Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86200
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor白奇峰(Chi-Feng Pai)
dc.contributor.authorWei-De Chengen
dc.contributor.author程瑋德zh_TW
dc.date.accessioned2023-03-19T23:41:53Z-
dc.date.copyright2022-09-12
dc.date.issued2022
dc.date.submitted2022-09-01
dc.identifier.citation[1] Blundell Stephen et al. Magnetism in condensed matter. In Oxford master series in physics. Oxford University Press New York, 2001. [2] Bijoy K Kuanr, V Veerakumar, Alka V Kuanr, RE Camley, and Z Celinski. Effect of temperature on the ferromagnetic-resonance field and line width of epitaxial fe thin films. IEEE Transactions on Magnetics, 45(10):4015–4018, 2009. [3] FJA Den Broeder, W Hoving, and PJH Bloemen. Magnetic anisotropy of multilayers. Journal of magnetism and magnetic materials, 93:562–570, 1991. [4] Robert C O’handley. Modern magnetic materials: principles and applications. Wiley, 2000. [5] Kaiming Cai, Zhifeng Zhu, Jong Min Lee, Rahul Mishra, Lizhu Ren, Shawn D Pollard, Pan He, Gengchiau Liang, Kie Leong Teo, and Hyunsoo Yang. Ultrafast and energy-efficient spin–orbit torque switching in compensated ferrimagnets. Nature Electronics, 3(1):37–42, 2020. [6] Kumar Srinivasan. L1 (0) iron-platinum on nanocrystalline HITPERM soft magnetic underlayers for perpendicular recording media. PhD thesis, Carnegie Mellon University, 2004. [7] Naoto Nagaosa, Jairo Sinova, Shigeki Onoda, Allan H MacDonald, and Nai Phuan Ong. Anomalous hall effect. Reviews of modern physics, 82(2):1539, 2010. [8] M Gradhand, DV Fedorov, Falko Pientka, P Zahn, I Mertig, and BL Györffy. Firstprinciple calculations of the berry curvature of bloch states for charge and spin transport of electrons. Journal of Physics: Condensed Matter, 24(21):213202, 2012. [9] Yasuhiro Niimi and YoshiChika Otani. Reciprocal spin hall effects in conductors with strong spin–orbit coupling: a review. Reports on progress in physics, 78(12):124501, 2015. [10] Hiroyasu Nakayama, Yusuke Kanno, Hongyu An, Takaharu Tashiro, Satoshi Haku, Akiyo Nomura, and Kazuya Ando. Rashba-edelstein magnetoresistance in metallic heterostructures. Physical review letters, 117(11):116602, 2016. [11] Alexander Makarov. Modeling of emerging resistive switching based memory cells. Institute for Microelectronics, TU Wien, Vienna, 2014. [12] Jiang Xiao, A Zangwill, and Mark D Stiles. Macrospin models of spin transfer dynamics. Physical Review B, 72(1):014446, 2005. [13] Xiaofeng Yao, Yisong Zhang, Andrew Lyle, Roger Malmhall, Rajiv Ranjan, Lei Lu, Mingzhong Wu, Hao Wang, Ying Jing, and Jian-Ping Wang. Giant adiabatic spin torque in magnetic tunnel junctions with a hybrid free layer structure. arXiv preprint arXiv:0908.3050, 2009. [14] Satoru Emori, Uwe Bauer, Sung-Min Ahn, Eduardo Martinez, and Geoffrey SD Beach. Current-driven dynamics of chiral ferromagnetic domain walls. Nature materials, 12(7):611–616, 2013. [15] Masanori Natsui, Akira Tamakoshi, Hiroaki Honjo, Toshinari Watanabe, Takashi Nasuno, Chaoliang Zhang, Takaho Tanigawa, Hirofumi Inoue, Masaaki Niwa, Toru Yoshiduka, et al. Dual-port sot-mram achieving 90-mhz read and 60-mhz write operations under field-assistance-free condition. IEEE Journal of Solid-State Circuits, 56(4):1116–1128, 2020. [16] Stefan Tibus. Modification and nanostructuring of magnetic materials by ion irradiation. PhD thesis, 2010. [17] Chi-Feng Pai, Maxwell Mann, Aik Jun Tan, and Geoffrey SD Beach. Determination