining 

for C.maxima, 6348 SNPs remaining for C.moschata and 8800 SNPs remaining for 

C.pepo. Only the 4,521 SNPs of C.maxima were used for building GS model, and the 

genomic data for 10,011 hybrids were inferred from SNPs data of the 142 inbreeding  

lines. 
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2.2 Maize data set 

  2.2.1 Phenotype data 

Another crop data set we analyzed was maize, which consisted of 24 diverse parents 

(Flint-Garcia et al., 2005). The 276 single-cross hybrids were obtained at two locations 

(Columbia, MO and Clayton, NC) from 2005 to 2006, and the used phenotypic trait 

was grain yield (
Mg

ℎ𝑎⁄ ). The phenotypic observations for hybrids at the year was a 

single set of best linear unbiased predicted values after combining the data from two 

different locations (Guo et al. ,  2019).  We chose 50 hybrids at random  

as our training set in the following analysis to build the GS model. 

  2.2.2 Genotype data 

The 24 diverse parents which were extracted from the Maize HapMap V2 (Chia et al., 

2012) at www.panzea.org were classified into two groups according to germplasm 

origin and PCA: the group of temperate and mixed inbreds (TM) with 11 inbred lines 

(B73, B97, Ky21, M162W, Mo17, MS71, Oh43, OH7B, M37W, Mo18W, and Tx303) 

and the group of tropical and sub-tropical inbreds (TS) with 13 inbred lines (CML52, 

CML69, CML103, CML228, CML247, CML277, CML322, CML333, Ki3, Ki11, 

NC350, NC358, and Tzi8) (Guo et al., 2019). There were 10,296,310 SNPs for 24 

inbreeding lines, after filtered the SNP markers by missing rate ≥ 0.05 and MAF < 

0.1, there was 29,999 SNPs left. Missing genotypes were imputed with major allele. To 

http://www.panzea.org/
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screen out the reliable SNPs for building GS models, we further filtered the SNPs by 

LD blocks. The LD parameter 𝑟2 (the square Pearson’s correlation) among the filtered 

SNPs for each chromosome was then estimated using TASSEL5.2.41 (Bradbury et al., 

2007) with sliding window = 10. A smooth function between 𝑟2 and physical distance 

(bp) was built using R function loess.smooth( ) with second-degree locally weighted 

polynomial regression. The LD decay of ten chromosomes is displayed in Figure 1. 

Filtering the 134,726 SNP markers by the resulted LD block sizes if 𝑟2 gets close to 

0.2, there were 46,134 SNPs left and were used to build the following GS model. The 

genotype data for 276 hybrids were generated from SNP data of the 24 parental inbreds. 

T h e r e  w e r e  𝐶2
11 = 55  h yb r i d s  w i t h i n  T M ;  𝐶2

13 = 78  h yb r i d s  w i t h i n  

TS; and 11ⅹ13=143 hybrids between TM and TS. 
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Figure 1: The LD decay results for the ten chromosomes. 

Chromosome 10 Chromosome 9 
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Chromosome 6 Chromosome 5

Chromosome 4 Chromosome 3 

Chromosome 1 Chromosome 2 



doi:10.6342/NTU202203014

9 
 

2.3 Statistical models 

We adopted the genome wide regression model considering both additive and 

dominance effects for hybrids performance prediction as follows (Zhao et al., 2013), 

            𝑦𝑖𝑗 = 𝜇 + ∑ 𝑎𝑙
(𝑖𝑗)

𝛽𝑙
𝐴 + ∑ 𝑑𝑙

(𝑖𝑗)
𝛽𝑙

𝐷 + 𝑒𝑖𝑗,𝑝
𝑙=1

𝑝
𝑙=1               (1) 

where 𝑦𝑖𝑗 is the phenotype value of hybrid 𝑃𝑖⨂𝑃𝑗; 𝜇 is the constant term; 𝑎𝑙
(𝑖𝑗)

 is 

coded as -1, 0 or 1 if 𝐴𝐴, 𝐴𝑎 or 𝑎𝑎 occurs at locus l for the hybrid; 𝛽𝑙
𝐴 is the additive 

effect at locus l; 𝑑𝑙
(𝑖𝑗)

 is coded as 1, if 𝐴𝑎 occurs at locus l for the hybrid, otherwise 

𝑑𝑙
(𝑖𝑗)

  i s  coded as  0  ;  𝛽𝑙
𝐷  i s  the  dominance effec t  a t  locus  l ;  and  𝑒𝑖𝑗  

is the random error that follows a normal distribution 𝑁(0, 𝜎𝑒
2). 

Rewrite the model (1) to the matrix form: 

               𝒚 = 𝟏𝑛𝜇 + 𝑿𝐴𝜷𝐴 + 𝑿𝐷𝜷𝐷 + 𝒆,                   (2) 

where 𝒚 denotes the vector of the phenotype values; 𝟏𝑛 the unit vector of length n 

(here n is the number of hybrids); 𝑿𝐴 the additive marker matrix; 𝜷𝐴 the additive 

effects vector; 𝑿𝐷 the dominance marker matrix; 𝜷𝐷 the additive effects vector; and  

𝒆 the random errors vector.  

