請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86113完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林俊達 | zh_TW |
| dc.contributor.advisor | Guin-Dar Lin | en |
| dc.contributor.author | 林君錡 | zh_TW |
| dc.contributor.author | Chun-Chi Lin | en |
| dc.date.accessioned | 2023-03-19T23:37:27Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2022-09-19 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | J. I. Cirac and P. Zoller, "Quantum computations with cold trapped ions," Phys. Rev. Lett., vol. 74, pp. 4091–4094, May 1995.
W. Paul, "Electromagnetic traps for charged and neutral particles," Rev. Mod. Phys., vol. 62, pp. 531–540, Jul 1990. R. Ozeri, "The trapped-ion qubit tool box," Contemp. Phys., vol. 52, no. 6, pp. 531– 550, 2011. C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, "Trapped-ion quantum computing: Progress and challenges," Appl. Phys. Rev., vol. 6, no. 2, p. 021314, 2019. D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, "Experimental issues in coherent quantum-state manipulation of trapped atomic ions," J. Res. Natl. Inst. Stand. Technol., vol. 103, no. 3, p. 259, 1998. D. F. V. James, "Quantum dynamics of cold trapped ions with application to quantum computation," Appl. Phys. B, vol. 66, pp. 181–190, 1998. D. Zeuch, F. Hassler, J. J. Slim, and D. P. DiVincenzo, "Exact rotating wave approximation," Ann. Phys. (N. Y.), vol. 423, p. 168327, 2020. N. M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt, K. A. Landsman, K. Wright, and C. Monroe, "Experimental comparison of two quantum computing architectures," Proc. Natl. Acad. Sci. U.S.A., vol. 114, no. 13, pp. 3305–3310, 2017. S.-T. Wang, C. Shen, and L.-M. Duan, "Quantum computation under micromotion in a planar ion crystal," Sci. Rep., vol. 5, p. 8555, 2015. P. Zou, J. Xu, W. Song, and S.-L. Zhu, "Implementation of local and high fidelity quantum conditional phase gates in a scalable two-dimensional ion trap," Phys. Lett. A, vol. 374, no. 13, pp. 1425–1430, 2010. J. P. Schiffer, M. Drewsen, J. S. Hangst, and L. Hornekær, "Temperature, ordering, and equilibrium with time-dependent confining forces," Proc. Natl. Acad. Sci. U.S.A., vol. 97, no. 20, pp. 10 697–10 700, 2000. M. K. Ivory, A. Kato, A. Hasanzadeh, and B. B. Blinov, "A Paul trap with sectored ring electrodes for experiments with two-dimensional ion crystals," Rev. Sci. Instrum., vol. 91, p. 053201, 2020. M. D'Onofrio, Y. Xie, A. J. Rasmusson, E. Wolanski, J. Cui, and P. Richerme, "Radial two-dimensional ion crystals in a linear Paul trap," Phys. Rev. Lett., vol. 127, p. 020503, Jul 2021. C. Shen and L.-M. Duan, "Highfidelity quantum gates for trapped ions under micromotion," Phys. Rev. A, vol. 90, p. 022332, Aug 2014. P. Richerme, "Two-dimensional ion crystals in radiofrequency traps for quantum simulation," Phys. Rev. A, vol. 94, p. 032320, Sep 2016. J. Mizrahi, C. Senko, B. Neyenhuis, K. G. Johnson, W. C. Campbell, C. W. S. Conover, and C. Monroe, "Ultrafast spin-motion entanglement and interferometry with a single atom," Phys. Rev. Lett., vol. 110, p. 203001, May 2013. W. C. Campbell, J. Mizrahi, Q. Quraishi, C. Senko, D. Hayes, D. Hucul, D. N. Matsukevich, P. Maunz, and C. Monroe, "Ultrafast gates for single atomic qubits," Phys. Rev. Lett., vol. 105, p. 090502, Aug 2010. D. Heinrich, M. Guggemos, M. GuevaraBertsch, M. I. Hussain, C. F. Roos, and R. Blatt, "Ultrafast coherent excitation of a 40Ca+ ion," New J. Phys., vol. 21, no. 7, p. 