of spin torque efficiencies in heterostructures with perpendicular magnetic anisotropy. Physical Review B, 93(14):144409, 2016. [18] Tian-Yue Chen, Hsin-I Chan, Wei-Bang Liao, and Chi-Feng Pai. Current-induced spin-orbit torque and field-free switching in mo-based magnetic heterostructures. Physical Review Applied, 10(4):044038, 2018. [19] Young-Wan Oh, Seung-heon Chris Baek, YM Kim, Hae Yeon Lee, Kyeong-Dong Lee, Chang-Geun Yang, Eun-Sang Park, Ki-Seung Lee, Kyoung-Whan Kim, Gyungchoon Go, et al. Field-free switching of perpendicular magnetization through spin–orbit torque in antiferromagnet/ferromagnet/oxide structures. Nature nanotechnology, 11(10):878–884, 2016. [20] Fengmao Wang, Xiangli Zhang, Zongzhi Zhang, and Yaowen Liu. Deterministic magnetization switching by spin–orbit torque in a ferromagnet with tilted magnetic anisotropy: A macrospin modeling. Journal of Magnetism and Magnetic Materials, 527:167757, 2021. [21] Neelesh K Jain, Mayur S Sawant, Sagar H Nikam, Suyog Jhavar, and Leon Shohet.Metal deposition: Plasma-based processes. Encyclopedia of Plasma Technology, pages 722–740, 2016. [22] YQ Zhang, NY Sun, WR Che, R Shan, and ZG Zhu. Origin of enhanced anomalous hall effect in ultrathin pt/permalloy bilayers. AIP Advances, 6(2):025214, 2016. [23] Meixia Chang, Jijun Yun, Yongbo Zhai, Baoshan Cui, Yalu Zuo, Guoqiang Yu, and Li Xi. Field free magnetization switching in perpendicularly magnetized pt/co/feni/ta structure by spin orbit torque. Applied Physics Letters, 117(14):142404, 2020. [24] Luca Lutterotti, Roman Vasin, and Hans-Rudolf Wenk. Rietveld texture analysis from synchrotron diffraction images. i. calibration and basic analysis. Powder Diffraction, 29(1):76–84, 2014. [25] H Stanjek and WJHI Häusler. Basics of x-ray diffraction. Hyperfine interactions, 154(1):107–119, 2004. [26] Viktor Ya Frenkel. On the history of the einstein–de haas effect. Soviet Physics Uspekhi, 22(7):580, 1979. [27] Horst Schmidt-Böcking, Lothar Schmidt, Hans Jürgen Lüdde, Wolfgang Trageser, Alan Templeton, and Tilman Sauer. The stern-gerlach experiment revisited. The European Physical Journal H, 41(4):327–364, 2016. [28] Jacob Katriel and Ruben Pauncz. Theoretical interpretation of hund’s rule. In Advances in quantum chemistry, volume 10, pages 143–185. Elsevier, 1977. [29] MT Johnson, PJH Bloemen, FJA Den Broeder, and JJ De Vries. Magnetic anisotropy in metallic multilayers. Reports on Progress in Physics, 59(11):1409, 1996. [30] GHO Daalderop, PJ Kelly, and MFH Schuurmans. Magnetocrystalline anisotropy and orbital moments in transition-metal compounds. Physical Review B, 44(21):12054, 1991. [31] Rahul Mishra, Jiawei Yu, Xuepeng Qiu, M Motapothula, T Venkatesan, and Hyunsoo Yang. Anomalous current-induced spin torques in ferrimagnets near compensation. Physical review letters, 118(16):167201, 2017. [32] Mickey Martini, Can Onur Avci, Silvia Tacchi, Charles-Henri Lambert, and Pietro Gambardella. Engineering the spin-orbit-torque efficiency and magnetic properties of tb/co ferrimagnetic multilayers by stacking order. Physical Review Applied, 17(4):044056, 2022. [33] Kohei Ueda, Maxwell Mann, Chi-Feng Pai, Aik-Jun Tan, and Geoffrey SD Beach. Spin-orbit torques in ta/tbxco100-x ferrimagnetic alloy films with bulk perpendicular magnetic anisotropy. Applied Physics Letters, 109(23):232403, 2016. [34] Joseph Finley and Luqiao Liu. Spin-orbit-torque efficiency in compensated ferrimagnetic cobalt-terbium