Because the number of markers p is usually much greater than the number of hybrid 

observations n, it is challenging to estimate all the parameters in the model above. i.e, 

p ≫ n. Thus, it is reasonable to specify a prior on 𝜷𝐴 and 𝜷𝐷 to make the marker 

effects estimable. Let 𝜷𝐴 follows normal distribution 𝑁(𝟎, 𝜎𝐴
2𝑰𝑝) and 𝜷𝐷 follows 
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a normal distribution 𝑁(𝟎, 𝜎𝐷
2𝑰𝑝). Furthermore, we reparameterize 𝒈𝐴 = 𝑿𝐴𝜷𝐴 and 

𝒈𝐷 = 𝑿𝐷𝜷𝐷 in model (2) to yield the genomic best linear unbiased prediction (gBLUP)  

model  

               𝒚 = 𝟏𝑛𝜇 + 𝒈𝐴 + 𝒈𝐷 + 𝒆,                   (3) 

where 𝒈𝐴  is the vector of additive genomic values following multivariate normal 

distribution 𝑀𝑉𝑁(𝟎, 𝑲𝐴𝜎𝐴
2) ; and 𝒈𝐷  is the vector of dominance genomic value 

following multivariate normal distribution 𝑀𝑉𝑁(𝟎, 𝑲𝐷𝜎𝐷
2).  𝑲𝐴  is a rescaled 

variance- covariance matrix for 𝒈𝐴, which is called as the genomic relationship matrix 

for the additive effects. Similarly, 𝑲𝐷  is the genomic relationship matrix for the 

dominance effects. Both 𝑲𝐴 and 𝑲𝐷 are known and derived from the genotypic data 

of the hybrids. The variance-covariance for 𝒈𝐴  is given by 𝐶𝑜𝑣(𝒈𝐴) = 𝑿𝐴𝑿𝐴
𝑇𝜎𝐴

2 . 

Similarly, 𝒈𝐷  is given by 𝐶𝑜𝑣(𝒈𝐷) = 𝑿𝐷𝑿𝐷
𝑇 𝜎𝐷

2 . So, 𝑲𝐴  is associated with 𝑿𝐴𝑿𝐴
𝑇 

and 𝑲𝐷  is associated with 𝑿𝐷𝑿𝐷
𝑇  . Here we have normalized both the additive an  

dominance marker matrices 𝑿𝐴 and 𝑿𝐷. 

2.4 Estimation for marker effects 

To estimate the additive and dominance effects, we use the linear mixed effects model 

(LMM). The LMM estimation regards both the additive and dominance effects as 

random effects, which are distributed with 𝑁(𝟎, 𝜎𝐴
2) and 𝑁(𝟎, 𝜎𝐷

2), respectively. We 
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can obtain the best linear unbiased estimation (BLUE) of 𝜇  and the best linear 

unbiased predictors (BLUPs) of 𝒈𝐴  and 𝒈𝐷  through the Henderson’s equations  

(Henderson, 1975), 

[

𝑛 𝟏𝑛
𝑇 𝟏𝑛

𝑇

𝟏𝒏 𝑰𝑛 + 𝑲𝐴
−1𝜆𝐴 𝑰𝑛

𝟏𝒏 𝑰𝑛 𝑰𝑛 + 𝑲𝐷
−1𝜆𝐷

] [

�̂�
�̂�𝐴

�̂�𝐷

] = [
𝟏𝑛

𝑇𝒚
𝒚
𝒚

], 

w

h

e

r

e

 

𝑰𝑛 is the unit vector of the number of hybrids n; 𝜆𝐴=𝜎𝑒2𝜎𝐴2 and 𝜆𝐷=𝜎𝑒2𝜎𝐷2 are 

regularization parameters. For a given training data set with known phenotypic values, 

𝑲𝐴 and 𝑲𝐷 can be computed directly. The variance components 𝜎𝐴
2, 𝜎𝐷

2 and 𝜎𝑒
2 can 

be estimated by restricted maximum likelihood estimation (REML), which are unbiased 

estimator. The method can be executed through the built-in-function mmer( ) in R-

p a c k a g e  s o m m e r  ( C o v a r r u b i a s - P a z a r a n ,  2 0 1 6 ) .  S u b s e q u e n t l y,  

the heritability is obtained as the ratio of genetic variance (𝜎𝐴
2 + 𝜎𝐷

2) to the total  

phenotypic variance (𝜎𝐴
2 + 𝜎𝐷

2 + 𝜎𝑒
2). 