073017, Jul 2019. J. D. WongCampos, S. A. Moses, K. G. Johnson, and C. Monroe, "Demonstration of two-atom entanglement with ultrafast optical pulses," Phys. Rev. Lett., vol. 119, p. 230501, Dec 2017. J. J. García-Ripoll, P. Zoller, and J. I. Cirac, "Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing," Phys. Rev. Lett., vol. 91, p. 157901, Oct 2003. E. Torrontegui, D. Heinrich, M. I. Hussain, R. Blatt, and J. J. García-Ripoll, "Ultrafast two-qubit ion gate using sequences of resonant pulses," New J. Phys., vol. 22, no. 10, p. 103024, Oct 2020. C. D. B. Bentley, A. R. R. Carvalho, and J. J. Hope, "Trapped ion scaling with pulsed fast gates," New J. Phys., vol. 17, no. 10, p. 103025, Oct 2015. C. D. B. Bentley, A. R. R. Carvalho, D. Kielpinski, and J. J. Hope, "Fast gates for ion traps by splitting laser pulses," New J. Phys., vol. 15, no. 4, p. 043006, Apr 2013. L.-M. Duan, "Scaling ion trap quantum computation through fast quantum gates," Phys. Rev. Lett., vol. 93, p. 100502, Sep 2004. Y. Wu, S.-T. Wang, and L.-M. Duan, "Noise analysis for high-fidelity quantum entangling gates in an anharmonic linear Paul trap," Phys. Rev. A, vol. 97, p.062325, Jun 2018. Y.-K. Wu and L.-M. Duan, "A two-dimensional architecture for fast large-scale trapped-ion quantum computing," Chin. Phys. Lett., vol. 37, no. 7, p. 070302, Jun 2020. P. Brooks and J. Preskill, "Fault-tolerant quantum computation with asymmetric Bacon-Shor codes," Phys. Rev. A, vol. 87, p. 032310, Mar 2013. A. K. Ratcliffe, L. M. Oberg, and J. J. Hope, "Micromotion-enhanced fast entangling gates for trapped-ion quantum computing," Phys. Rev. A, vol. 101, p. 052332, May 2020. M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, "Deterministic cavity quantum electrodynamics with trapped ions," J. Phys. B: At. Mol. Opt. Phys, vol. 36, no. 3, pp. 613–622, Jan 2003. E. P. G. Gale, Z. Mehdi, L. M. Oberg, A. K. Ratcliffe, S. A. Haine, and J. J. Hope, "Optimized fast gates for quantum computing with trapped ions," Phys. Rev. A, vol. 101, p. 052328, May 2020. Z. Mehdi, A. K. Ratcliffe, and J. J. Hope, "Fast entangling gates in long ion chains," Phys. Rev. Res., vol. 3, p. 013026, Jan 2021. C. D. B. Bentley, R. L. Taylor, A. R. R. Carvalho, and J. J. Hope, "Stability thresholds and calculation techniques for fast entangling gates on trapped ions," Phys. Rev. A, vol. 93, p. 042342, Apr 2016. H. Landa, M. Drewsen, B. Reznik, and A. Retzker, "Modes of oscillation in radiofrequency Paul traps," New J. Phys., vol. 14, no. 9, p. 093023, Sep 2012. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/86113 | - |
| dc.description.abstract | 離子阱被視為最有前景的量子計算平台之一,不僅是因為它的量子比特具有長時間的同調性,同時也是因為離子間的強相互作用致使多量子比特閘得以實現。雖然傳統的離子阱量子計算是透過讓離子們排列成一條直鏈來進行操作的,但其較差的可擴展性已然成為一個棘手的問題。在這篇論文中,我展示出一種更具擴展性的配置,即令離子排列於一張平面上,形成一個二維晶體的結構。對此離子阱作理論分析後,可得知離子在平面內必定產生某種微小運動;而若不適度把該運動列入考量,更將會不可避免地防礙量子閘的實際表現。因鑑於此,本文提出一種基於段氏方案的脈衝型雙量子比特快速閘,用以產生兩量子比特間之糾纏態,展示出即使在微運動的影響之下仍然可以獲得高保真度和較短的閘時間。實驗模擬選用的是鈣離子以及波長393奈米之雷射脈衝光,而此波長對應到的即是4S態和4P態之間的共振躍遷。 | zh_TW |