alloys. Physical Review Applied, 6(5):054001, 2016. [35] Kohei Ueda, Maxwell Mann, Paul WP De Brouwer, David Bono, and Geoffrey SD Beach. Temperature dependence of spin-orbit torques across the magnetic compensation point in a ferrimagnetic tbco alloy film. Physical Review B, 96(6):064410, 2017. [36] Ting-Chien Wang, Tian-Yue Chen, Chun-Te Wu, Hung-Wei Yen, and Chi-Feng Pai. Comparative study on spin-orbit torque efficiencies from w/ferromagnetic and w/ ferrimagnetic heterostructures. Physical Review Materials, 2(1):014403, 2018. [37] S Hashimoto and Y Ochiai. Co/pt and co/pd multilayers as magneto-optical recording materials. Journal of magnetism and magnetic materials, 88(1-2):211–226, 1990. [38] PF Carcia. Perpendicular magnetic anisotropy in pd/co and pt/co thin-film layered structures. Journal of applied physics, 63(10):5066–5073, 1988. [39] WB Zeper, FJAM Greidanus, PF Carcia, and CR Fincher. Perpendicular magnetic anisotropy and magneto-optical kerr effect of vapor-deposited co/pt-layered structures. Journal of Applied Physics, 65(12):4971–4975, 1989. [40] C-J Lin, GL Gorman, CH Lee, RFC Farrow, EE Marinero, HV Do, H Notarys, and CJ Chien. Magnetic and structural properties of co/pt multilayers. Journal of Magnetism and Magnetic Materials, 93:194–206, 1991. [41] FJA Den Broeder, D Kuiper, AP Van de Mosselaer, and W Hoving. Perpendicular magnetic anisotropy of co-au multilayers induced by interface sharpening. Physical review letters, 60(26):2769, 1988. [42] M Sakurai, T Takahata, and I Moritani. Magnetic and magneto-optical properties of co/ru multilayers. IEEE translation journal on magnetics in Japan, 7(2):176–182, 1992. [43] HAM de Gronckel, JAM Bienert, FJA den Broeder, and WJM de Jonge. Co/x multilayers, nmr study of microscopic structure and strain. Journal of magnetism and magnetic materials, 93:457–461, 1991. [44] S Ikeda, K Miura, H Yamamoto, K Mizunuma, HD Gan, M Endo, Sl Kanai, J Hayakawa, F Matsukura, and H Ohno. A perpendicular-anisotropy cofeb–mgo magnetic tunnel junction. Nature materials, 9(9):721–724, 2010. [45] Edwin H Hall et al. On a new action of the magnet on electric currents. American Journal of Mathematics, 2(3):287–292, 1879. [46] EH Hall. On the” rotational coefficient” in nickel and cobalt. Proceedings of the Physical Society of London (1874-1925), 4(1):325, 1880. [47] Robert Karplus and JM Luttinger. Hall effect in ferromagnetics. Physical Review, 95(5):1154, 1954. [48] Luc Berger. Side-jump mechanism for the hall effect of ferromagnets. Physical Review B, 2(11):4559, 1970. [49] J Smit. The spontaneous hall effect in ferromagnetics i. Physica, 21(6-10):877–887, 1955. [50] Yuichiro K Kato, Roberto C Myers, Arthur C Gossard, and David D Awschalom. Observation of the spin hall effect in semiconductors. science, 306(5703):1910– 1913, 2004. [51] E Saitoh, M Ueda, H Miyajima, and G Tatara. Conversion of spin current into charge current at room temperature: Inverse spin-hall effect. Applied physics letters, 88(18):182509, 2006. [52] Luqiao Liu, Takahiro Moriyama, DC Ralph, and RA Buhrman. Spin-torque ferromagnetic resonance induced by the spin hall effect. Physical review letters, 106(3):036601, 2011. [53] Hiroyasu Nakayama, Matthias Althammer, Y-T Chen, Ken-ichi Uchida, Yosuke Kajiwara, Daisuke Kikuchi, Takashi Ohtani, Stephan Geprägs, M Opel, S Takahashi,et al. Spin hall magnetoresistance induced by a nonequilibrium proximity effect. Physical review letters, 110(20):206601, 