2.5 Prediction for GEBVs 

For a given breeding population with known genotypic data only, it is now needed to 

predict the GEBVs of individuals in the breeding populations. The breeding population 

is assumed to consist of all of the possible hybrids. Let 𝑲𝐴
(𝑏𝑝)

 denotes the relationship 

matrix among the additive effects between the breeding population and the training 

population. Similarly, the corresponding relationship matrix among the dominance 
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effects is denoted by 𝑲𝐷
(𝑏𝑝)

 . Also, let 𝒈𝐴
(𝑏𝑝)

  and 𝒈𝐷
(𝑏𝑝)

  denote the additive and 

dominance genomic value vectors for the breeding population, respectively. Afterwards  

from Henderson (1977), the BLUPs for 𝒈𝐴
(𝑏𝑝)

 and 𝒈𝐷
(𝑏𝑝)

 are given by  

𝒈𝐴
(𝑏𝑝)

= 𝑲𝐴
(𝑏𝑝)

𝑲𝐴
−1�̂�𝐴,  

and 

𝒈𝐷
(𝑏𝑝)

= 𝑲𝐷
(𝑏𝑝)

𝑲𝐷
−1�̂�𝐷 . 

The GEBVs for the breeding population are then predicted by  

�̂�(𝑏𝑝) = 𝟏𝑛𝐹1
�̂� + �̂�𝐴

(𝑏𝑝)
+ �̂�𝐷

(𝑏𝑝)
, 

where 𝑛𝐹1 is the number of individuals in the breeding population. 

From Werner et al. (2018), model (1) can be rewritten as  

            𝑦𝑖𝑗 = 𝜇 + 𝐺𝐶𝐴𝑖 + 𝐺𝐶𝐴𝑗 + 𝑆𝐶𝐴𝑖𝑗 + 𝑒𝑖𝑗              (4) 

where 𝐺𝐶𝐴𝑖  and 𝐺𝐶𝐴𝑗  denote the general combining abilities for 𝑃𝑖  and 𝑃𝑗 , 

respectively; and 𝑆𝐶𝐴𝑖𝑗  denotes the specific combining abilities for the hybrids 

𝑃𝑖⨂𝑃𝑗. As the result, from model (3), we have  

𝑔𝐴
(𝑖𝑗)

= 𝐺𝐶𝐴𝑖 + 𝐺𝐶𝐴𝑗 ,  

 𝑔𝐷
(𝑖𝑗)

= 𝑆𝐶𝐴𝑖𝑗. 

The BLUP of 𝑔𝐷
(𝑖𝑗)

 is obtained equivalently as 
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𝑆𝐶�̂�𝑖𝑗 = �̂�𝐷
(𝑖𝑗)

. 

For a particular parental line i, let  

�̅�𝐴
(𝑖)

=
∑ �̂�𝐴

(𝑖𝑗)𝑛0
𝑗≠𝑖

𝑛0 − 1
, 

and 

�̅�𝐴 =
∑ ∑ �̂�𝐴

(𝑖𝑗)𝑛0
𝑗≠𝑖

𝑛0
𝑖=1

𝑛𝐹1
, 

where �̅�𝐴
(𝑖)

 is the average of �̂�𝐴 of the particular parental line i , �̅�𝐴 is the average 

of all �̂�𝐴, 𝑛0 is the number of the parental lines, 𝑛𝐹1 is the number of the hybrids. 

From the identity 𝑔𝐴
(𝑖𝑗)

= 𝐺𝐶𝐴𝑖 + 𝐺𝐶𝐴𝑗, an unbiased estimator for 𝐺𝐶𝐴𝑖 is given by 

𝐺𝐶�̂�𝑖 =
(𝑛0 − 1)�̅�𝐴

(𝑖)

𝑛0 − 2
−

𝑛0�̅�𝐴

2(𝑛0 − 2)
. 

When 𝑛0 is large enough, we simply let 

𝐺𝐶�̂�𝑖 = �̅�𝐴
(𝑖)

−
�̅�𝐴

2
. 

Hybrid breeding is a means of heterosis to improve the yield and quality of a crop. 

From Wu et al. (2019), the GEBV-based MPH and BPH for 𝑃𝑖⨂𝑃𝑗  can be estimated 

by 

𝑀𝑃�̂�𝑖𝑗 = 𝑆𝐶�̂�𝑖𝑗, 

and 
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𝐵𝑃�̂�𝑖𝑗 = 𝑆𝐶�̂�𝑖𝑗 − |𝐺𝐶�̂�𝑖 − 𝐺𝐶�̂�𝑗|. 

Under the positive heterosis assumption, the value of MPH or BPH is larger, and the 

heterosis of the hybrid is stronger. 