| dc.description.abstract | Ion traps are one of the most promising platforms for quantum computing, not only because of their long qubit coherence time, but also because of the strong ion-ion interaction that enables the multi-qubit gates. While traditional trapped-ion quantum computing is implemented by ions arranged in a linear chain, its poor scalability has become an intractable problem. In this thesis I present a more scalable configuration, ions arranged in a plane forming a two-dimensional crystal structure. A theoretical analysis of this ion trap shows that there must be some in-plane micromotion, which inevitably hinders the actual performance of quantum gates if the motion is not properly taken into account. In light of this, a pulsed two-qubit entangling fast gate based on Duan's scheme is proposed in the thesis, demonstrating that high fidelity and short gate time can still be available even in the presence of micromotion. The simulation is carried out with calcium ions, using laser pulses resonant to the 393-nm transition between the 4S and 4P states. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:37:27Z (GMT). No. of bitstreams: 1 U0001-0609202223524600.pdf: 35758443 bytes, checksum: b44adb3c498891b65d14c650b3dac949 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 iii 摘要 v Abstract vii Contents ix List of Figures xiii List of Tables xv Chapter 1 Introduction 1 1.1 Quantum Computing with Trapped Ions 1 1.2 Linear Paul Traps 3 1.3 Two-qubit Gates via Resolved Sideband Transitions 7 1.4 Accumulation of Quantum Phases 11 Chapter 2 Planar Trapped-ion Systems 15 2.1 The Pseudo-potential Model 15 2.2 Micromotion and Average Positions of the Ions 18 2.3 Vibrational Normal Modes Without Micromotion 22 2.4 Impact of Micromotion 26 Chapter 3 Fast Gates in Planar Ion Crystals 31 3.1 Fast Gate Formalism 31 3.1.1 Spin-dependent Kicks From Ultrafast Laser Pulses 31 3.1.2 Fast Gate Schemes 33 3.1.3 Phase Space Trajectories 36 3.1.4 Gate Fidelity 38 3.2 A Micromotion-tolerant Scheme 42 3.2.1 Stroboscopic Fast Gates 42 3.2.2 Gate Performance 47 3.2.3 Trap Scaling 51 3.3 Discussions 55 3.3.1 Why Outer Ion Pairs Require Lower Trapping Frequencies 55 3.3.2 Distant Ion Pairs 57 3.3.3 Pulse Imperfection 58 3.3.4 Effects of Pulse Duration and Beam Waist 60 3.3.5 Estimation of Average Laser Power 62 3.3.6 Aperiodic Micromotion 63 Chapter 4 Conclusions 67 Bibliography 69 Appendix A Trapped-ion Dynamics 75 A.1 Expansion of Radial Potential Energy in the 2D Trap 75 A.2 Solution to the Inhomogeneous Mathieu Equation 77 A.3 Formalism of Vibrational Normal Modes 78 Appendix B Fast Gate Dynamics 81 B.1 The Displaced Motional States and Acquired Phases 81 B.2 Derivation of the Fast Gate Fidelity Formula 82 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 離子阱 | zh_TW |
| dc.subject | 量子糾纏 | zh_TW |
| dc.subject | 微小運動 | zh_TW |
| dc.subject | 量子計算 | zh_TW |
| dc.subject | 快速閘 | zh_TW |
| dc.subject | ion trap | en |
| dc.subject | fast gate | en |
| dc.subject | quantum entanglement | en |
| dc.subject | quantum computing | en |
| dc.subject | micromotion | en |
| dc.title | 用於平面型離子阱晶體之容受微動的快速量子糾纏閘 | zh_TW |
| dc.title | Micromotion-tolerant Fast Entangling Gates in Planar Trapped-ion Crystals | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 童世光;張銘顯;管希聖 | zh_TW |
| dc.contributor.oralexamcommittee | Shih-Kuang Tung;Ming-Shien Chang;Hsi-Sheng Goan | en |
| dc.subject.keyword | 量子計算,離子阱,快速閘,量子糾纏,微小運動, | zh_TW |
| dc.subject.keyword | quantum computing,ion trap,fast gate,quantum entanglement,micromotion, | en |
| dc.relation.page | 83 | - |
| dc.identifier.doi | 10.6342/NTU202203211 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-09-08 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| dc.date.embargo-lift | 2022-09-19 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf | 34.92 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