2013. [54] Junyeon Kim, Peng Sheng, Saburo Takahashi, Seiji Mitani, and Masamitsu Hayashi. Spin hall magnetoresistance in metallic bilayers. Physical review letters, 116(9):097201, 2016. [55] T Liu, Y Zhang, JW Cai, and HY Pan. Thermally robust mo/cofeb/mgo trilayers with strong perpendicular magnetic anisotropy. Scientific reports, 4(1):1–6, 2014. [56] Luqiao Liu, Chi-Feng Pai, Y Li, HW Tseng, DC Ralph, and RA Buhrman. Spintorque switching with the giant spin hall effect of tantalum. Science, 336(6081):555– 558, 2012. [57] Chi-Feng Pai, Luqiao Liu, Y Li, HW Tseng, DC Ralph, and RA Buhrman. Spin transfer torque devices utilizing the giant spin hall effect of tungsten. Applied Physics Letters, 101(12):122404, 2012. [58] Qiang Hao and Gang Xiao. Giant spin hall effect and switching induced by spintransfer torque in a w/co 40 fe 40 b 20/mgo structure with perpendicular magnetic anisotropy. Physical Review Applied, 3(3):034009, 2015. [59] Cheng Song, Ruiqi Zhang, Liyang Liao, Yongjian Zhou, Xiaofeng Zhou, Ruyi Chen, Yunfeng You, Xianzhe Chen, and Feng Pan. Spin-orbit torques: Materials, mechanisms, performances, and potential applications. Progress in Materials Science, 118:100761, 2021. [60] Alexandr Chernyshov, Mason Overby, Xinyu Liu, Jacek K Furdyna, Yuli Lyanda- Geller, and Leonid P Rokhinson. Evidence for reversible control of magnetizationin a ferromagnetic material by means of spin–orbit magnetic field. Nature Physics, 5(9):656–659, 2009. [61] Rajagopalan Ramaswamy, Xuepeng Qiu, Tanmay Dutta, Shawn David Pollard, and Hyunsoo Yang. Hf thickness dependence of spin-orbit torques in hf/cofeb/mgo heterostructures. Applied Physics Letters, 108(20):202406, 2016. [62] Junyeon Kim, Jaivardhan Sinha, Masamitsu Hayashi, Michihiko Yamanouchi, Shunsuke Fukami, Tetsuhiro Suzuki, Seiji Mitani, and Hideo Ohno. Layer thickness dependence of the current-induced effective field vector in ta| cofeb| mgo. Nature materials, 12(3):240–245, 2013. [63] Satoru Emori, Tianxiang Nan, Amine M Belkessam, Xinjun Wang, Alexei D Matyushov, Christopher J Babroski, Yuan Gao, Hwaider Lin, and Nian X Sun. Interfacial spin-orbit torque without bulk spin-orbit coupling. Physical Review B, 93(18):180402, 2016. [64] Jorge Puebla, Florent Auvray, Mingran Xu, Bivas Rana, Antoine Albouy, Hanshen Tsai, Kouta Kondou, Gen Tatara, and Yoshichika Otani. Direct optical observation of spin accumulation at nonmagnetic metal/oxide interface. Applied Physics Letters, 111(9):092402, 2017. [65] Yi Wang, Rajagopalan Ramaswamy, Mallikarjuna Motapothula, Kulothungasagaran Narayanapillai, Dapeng Zhu, Jiawei Yu, Thirumalai Venkatesan, and Hyunsoo Yang. Room-temperature giant charge-to-spin conversion at the srtio3–laalo3 oxide interface. Nano Letters, 17(12):7659–7664, 2017. [66] Yoichi Ando. Topological insulator materials. Journal of the Physical Society of Japan, 82(10):102001, 2013. [67] LALE Landau and Evgeny Lifshitz. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. In Perspectives in Theoretical Physics, pages 51–65. Elsevier, 1992. [68] Thomas L Gilbert. A phenomenological theory of damping in ferromagnetic materials. IEEE transactions on magnetics, 40(6):3443–3449, 2004. [69] John C Slonczewski. Current-driven excitation of magnetic multilayers. Journal of Magnetism and Magnetic Materials, 159(1-2):L1–L7, 1996. [70] Luc Berger. Emission of spin waves by a magnetic multilayer traversed by a current. Physical Review B, 54(13):9353, 