Result 

3.1 Pumpkin data analysis 

  3.1.1 Prediction of potential hybrids and parental lines 

Crossing the 119 parental lines, we have (
119

2
) = 10,011 hybrids within the intra-

crossing group of C.maxima. Based on the gBLUP model above, we can obtain the 

GEBVs of all parental lines and hybrid lines. Furthermore, GEBV-based SCA for each 

hybrid and the GCAs for its parental lines can be calculated, too. For illustration 

purposes, we only report the top 25 potential hybrids with large GEBVs, together with 

their SCA, MPH and BPH in Table 1, and the top 10 superior parental lines with large 

GCAs in Table 2 for FWT within C.maxima. Table 1 extracts an important finding that 

𝐺𝐸𝐵𝑉𝑖𝑗 are all greater than both 𝐺𝐸𝐵𝑉𝑖 and 𝐺𝐸𝐵𝑉𝑗, indicating that the hybrids have 

better performance than both of their parental lines; and the result can also be presented 

by the positive and strong 𝐵𝑃𝐻𝑖𝑗. Moreover, we can also find all values of 𝑀𝑃𝐻𝑖𝑗 are 

equal to the values of 𝑆𝐶𝐴𝑖𝑗, which are positive, implying that there exists an obvious 

heterosis effect for trait FWT within C.maxima intra-crossing group. The resulting 
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GEBVs and GCAs are useful information for plant breeders to select superior parental 

lines. From Table 2, P026 is involved in the top 6 hybrids having greater GEBVs, and 

is also the parental line of almost half of the top 25 potential hybrids, demonstrating 

that P026 could be the most potential line with large trait FWT for its hybrids. 
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Table 1. The top 25 potential hybrids with GEBVs for trait FWT within C.maxima. 

Note that 𝐺𝐸𝐵𝑉𝑖𝑗 represents the GEBVs for hybrid 𝑃𝑖⨂𝑃𝑗 , parental lines i and j, 

respectively. 

𝑷𝒊⨂𝑷𝒋 𝑮𝑬𝑩𝑽𝒊𝒋 𝑺𝑪𝑨𝒊𝒋 𝑴𝑷𝑯𝒊𝒋 𝑩𝑷𝑯𝒊𝒋 

P026:P236 3.5247 1.22387 1.22387 1.16776 

P026:P234 3.46522 1.19235 1.19235 1.10848 

P026:P235 3.45985 1.17050 1.1705 1.103 

P026:P027 3.43926 1.17168 1.17168 1.08259 

P026:P028 3.42251 1.13012 1.13012 1.06567 

P026:P237 3.37263 1.15218 1.15218 1.01627 

P227:P235 3.23955 1.04271 1.04271 1.01831 

P227:P236 3.23017 1.02186 1.02186 0.98606 

P227:P234 3.21376 1.03341 1.03341 1.02537 

P028:P227 3.1845 0.98495 0.98495 0.95749 

P026:P302 3.15434 0.96857 0.96857 0.79823 

P007:P026 3.15141 0.96106 0.96106 0.79529 

P027:P227 3.1126 0.93785 0.93785 0.93503 

P227:P237 3.08472 0.95678 0.95678 0.91278 

P234:P313 3.06315 1.08743 1.08743 0.87622 

P235:P313 3.05542 1.06322 1.06322 0.83564 

P028:P313 3.03891 1.04399 1.04399 0.81336 

P236:P313 2.99477 0.99109 0.99109 0.75211 

P026:P233 2.97518 0.87697 0.87697 0.61969 

P027:P313 2.95479 0.98468 0.98468 0.77868 

P008:P026 2.93982 0.78612 0.78612 0.58396 

P026:P254 2.93148 0.7519 0.7519 0.5754 

P007:P227 2.93007 0.83255 0.83255 0.75869 

P227:P302 2.9299 0.83664 0.83664 0.7582 

P100:P234 2.92776 0.90815 0.90815 0.74063 
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Table 2. The top 10 superior parental lines with GCAs for FWT within C.maxima. 

𝑷𝒊 𝑮𝑬𝑩𝑽𝒊 𝑮𝑪𝑨𝒊 

P026 2.35171 0.39086 

P236 2.23949 0.33475 

P028 2.2228 0.3264 

P235 2.21671 0.32335 

P234 2.18397 0.30698 

P027 2.17354 0.30177 

P227 2.1679 0.29895 

P252 2.08416 0.25708 

P237 2.07989 0.25495 

P324 2.05612 0.24306 

 

 

3.1.2 Variance components and heritability  

Table 3 presents the estimations of the variance components and heritability using 

REML for trait FWT within intra-crossing group of C.maxima. We can see that there 

exists some non-negligible dominance effects in the C.maixma intra-crossing group,  

and it explains why the values of 𝑀𝑃𝐻𝑖𝑗 and 𝐵𝑃𝐻𝑖𝑗 are all positive.  

 

Table 3. The estimations of the variance components and heritability using REML for 

trait FWT of C.maxima 

𝝈𝑨
𝟐  𝝈𝑫

𝟐  𝝈𝒆
𝟐 𝒉𝟐 

0.244 0.256 0.064 0.887 
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3.2 Maize data analysis 

  3.2.1 Prediction of potential hybrids and parental lines 

There are (
24
2

) =276 hybrids of the germplasm of maize, and all the grain yields of 

the hybrids are known. We chose 50 hybrids as training set at random to build the 

gBLUP model. For illustration purposes, we also only report the top 25 potential 

hybrids with large GEBVs, together with their SCA, MPH and BPH in Table 4, and the 

top 10 superior parental lines with large GCAs in Table 5. As the table shows, the 

𝐺𝐸𝐵𝑉𝑖𝑗  are all greater than both 𝐺𝐸𝐵𝑉𝑖  and 𝐺𝐸𝐵𝑉𝑗 , which represents that the 

performances of the hybrids are all better than their parental lines; and the positive 

𝐵𝑃𝐻𝑖𝑗 can also support the result. Besides, the positive 𝑆𝐶𝐴𝑖𝑗, which are equal to 

𝑀𝑃𝐻𝑖𝑗, indicates that there also exist heterosis effects within this groups. From Table 

5, we can find that the top 5 parental lines with the greatest GEBVs: Mo17, NC350, 

B73, B97, and OH7B are all the parental lines of the top 5 hybrids with large GEBVs. 

It means that the five inbreed lines are potential parental lines for high grain yield,  

which can be a worthy information for plant breeders. 
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Table 4. The top 25 potential hybrids with GEBVs for trait grain yield within the 

maize population. Note that 𝐺𝐸𝐵𝑉𝑖𝑗 represents the GEBVs for hybrid 𝑃𝑖⨂𝑃𝑗, 

parental lines i and j, respectively. 

𝑷𝒊⨂𝑷𝒋 𝑮𝑬𝑩𝑽𝒊𝒋 𝑺𝑪𝑨𝒊𝒋 𝑴𝑷𝑯𝒊𝒋 𝑩𝑷𝑯𝒊𝒋 

B97:MO17 19.419 1.766 1.766 1.651 

MO17:CML277 18.974 1.704 1.548 1.454 

B73:NC350 18.788 1.536 1.536 1.507 

OH7B:NC350 18.142 1.535 1.535 1.418 

B73:CML228 17.788 1.480 1.480 1.325 

MO17:NC358 17.569 1.341 1.341 1.198 

MS71:KI3 16.681 1.537 1.537 1.267 

NC358:TZI8 16.613 1.340 1.340 1.322 

B97:CML69 16.600 1.468 1.468 1.282 

B73:NC358 16.369 1.420 1.420 0.982 

B73:MO17 15.892 1.460 1.460 1.181 

MO17:CML69 15.429 1.340 1.340 1.155 

MO17:KI3 15.343 0.956 0.926 0.817 

CML333:NC358 15.326 0.906 0.906 0.747 

MO17:CML228 15.241 0.915 0.915 0.872 

B73:B97 15.237 0.807 0.807 0.615 

KI11:NC350 15.134 1.086 1.086 0.732 

B97:NC358 15.032 1.129 1.129 0.721 

B97:TX303 15.027 0.620 0.620 0.524 

OH7B:CML228 14.826 0.794 0.794 0.688 

MO17:CML52 14.723 0.812 0.812 0.757 

CML69:CML228 14.422 0.608 0.608 0.595 

B97:M37W 14.204 1.024 1.024 0.953 

MS71:NC358 13.697 0.923 0.923 0.711 

M162W:CML228 13.142 0.811 0.811 0.732 
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Table 5. The top 10 superior parental lines with GCAs for trait grain yield within the 

maize population. 

𝑷𝒊 𝑮𝑬𝑩𝑽𝒊 𝑮𝑪𝑨𝒊 

MO17 18.223 0.5563 

NC350 18.061 0.5356 

B73 17.821 0.5055 

B97 17.692 0.4410 

OH7B 16.592 0.4111 

CML69 15.945 0.3996 

KI3 15.746 0.3155 

CML277 15.449 0.3050 

MS71 13.418 0.2034 

TZI8 12.403 0.2027 

 

3.2.2 Variance components and heritability  

Table 6 reveals the estimations of the variance components and heritability using 

REML for trait grain yield with the maize population. There exist strong dominance 

effects apparently, and it also explains why the values of 𝑀𝑃𝐻𝑖𝑗 and 𝐵𝑃𝐻𝑖𝑗 are all  

positive. 

 

Table 6. The estimations of the variance components and heritability using REML for 

trait grain yield within the maize population. 

𝝈𝑨
𝟐  𝝈𝑫

𝟐  𝝈𝒆
𝟐 𝒉𝟐 

1.69 2.24 0.753 0.839 
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Discussion 

Previous GS surveys such as that conducted by Wu et al., (2019) used a two-step 

method, which needs to evaluate the GS models and estimation methods through data 

cross-validation to obtain the GEBVs of all the hybrid combinations first, and to adapt 

another gBLUP model rewritten by GCA and SCA to estimate the variance components 

and heritability. In this study, we propose another best linear unbiased prediction 

approach which can get all information of interest through a single additive plus 

dominance effects gBLUP model. To evaluate the genomic relationship between the 

training set and all the possible hybrid lines can estimate their additive and dominance 

genomic values, and the REMLs of variance components can be used to obtain the 

heritability. In brief, this procedure will be more efficient and practical than before. 

The variance components of additive and dominance effects estimated by Wu et al., 

(2019) are 0.033 and 0.202, respectively. The different variance components will affect 

the BLUPs of 𝒈𝐴  and 𝒈𝐷  and further impact the final estimated GEBVs. In this 

study we used another method to evaluate the kinship matrixes of additive and 

dominance effects, and we believe the result is more reliable and closer to real situation. 

Comparing the top 25 potential hybrid lines and top 10 superior parental lines of 

C.maxima in our study with those in Wu et al. (Table 7 and Table 8 ), both of the results 

have high consistency with each other. Especially the hybrid lines, even though the 
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orders are different, the top 9 hybrid lines with highest GEBVs are the same. It indicates 

that different estimated methods may result in different GEBVs, but selecting the 

potential lines for breeders is the most important goal. 

The scatter plots of the GEBVs and the phenotypic values for both the two data sets 

are in Figure 2 and Figure 3, respectively. The colored points indicate those selected 

hybrids with the highest GEBVs. Most of the colored points gather on the upper right 

corner, it means that the selected hybrid line with higher GEBV also has the higher 

phenotypic value in reality. It’s a valuable result because phenotypic selection is usually 

costly and time-consuming for selective breeding, if there is great consistency between 

the result of genomic selection and phenotypic selection, genomic prediction will be a  

good choice for breeders.  

Comparing Figure 3.a with Figure 3.b and Figure 3.c, we can find that the number 

of selected hybrid lines in TM⨂TS is much more than which in TM⨂TM and TS⨂TS, 

it’s in our expectation because the heterosis of inter-crossing group TM⨂TS is stronger. 

Additionally, the GEBVs of both intra-crossing hybrid lines of TM⨂TM and TS⨂TS 

are more approximate to the observed grain yield values than the GEBVs of inter-

crossing hybrid lines of TM⨂TS, because their genetic relationships between training 

and testing populations are much closer. 



doi:10.6342/NTU202203014

23 
 

The results above highlight that the prediction accuracy of GS model might be 

influenced by various different factors such as training population sizes, varying 

degrees of relationship from reference populations, genetic distance and genetic 

relationship between training and testing populations, different estimations of genetic 

variance and the number of SNP markers (Lee et al., 2017, Scutari et al., 2016, 

Estaghvirou et al., 2013). Although we can select the most potential hybrids and 

superior parental lines for breeders, as explained earlier, there are still some defects 

about predict accuracy need to be improved. In particular, there is often a large number 

of possible hybrid lines need to be evaluated in a hybrid breeding. As a result, the 

training population size is often much smaller than the testing population size. As 

suggested by Akdemir et al. (2015), determination of an optimal training population 

could be an efficient key to a successful GS. The readers interested in this issue are 

referred to Ou and Liao (2019) and Sanchez and Akdemir (2021). 

 

 

 

 

 

 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189775
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1006288
https://link.springer.com/article/10.1186/1471-2164-14-860
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Table 7. The list of top 25 potential hybrids with GEBVs for trait FWT within 

C.maxima in our study and in Wu et al. The colored lines are both selected in our 

study and Wu et al. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

our study Wu et al. (2019) 

P026:P236 P026:P236 

P026:P234 P026:P027 

P026:P235 P026:P235 

P026:P027 P026:P234 

P026:P028 P026:P237 

P026:P237 P026:P028 

P227:P235 P227:P236 

P227:P236 P227:P235 

P227:P234 P227:P234 

P028:P227 P026:P233 

P026:P302 P227:P237 

P007:P026 P028:P227 

P027:P227 P027:P227 

P227:P237 P026:P138 

P026:P233 P026:P253 

P026:P254 P026:P255 

P100:P234 P026:P254 

P026:P253 P026:P302 

P100:P235 P007:P026 

P008:P026 P008:P026 

P026:P255 P026:P252 

P234:P313 P026:P243 

P235:P313 P138:P241 

P028:P100 P026:P241 

P026:P252 P100:P236 
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Table 8. The top 10 superior parental lines with GCAs for FWT within C.maxima in 

our study and in Wu et al. The colored lines are both selected in our study and Wu et 

al. 

our study Wu et al.(2019) 

P026 P026 

P227 P138 

P236 P236 

P028 P235 

P235 P234 

P234 P237 

P027 P027 

P324 P028 

P252 P227 

P237 P255 

 

 

 

 

 

 

 

Figure 2: the scatter plot of intra-crossing hybrid lines of C.maxima for the FWT 

values and the GEBVs of the FWT. The colored points indicate those selected hybrids 

with the highest GEBVs. Note that there are only 2 selected hybrids in the figure 

because the training set only had 119 hybrid lines. 
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Figure 3: (a) the scatter plot of inter-crossing group of TM⨂TS for the grain yield 

values and the GEBVs of the grain yield. (b) the scatter plot of intra-crossing group of 

TM⨂TM for the grain yield values and the GEBVs of the grain yield. (c) the scatter 

plot of intra-crossing group of TS⨂TS for the grain yield values and the GEBVs of 

the grain yield. The colored points indicate those selected hybrids with the highest 

GEBVs.  
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Rcode 

#### The needed data ############################################ 

##    hybrid.pheno: the observed phenotypic data of the 10011 hybrids 

##    Xa.bp: the additive effects of the 10011 hybrids 

##    Xd.bp: the dominance effects of the 10011 hybrids 

##    Xa.train = the additive effects of the 119 training set 

##    Xd.train = the dominance effects of the 119 training set 

############################################################## 

index = which(!is.na(hybrid.pheno$F1.weight))   

Xa.train = Xa.bp[index,] ;dim(Xa.train) 

Xd.train = Xd.bp[index,] ;dim(Xd.train) 

 

 

#### calculate the relation matrix ################################### 

#### normalize the Xa.bp and Xd.bp 

############################################################## 

relation.matrix.additive = function(Xa.bp){ 

  Xa.bp.normal = matrix(0, nrow = nrow(Xa.bp), ncol = ncol(Xa.bp))  

  for (i in 1: ncol(Xa.bp)){ 

    cat(paste(i),sep = "\n") 

    for (j in 1: nrow(Xa.bp)){ 

      cat(paste(j),sep = "\n") 

      Xa.bp.normal[j,i] = (Xa.bp[j, i] - mean(Xa.bp[,i]))/sd(Xa.bp[,i]) 

    } 

  } 

  rownames(Xa.bp.normal) = rownames(Xa.bp) 

  colnames(Xa.bp.normal) = colnames(Xa.bp) 

  Xa.train.normal = Xa.bp.normal[index,] 

  Xa.train.normal = as.matrix(Xa.train.normal) 

  Ka = Xa.train.normal %*% t(Xa.train.normal) / ncol(Xa.train.normal) 

  return(Ka) 

} 

Ka = relation.matrix.additive(Xa.bp) 
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relation.matrix.dominance = function(Xd.bp){ 

  Xd.bp.normal = matrix(0, nrow = nrow(Xd.bp), ncol = ncol(Xd.bp)) 

  for (i in 1: ncol(Xd.bp)){ 

    cat(paste(i),sep = "\n") 

    for (j in 1: nrow(Xd.bp)){ 

     cat(paste(j),sep = "\n") 

      Xd.bp.normal[j,i] = (Xd.bp[j, i] - mean(Xd.bp[,i]))/sd(Xd.bp[,i]) 

    } 

  } 

  rownames(Xd.bp.normal) = rownames(Xd.bp) 

  colnames(Xd.bp.normal) = colnames(Xd.bp) 

  Xd.train.normal = Xd.bp.normal[index,] 

  Xd.train.normal = as.matrix(Xd.train.normal) 

  Kd = Xd.train.normal %*% t(Xd.train.normal) / ncol(Xd.train.normal) 

  return(Ka) 

} 

Kd = relation.matrix.dominance(Xd.bp) 

 

 

############################################################## 

#### sommer package 

############################################################## 

install.packages("sommer") 

library(sommer) 

 

#### create incidence matrices of gA and gD (ZA and ZD)  

 Za = Zd = diag(1, nrow(Xa.train), nrow(Xa.train))   

 rownames(Za) = rownames(Zd) = colnames(Za) = colnames(Zd) = 

rownames(Xa.train) 

 

#### fit the model based on GBLUP model to get the REMLof variance components 

fit.GBLUP = mmer(F1.weight ~ 1,    

                     random = ~vs(list(Za), Gu = Ka) +vs(list(Zd), Gu = Kd),   

                     rcov = ~vs(units),  

                     data = hybrid.pheno) 

varience.REML = unlist(fit.GBLUP$sigma) ;varience.REML 
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#### extract ga.BLUP, gd.BLUP from GBLUP model 

ga.BLUP = fit.GBLUP$U$`u:Za`[[1]] 

ga.BLUP = as.matrix(ga.BLUP) 

gd.BLUP = fit.GBLUP$U$`u:Zd`[[1]] 

gd.BLUP = as.matrix(gd.BLUP) 

 

 

############################################################# 

#### SCA(ij) = gd_hat_bp  

#### GCA(i)  

############################################################# 

SCA = function(Xd.bp.normal, Xd.train.normal, Kd, gd.BLUP){ 

  Xd.bp.normal = as.matrix(Xd.bp.normal) 

  Kd.bp = Xd.bp.normal %*% t(Xd.train.normal) / ncol(Xd.bp.normal) 

  gd.bp = Kd.bp %*% solve(Kd) %*% gd.BLUP 

  return(gd.bp) 

} 

SCA = SCA(Xd.bp.normal, Xd.train.normal, Kd, gd.BLUP) 

colnames(SCA) = "SCA" 

 

GCA = function(Ka, Xa.bp.normal, Xa.train.normal, ga.BLUP){ 

  Ka = Ka + diag(10^(-10), nrow = nrow(Ka), ncol = ncol(Ka))  

  Xa.bp.normal = as.matrix(Xa.bp.normal) 

  Ka.bp = Xa.bp.normal %*% t(Xa.train.normal) / ncol(Xa.bp.normal) 

  ga.bp = Ka.bp %*% solve(Ka) %*% ga.BLUP 

  ga.bp = data.frame(ga.bp) 

  ga.bp$P1 = rownames(ga.bp)  

  ga.bp$P2 = rownames(ga.bp) 

  ga.bp$P1 = substr(ga.bp$P1, 1, 4)   

  ga.bp$P2 = substr(ga.bp$P2, 6, 9)  

  GCA = c() 

  for(i in 1: length(unique(c(ga.bp$P1, ga.bp$P2)))){ 

    a = c(which(ga.bp$P1 == unique(c(ga.bp$P1, ga.bp$P2))[i]), which(ga.bp$P2 

== unique(c(ga.bp$P1, ga.bp$P2))[i]))   

    GCA[i] = mean(ga.bp[a,1]) - mean(ga.bp[,1])/2 

  } 

  GCA = data.frame(GCA) 

  rownames(GCA) = unique(c(ga.bp$P1, ga.bp$P2)) 
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  colnames(GCA) = "GCA" 

  return(GCA) 

} 

GCA = data.frame(GCA(Ka, Xa.bp.normal, Xa.train.normal, ga.BLUP)) 

 

 

############################################################# 

## MPH(ij) and BPH(ij)  

############################################################# 

MPH = SCA 

colnames(MPH) = "MPH" 

 

BPH.F1 = substr(rownames(SCA), 1, 4) 

BPH.F2 = substr(rownames(SCA), 6, 9) 

BPH = matrix(0, nrow = nrow(SCA), ncol = 1) 

for (i in 1: nrow(SCA)) { 

  BPH[i, 1] = as.numeric(SCA[i, 1]) - abs(GCA[which(rownames(GCA) == 

BPH.F1[[i]]), 1] - GCA[which(rownames(GCA) == BPH.F2[[i]]), 1]) 

} 

rownames(BPH) = rownames(MPH)  

colnames(BPH) = "BPH" 

 

 

############################################################## 

## GEBV(ij) = μ + ga.bp + gd.bp 

## GEBV(i) =  μ + 2GCA(i)  

############################################################## 

GEBV.bp = function(μ, Ka, Xa.bp.normal, Xa.train.normal, ga.BLUP, Xd.bp.normal, 

Xd.train.normal, Kd, gd.BLUP){ 

  Ka = Ka + diag(10^(-10), nrow = nrow(Ka), ncol = ncol(Ka))  

  Xa.bp.normal = as.matrix(Xa.bp.normal) 

  Ka.bp = Xa.bp.normal %*% t(Xa.train.normal) / ncol(Xa.bp.normal) 

  ga.bp = Ka.bp %*% solve(Ka) %*% ga.BLUP 

  Xd.bp.normal = as.matrix(Xd.bp.normal) 

  Kd.bp = Xd.bp.normal %*% t(Xd.train.normal) / ncol(Xd.bp.normal) 

  gd.bp = Kd.bp %*% solve(Kd) %*% gd.BLUP 

   

  GEBV.bp = matrix(0, 10011, 1) 
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  for (i in 1:10011) { 

    GEBV.bp[i, 1] =  μ[i, 1] + ga.bp[i, 1] + gd.bp[i, 1] 

  } 

  rownames(GEBV.bp) = rownames(ga.bp) 

  colnames(GEBV.bp) = "GEBV" 

  F1 = rownames(GEBV.bp) 

  F1 = as.matrix(F1) 

  GEBV.bp = cbind(F1, GEBV.bp) 

  colnames(GEBV.bp) = c("F1", "GEBV") 

  GEBV.bp[, 2] = as.numeric(GEBV.bp[, 2]) 

  GEBV.bp = GEBV.bp[order(GEBV.bp[, 2], decreasing = T),] 

  return(GEBV.bp) 

} 

μ = matrix(as.numeric(round(fit.GBLUP$fitted[[1]], 2)), 10011, 1) 

GEBV.bp = GEBV.bp(μ, Ka, Xa.bp.normal, Xa.train.normal, ga.BLUP, Xd.bp.normal, 

Xd.train.normal, Kd, gd.BLUP) 

 

 

GEBV.parental = function(μ, GCA){ 

  GEBV.parental = matrix(0, 142, 1) 

  for (i in 1:142) { 

    GEBV.parental[i, 1] =  μ[i, 1] + 2*GCA[i, 1] 

  } 

  rownames(GEBV.parental) = rownames(GCA) 

  colnames(GEBV.parental) = "GEBV" 

  P = rownames(GEBV.parental) 

  P = as.matrix(P) 

  GEBV.parental = cbind(P, GEBV.parental) 

  colnames(GEBV.parental) = c("parental lines", "GEBV") 

  GEBV.parental = data.frame(GEBV.parental) 

  GEBV.parental[, 2] = as.numeric(GEBV.parental[, 2]) 

  GEBV.parental = GEBV.parental[order(GEBV.parental[, 2], decreasing = T), ] 

  return(GEBV.parental) 

} 

GEBV.parental = GEBV.parental(μ, GCA) 

 