1996. [71] S. Zhang, P. M. Levy, and A. Fert. Mechanisms of spin-polarized current-driven magnetization switching. Phys. Rev. Lett., 88:236601, May 2002. [72] Daniel C Ralph and Mark D Stiles. Spin transfer torques. Journal of Magnetism and Magnetic Materials, 320(7):1190–1216, 2008. [73] Shufeng Zhang, PM Levy, and A Fert. Mechanisms of spin-polarized current-driven magnetization switching. Physical review letters, 88(23):236601, 2002. [74] Farhana Parveen, Shaahin Angizi, Zhezhi He, and Deliang Fan. Low power in-memory computing based on dual-mode sot-mram. In 2017 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), pages 1–6. IEEE, 2017. [75] Axel Hoffmann. Spin hall effects in metals. IEEE transactions on magnetics, 49(10):5172–5193, 2013. [76] Hongxin Yang, André Thiaville, Stanislas Rohart, Albert Fert, and Mairbek Chshiev. Anatomy of dzyaloshinskii-moriya interaction at co/pt interfaces. Physical review letters, 115(26):267210, 2015. [77] CK Safeer, Emilie Jué, Alexandre Lopez, Liliana Buda-Prejbeanu, Stéphane Auffret, Stefania Pizzini, Olivier Boulle, Ioan Mihai Miron, and Gilles Gaudin. Spin–orbit torque magnetization switching controlled by geometry. Nature nanotechnology, 11(2):143–146, 2016. [78] Guoqiang Yu, Pramey Upadhyaya, Yabin Fan, Juan G Alzate, Wanjun Jiang, Kin L Wong, So Takei, Scott A Bender, Li-Te Chang, Ying Jiang, et al. Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nature nanotechnology, 9(7):548–554, 2014. [79] Long You, OukJae Lee, Debanjan Bhowmik, Dominic Labanowski, Jeongmin Hong, Jeffrey Bokor, and Sayeef Salahuddin. Switching of perpendicularly polarized nanomagnets with spin orbit torque without an external magnetic field by engineering a tilted anisotropy. Proceedings of the National Academy of Sciences, 112(33):10310– 10315, 2015. [80] Vineeth Mohanan, KR Ganesh, and PS Anil Kumar. Spin hall effect mediated current-induced deterministic switching in all-metallic perpendicularly magnetized pt/co/pt trilayers. Physical Review B, 96(10):104412, 2017. [81] Shunsuke Fukami, Chaoliang Zhang, Samik DuttaGupta, Aleksandr Kurenkov, and Hideo Ohno. Magnetization switching by spin–orbit torque in an antiferromagnet– ferromagnet bilayer system. Nature materials, 15(5):535–541, 2016. [82] Arno van den Brink, Guus Vermijs, Aurélie Solignac, Jungwoo Koo, Jurgen T Kohlhepp, Henk JM Swagten, and Bert Koopmans. Field-free magnetization reversal by spin-hall effect and exchange bias. Nature communications, 7(1):1–6, 2016. [83] Yong-Chang Lau, Davide Betto, Karsten Rode, JMD Coey, and Plamen Stamenov. Spin–orbit torque switching without an external field using interlayer exchange coupling. Nature nanotechnology, 11(9):758–762, 2016. [84] Seung-heon C Baek, Vivek P Amin, Young-Wan Oh, Gyungchoon Go, Seung-Jae Lee, Geun-Hee Lee, Kab-Jin Kim, Mark D Stiles, Byong-Guk Park, and Kyung- Jin Lee. Spin currents and spin–orbit torques in ferromagnetic trilayers. Nature materials, 17(6):509–513, 2018. [85] Liang Liu, Qing Qin, Weinan Lin, Changjian Li, Qidong Xie, Shikun He, Xinyu Shu, Chenghang Zhou, Zhishiuh Lim, Jihang Yu, et al. Current-induced magnetization switching in all-oxide heterostructures. Nature nanotechnology, 14(10):939–944, 2019. [86] Hyun-Joong Kim, Kyoung-Woong Moon, Bao Xuan Tran, Seongsoo Yoon, Changsoo Kim, Seungmo Yang, Jae-Hyun Ha, Kyongmo An, Tae-Seong Ju, Jung-Il Hong, et al. Field-free switching of magnetization by tilting the perpendicular magnetic anisotropy of gd/co multilayers. Advanced Functional Materials, page 2112561, 2022. [87] Bertram Eugene Warren. X-ray Diffraction. Courier Corporation, 1990. [88] LRB Elton and Daphne F Jackson. X-ray diffraction and the bragg law. American Journal of Physics, 34(11):1036–1038, 1966.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86200-
dc.description.abstract在所有種類之記憶體中,以自旋軌道間力矩為驅使動力之磁性記憶體(SOT-MRAM) ,由於其在寫入速度快速及功耗少等優點,乃被眾人視為一前途看好之結構設計。然而,在賈拉辛斯基 - 守屋交互作用 (Dzyaloshinskii-Moriya interaction) 的限制下,若要以施加電流方式,使其磁性狀態改變,我們必須再另外施加一同電流方向的磁場,使之微觀狀態下的對稱性破壞,在此限制下,此記憶體之實際運用便陷入困難。不過,已有幾種針對此令人棘手問題的方法被發展出來,例如: 利用反鐵磁交換耦合 (鐵磁/反鐵磁結構),利用幾何形狀上不對稱結構 (楔形結構) 等方法。然而上述某些方法之試片製程複雜,甚至有些方法使用的材料會和現今主流之互補式金屬氧化物半導體 (CMOS) 系統不相容。於此篇工作中,我們使用常見的鉑/鈷/鉑三層結構進行實驗,並且我們以簡單且有效率的方法來製作不須加場就可進行翻轉的試片。再者,我們以掃描入平面之外加場,來觀察磁滯曲線移動實驗實驗來確認我們對於實驗的假設。我們同時確認下層之鉑,對於正在研究之磁性性質,扮演非常重要的角色。最後,我們以一個簡單的模型來解釋關於該試片為何可以進行無場翻轉的機制。zh_TW
dc.description.abstractAmong all kinds of memory devices, the magnetic random-access memory in the application of spin-orbit torque (SOT-MRAM) is one of the promising design for efficient data writing and lower power consumption. However, the existence of Dzyaloshinskii-Moriya interaction (DMI) restrict the practical utilization of SOT-MRAM. To achieve deterministic switching by electrical current flow, we must exert an external magnetic field along the current to break symmetry. Several methods have been developed to solve this tough problem, such as the assistance of antiferromagnetic exchange coupling (FM/AFM structure), the manufacture of geometrically asymmetric structure (wedge-shape structure), etc. Some of them are complicated in fabrication. Even a part of them is incompatible with the current CMOS system. In this work, we use common Pt/Co/Pt trilayer in experiments and introduce a simple and efficient method for fabricating devices capable for field-free switching. Subsequently, we use loopshift measurement with angle-scan in-plane field to confirm our hypothesize. Meanwhile, we also confirm that the bottom Pt layer of trilayer structure plays a crucial role for deterministic field-free switching. Finally, a simple model is established to explain the exact mechanism of our samples.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:41:53Z (GMT). No. of bitstreams: 1
U0001-1707202218253500.pdf: 18544743 bytes, checksum: 67cb943637a8de24a99425b2488cd118 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i 致謝iii 摘要v Abstract vii Contents ix List of Figures xiii List of Tables xix Chapter 1 Introduction 1 1.1 Fundamental Theory of Magnetization . . . . . . . . . . . . . . . . . 1 1.1.1 Origin of Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Spin-Orbit Interaction (SOC) . . . . . . . . . . . . . . . . . . . . . 3 1.1.3 Ferromagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Magnetic anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.1 Magnetic anisotropy of thin film structure . . . . . . . . . . . . . . 7 1.2.2 Origin of magnetic anisotropy in thin films . . . . . . . . . . . . . . 8 1.2.3 Perpendicular magnetic anisotropy (PMA) . . . . . . . . . . . . . . 11 1.3 Hall Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3.1 Ordinary Hall effect (OHE) . . . . . . . . . . . . . . . . . . . . . . 12 1.3.2 Anomalous Hall effect (AHE) . . . . . . . . . . . . . . . . . . . . 13 1.3.3 Spin Hall effect (SHE) and Rashba Edelstein effect (REE) . . . . . 14 1.4 Magnetization Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4.1 Precession of magnetization . . . . . . . . . . . . . . . . . . . . . 16 1.4.2 Spin transfer torque (STT) . . . . . . . . . . . . . . . . . . . . . . 18 1.4.3 Spin torques originated from spatial non-uniformity . . . . . . . . . 20 1.4.4 Spin orbit torque (SOT) . . . . . . . . . . . . . . . . . . . . . . . . 24 1.4.5 Two different types of domain wall in PMA thin film system . . . . 26 1.4.6 Field-free switching . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.5 A macrospin model in tilted magnetic anisotropic ferromagnet . . . . 29 1.6 Motivation of this work . . . . . . . . . . . . . . . . . . . . . . . . 34 Chapter 2 Sample Preparation 35 2.1 Thin film deposition . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.1.1 Magnetron sputtering . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.1.2 Materials used and some parameters in sputtering process . . . . . . 36 2.1.3 Hall bar fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Chapter 3 Measurement 41 3.1 Magnetic properties . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.1.1 Anomalous Hall effect measurement . . . . . . . . . . . . . . . . . 41 3.1.2 Loopshift measurement with angle-scan in-plane field . . . . . . . . 42 3.1.3 X-ray diffraction ( XRD ) . . . . . . . . . . . . . . . . . . . . . . . 44 3.2 Spin-orbit torque related measurement . . . . . . . . . . . . . . . . . 47 3.2.1 Current-induced hysteresis loopshift measurement . . . . . . . . . . 47 Chapter 4 Results and Discussion 49 4.1 Magnetic properties . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 Demonstration of field-free switching in wedged Pt/Co/Pt structure . 51 4.3 Examination of key layer for field free switching . . . . . . . . . . . 53 4.4 Analysis of crystal orientation of the buffer Pt layer in XRD images . 55 4.5 Estimation of tilting magnetization . . . . . . . . . . . . . . . . . . . 57 4.6 Other SOT properties from loopshift measurement . . . . . . . . . . 60 4.6.1 The competition of conventional and unconventional spin-torque in wedge-grown samples . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.7 Mechanism of field-free switching in wedge-grown devices . . . . . 67 Chapter 5 Summary 71 References 73
dc.language.isoen
dc.subject對稱性破壞zh_TW
dc.subject自旋-軌道矩zh_TW
dc.subject垂直異向性zh_TW
dc.subject自旋霍爾效應zh_TW
dc.subject無場翻轉zh_TW
dc.subjectspin-orbit torqueen
dc.subjectfield- free switchingen
dc.subjectsymmetry breaking viiien
dc.subjectspin Hall effecten
dc.subjectperpendicular magnetic anisotropyen
dc.title不同傾斜沉積角度對於鉑/鈷/鉑系統之磁性性質研究與探討zh_TW
dc.titleStudy on Magnetic Properties in Pt/Co/Pt system with regard to Different Wedge-Deposition Angleen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0001-8514-2857
dc.contributor.advisor-orcid白奇峰(0000-0001-6723-8302)
dc.contributor.oralexamcommittee林克偉(Ko-Wei Lin),楊朝堯(Chao-Yao Yang)
dc.contributor.oralexamcommittee-orcid林克偉(0000-0003-2191-8227),楊朝堯(0000-0003-0458-4624)
dc.subject.keyword自旋-軌道矩,垂直異向性,自旋霍爾效應,無場翻轉,對稱性破壞,zh_TW
dc.subject.keywordspin-orbit torque,perpendicular magnetic anisotropy,spin Hall effect,symmetry breaking viii,field- free switching,en
dc.relation.page84
dc.identifier.doi10.6342/NTU202201513
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-02
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
dc.date.embargo-lift2022-09-12-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
U0001-1707202218253500.pdf18.11 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved