Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85994
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂廷璋(TING-JANG LU)
dc.contributor.authorKuan-Ling Chuen
dc.contributor.author朱冠綾zh_TW
dc.date.accessioned2023-03-19T23:32:02Z-
dc.date.copyright2022-10-19
dc.date.issued2022
dc.date.submitted2022-09-19
dc.identifier.citationAl-Tamimi, M. A. H. M.; Palframan, R. J.; Cooper, J. M.; Gibson, G. R.; Rastall, R. A., In vitro fermentation of sugar beet arabinan and arabino-oligosaccharides by the human gut microflora. 2006, 100, 407-414. Albersheim, P.; Darvill, A.; O'neill, M.; Schols, H.; Voragen, A. G., An hypothesis: the same six polysaccharides are components of the primary cell walls of all higher plants. In Progress in biotechnology, Elsevier: 1996; Vol. 14, pp 47-55. Antonio, C.; Larson, T.; Gilday, A.; Graham, I.; Bergström, E.; Thomas-Oates, J., Quantification of sugars and sugar phosphates in Arabidopsis thaliana tissues using porous graphitic carbon liquid chromatography-electrospray ionization mass spectrometry. Journal of Chromatography A 2007, 1172, 170-178. Aspinall, G. O., Constitution of Plant Cell Wall Polysaccharides. In Plant Carbohydrates II: Extracellular Carbohydrates, Tanner, W.; Loewus, F. A., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 1981; pp 3-8. Banerjee, S.; Mazumdar, S., Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte. International Journal of Analytical Chemistry 2012, 2012, 282574. Barroso, B.; Dijkstra, R.; Geerts, M.; Lagerwerf, F.; Veelen, P. v.; Ru, A. d. J. R. c. i. m. s., On‐line high‐performance liquid chromatography/mass spectrometric characterization of native oligosaccharides from glycoproteins. 2002, 16, 1320-1329. Bartetzko, M. P.; Schuhmacher, F.; Seeberger, P. H.; Pfrengle, F., Determining Substrate Specificities of β1,4-Endogalactanases Using Plant Arabinogalactan Oligosaccharides Synthesized by Automated Glycan Assembly. The Journal of Organic Chemistry 2017, 82, 1842-1850. Blumenkrantz, N.; Asboe-Hansen, G. J. A. b., New method for quantitative determination of uronic acids. 1973, 54, 484-489. Chan, S. Y.; Choo, W. S.; Young, D. J.; Loh, X. J., Pectin as a rheology modifier: Origin, structure, commercial production and rheology. Carbohydrate Polymers 2017, 161, 118-139. Chen, H.; Zhang, M.; Qu, Z.; Xie, B., Antioxidant activities of different fractions of polysaccharide conjugates from green tea (Camellia Sinensis). Food Chemistry 2008, 106, 559-563. Chen, H.; Qu, Z.; Fu, L.; Dong, P.; Zhang, X., Physicochemical Properties and Antioxidant Capacity of 3 Polysaccharides from Green Tea, Oolong Tea, and Black Tea. Journal of Food Science 2009, 74, C469-C474. Chin, E. T.; Papac, D. I. J. A. b., The use of a porous graphitic carbon column for desalting hydrophilic peptides prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. 1999, 273, 179-185. Clarke, A. E.; Anderson, R. L.; Stone, B. A., Form and function of arabinogalactans and arabinogalactan-proteins. Phytochemistry 1979, 18, 521-540. Clausen, M. H.; Willats, W. G. T.; Knox, J. P., Synthetic methyl hexagalacturonate hapten inhibitors of anti-homogalacturonan monoclonal antibodies LM7, JIM5 and JIM7. Carbohydrate Research 2003, 338, 1797-1800. Coenen, G.; Bakx, E.; Verhoef, R.; Schols, H.; Voragen, A. J. C. p., Identification of the connecting linkage between homo-or xylogalacturonan and rhamnogalacturonan type I. 2007, 70, 224-235. Cowan, T. M., Neonatal Screening by Tandem Mass Spectrometry. 2005, 6, e539-e548. Crittenden, R. G.; Playne, M. J., Production, properties and applications of food-grade oligosaccharides. Trends in Food Science & Technology 1996, 7, 353-361. De Vries, J.; Rombouts, F.; Voragen, A.; Pilnik, W. J. C. P., Enzymic degradation of apple pectins. 1982, 2, 25-33. Ding, H. H.; Cui, S. W.; Goff, H. D.; Chen, J.; Wang, Q.; Han, N. F., Arabinan-rich rhamnogalacturonan-I from flaxseed kernel cell wall. Food Hydrocolloids 2015, 47, 158-167. Domon, B.; Costello, C. E., A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconjugate Journal 1988, 5, 397-409. Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. t.; Smith, F. J. A. c., Colorimetric method for determination of sugars and related substances. 1956, 28, 350-356. Engelsen, S. B.; Cros, S.; Mackie, W.; Pérez, S. J. B., A molecular builder for carbohydrates: application to polysaccharides and complex carbohydrates. 1996, 39, 417-433. Faktor, J.; Dvorakova, M.; Maryas, J.; Procházková, I.; Bouchal, P., Identification and characterisation of pro-metastatic targets, pathways and molecular complexes using a toolbox of proteomic technologies. Klinická onkologie : casopis Ceské a Slovenské onkologické spolecnosti 2012, 25 Suppl 2, 2S70-7. Fissore, E.; Ponce, N.; Stortz, C.; Rojas, A.; Gerschenson, L. N. J. F. s.; international, t., Characterisation of fiber obtained from pumpkin (Cucumis moschata Duch.) mesocarp through enzymatic treatment. 2007, 13, 141-151. Garozzo, D.; Giuffrida, M.; Impallomeni, G.; Ballistreri, A.; Montaudo, G., Determination of linkage position and identification of the reducing end in linear oligosaccharides by negative ion fast atom bombardment mass spectrometry. Analytical Chemistry 1990, 62, 279-286. Geshi, N.; Jørgensen, B.; Ulvskov, P., Subcellular localization and topology of β(1→4)galactosyltransferase that elongates β(1→4)galactan side chains in rhamnogalacturonan I in potato. Planta 2004, 218, 862-868. Guillon, F.; Mose, A.; Quemener, B.; Bouchet, B.; Devaux, M.-F.; Alvarado, C.; Lahaye, M., Remodeling of pectin and hemicelluloses in tomato pericarp during fruit growth. Plant Science 2017, 257, 48-62. Guo, R.; Zhang, J. a.; Liu, X.; Li, X.; Sun, X.; Kou, Y.; Li, D.; Liu, Y.; Zhang, H.; Wu, Y., Pectic polysaccharides from Biluochun Tea: A comparative study in macromolecular characteristics, fine structures and radical scavenging activities in vitro. International Journal of Biological Macromolecules 2022, 195, 598-608. Gur’janov, O. P.; Gorshkova, T. A.; Kabel, M.; Schols, H. A.; van Dam, J. E. J. C. p., MALDI-TOF MS evidence for the linking of flax bast fibre galactan to rhamnogalacturonan backbone. 2007, 67, 86-96. Hamed, M.; Coelho, E.; Bastos, R.; Evtuguin, D. V.; Ferreira, S. S.; Lima, T.; Vilanova, M.; Sila, A.; Coimbra, M. A.; Bougatef, A., Isolation and identification of an arabinogalactan extracted from pistachio external hull: Assessment of immunostimulatory activity. Food Chemistry 2022, 373, 131416. Helali, N.; Monser, L. J. J. o. s. s., Stability indicating method for famotidine in pharmaceuticals using porous graphitic carbon column. 2008, 31, 276-282. Higdon, J. V.; Frei, B., Tea Catechins and Polyphenols: Health Effects, Metabolism, and Antioxidant Functions. Critical Reviews in Food Science and Nutrition 2003, 43, 89-143. Hinz, S. W. A.; Verhoef, R.; Schols, H. A.; Vincken, J.-P.; Voragen, A. G. J., Type I arabinogalactan contains β-d-Galp-(1→3)-β-d-Galp structural elements. Carbohydrate Research 2005, 340, 2135-2143. Hocart, C. H., 9.10 - Mass Spectrometry: An Essential Tool for Trace Identification and Quantification. In Comprehensive Natural Products II, Liu, H.-W.; Mander, L., Eds. Elsevier: Oxford, 2010; pp 327-388. Homer, N. Z. J. S. E., Clinical mass spectrometry: a short review. 2011, 23, 14. Ishii, T.; Tobita, T. J. C. r., Structural characterization of feruloyl oligosaccharides from spinach-leaf cell walls. 1993, 248, 179-190. Jones, L.; Seymour, G. B.; Knox, J. P., Localization of Pectic Galactan in Tomato Cell Walls Using a Monoclonal Antibody Specific to (1[-&gt;]4)-[beta]-D-Galactan. Plant Physiology 1997, 113, 1405-1412. Joseleau, J.-P.; Pérez, S., The Plant Cell Walls: Complex Polysaccharide Nano-Composites. 2016. Juvonen, M.; Kotiranta, M.; Jokela, J.; Tuomainen, P.; Tenkanen, M., Identification and structural analysis of cereal arabinoxylan-derived oligosaccharides by negative ionization HILIC-MS/MS. Food Chemistry 2019, 275, 176-185. Kaczmarska, A.; Pieczywek, P. M.; Cybulska, J.; Zdunek, A., Structure and functionality of Rhamnogalacturonan I in the cell wall and in solution: A review. Carbohydrate Polymers 2022, 278, 118909. Kailemia, M. J.; Ruhaak, L. R.; Lebrilla, C. B.; Amster, I. J., Oligosaccharide Analysis by Mass Spectrometry: A Review of Recent Developments. Analytical Chemistry 2014, 86, 196-212. Kotake, T.; Kaneko, S.; Kubomoto, A.; Haque, M. A.; Kobayashi, H.; Tsumuraya, Y., Molecular cloning and expression in Escherichia coli of a Trichoderma viride endo-beta-(1-->6)-galactanase gene. The Biochemical journal 2004, 377, 749-55. Kováts, E., Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. 1958, 41, 1915-1932. Le Nours, J.; De Maria, L.; Welner, D.; Jørgensen, C. T.; Christensen, L. L. H.; Borchert, T. V.; Larsen, S.; Lo Leggio, L., Investigating the binding of β-1,4-galactan to Bacillus licheniformis β-1,4-galactanase by crystallography and computational modeling. Proteins: Structure, Function, and Bioinformatics 2009, 75, 977-989. Leclere, L.; Van Cutsem, P.; Michiels, C. J. F. i. p., Anti-cancer activities of pH-or heat-modified pectin. 2013, 4, 128. Liang, S.; Granato, D.; Zou, C.; Gao, Y.; Zhu, Y.; Zhang, L.; Yin, J.-F.; Zhou, W.; Xu, Y.-Q., Processing technologies for manufacturing tea beverages: From traditional to advanced hybrid processes. Trends in Food Science & Technology 2021, 118, 431-446. Lin, C.-C.; Yang, Y.-C.; Lu, Z.-Y.; Bagal-Kestwal, D. R.; Lu, T.-J., Profile diversity of galacto-oligosaccharides from disaccharides to hexasaccharides by porous graphitic carbon liquid chromatography-orbitrap tandem mass spectrometry. Food Chemistry 2022, 390, 133151. Liu, W.; Liu, Y.; Zhu, R.; Yu, J.; Lu, W.; Pan, C.; Yao, W.; Gao, X., Structure characterization, chemical and enzymatic degradation, and chain conformation of an acidic polysaccharide from Lycium barbarum L. Carbohydrate Polymers 2016, 147, 114-124. Lv, Y.; Yang, X.; Zhao, Y.; Ruan, Y.; Yang, Y.; Wang, Z., Separation and quantification of component monosaccharides of the tea polysaccharides from Gynostemma pentaphyllum by HPLC with indirect UV detection. Food Chemistry 2009, 112, 742-746. Ma, F.; Wang, D.; Zhang, Y.; Li, M.; Qing, W.; Tikkanen-Kaukanen, C.; Liu, X.; Bell, A. E., Characterisation of the mucilage polysaccharides from Dioscorea opposita Thunb. with enzymatic hydrolysis. Food Chemistry 2018, 245, 13-21. Martens-Uzunova, E. S.; Schaap, P. J., Assessment of the pectin degrading enzyme network of Aspergillus niger by functional genomics. Fungal Genetics and Biology 2009, 46, S170-S179. McCleary, B. V., Comparison of Endolytic Hydrolases That Depolymerize 1,4-β-<sc>D</sc>-Mannan, 1,5-α-<sc>L</sc>-Arabinan, and 1,4-β-<sc>D</sc>-Galactan. In Enzymes in Biomass Conversion, American Chemical Society: 1991; Vol. 460, pp 437-449. Mohnen, D., Pectin structure and biosynthesis. Current Opinion in Plant Biology 2008, 11, 266-277. Moore, J. P.; Farrant, J. M.; Driouich, A. J. P. S.; Behavior, A role for pectin-associated arabinans in maintaining the flexibility of the plant cell wall during water deficit stress. 2008, 3, 102-104. Mort, A.; Zheng, Y.; Qiu, F.; Nimtz, M.; Bell-Eunice, G., Structure of xylogalacturonan fragments from watermelon cell-wall pectin. Endopolygalacturonase can accommodate a xylosyl residue on the galacturonic acid just following the hydrolysis site. Carbohydrate Research 2008, 343, 1212-1221. Munarin, F.; Tanzi, M. C.; Petrini, P. J. I. j. o. b. m., Advances in biomedical applications of pectin gels. 2012, 51, 681-689. Mussatto, S. I.; Mancilha, I. M., Non-digestible oligosaccharides: A review. Carbohydrate Polymers 2007, 68, 587-597. Ndeh, D.; Rogowski, A.; Cartmell, A.; Luis, A. S.; Baslé, A.; Gray, J.; Venditto, I.; Briggs, J.; Zhang, X.; Labourel, A.; Terrapon, N.; Buffetto, F.; Nepogodiev, S.; Xiao, Y.; Field, R. A.; Zhu, Y.; O’Neill, M. A.; Urbanowicz, B. R.; York, W. S.; Davies, G. J.; Abbott, D. W.; Ralet, M.-C.; Martens, E. C.; Henrissat, B.; Gilbert, H. J., Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature 2017, 544, 65-70. Nie, S.-P.; Xie, M.-Y., A review on the isolation and structure of tea polysaccharides and their bioactivities. Food Hydrocolloids 2011, 25, 144-149. Noguchi, M.; Hasegawa, Y.; Suzuki, S.; Nakazawa, M.; Ueda, M.; Sakamoto, T. J. C. p., Determination of chemical structure of pea pectin by using pectinolytic enzymes. 2020, 231, 115738. O'NEILL, M.; Albersheim, P.; Darvill, A., The pectic polysaccharides of primary cell walls. In Methods in plant biochemistry, Elsevier: 1990; Vol. 2, pp 415-441. O'Neill, M. A.; Eberhard, S.; Albersheim, P.; Darvill, A. G., Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth. Science (New York, N.Y.) 2001, 294, 846-9. O'Neill, M. A.; Ishii, T.; Albersheim, P.; Darvill, A. G., Rhamnogalacturonan II: Structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu. Rev. Plant Biol. 2004, 55, 109-139. Øbro, J.; Harholt, J.; Scheller, H. V.; Orfila, C., Rhamnogalacturonan I in Solanum tuberosum tubers contains complex arabinogalactan structures. Phytochemistry 2004, 65, 1429-1438. Oechslin, R.; Lutz, M. V.; Amadò, R., Pectic substances isolated from apple cellulosic residue: structural characterisation of a new type of rhamnogalacturonan I. Carbohydrate Polymers 2003, 51, 301-310. Olsen, J. V.; de Godoy, L. M.; Li, G.; Macek, B.; Mortensen, P.; Pesch, R.; Makarov, A.; Lange, O.; Horning, S.; Mann, M., Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Molecular & cellular proteomics : MCP 2005, 4, 2010-21. Oosterveld, A.; Voragen, A. G.; Schols, H. A. J. C. P., Characterization of hop pectins shows the presence of an arabinogalactan-protein. 2002, 49, 407-413. Pérez, S.; Rodríguez-Carvajal, M. A.; Doco, T., A complex plant cell wall polysaccharide: rhamnogalacturonan II. A structure in quest of a function. Biochimie 2003, 85, 109-121. Pabst, M.; Altmann, F. J. A. c., Influence of electrosorption, solvent, temperature, and ion polarity on the performance of LC-ESI-MS using graphitic carbon for acidic oligosaccharides. 2008, 80, 7534-7542. Pabst, M.; Fischl, R. M.; Brecker, L.; Morelle, W.; Fauland, A.; Köfeler, H.; Altmann, F.; Léonard, R., Rhamnogalacturonan II structure shows variation in the side chains monosaccharide composition and methylation status within and across different plant species. The Plant journal : for cell and molecular biology 2013, 76, 61-72. Paulsen, B.; Barsett, H., Bioactive Pectic Polysaccharides. In 2005; Vol. 186, pp 69-101. Petersen, B. O.; Meier, S.; Duus, J. Ø.; Clausen, M. H. J. C. r., Structural characterization of homogalacturonan by NMR spectroscopy—assignment of reference compounds. 2008, 343, 2830-2833. Pettolino, F. A.; Walsh, C.; Fincher, G. B.; Bacic, A., Determining the polysaccharide composition of plant cell walls. Nat Protoc 2012, 7, 1590-607. Pitson, S. M.; Voragen, A. G. J.; Vincken, J. P.; Beldman, G., Action patterns and mapping of the substrate-binding regions of endo-(1→5)-α-l-arabinanases from Aspergillus niger and Aspergillus aculeatus. Carbohydr. Res. 1997, 303, 207. Prandi, B.; Baldassarre, S.; Babbar, N.; Bancalari, E.; Vandezande, P.; Hermans, D.; Bruggeman, G.; Gatti, M.; Elst, K.; Sforza, S., Pectin oligosaccharides from sugar beet pulp: molecular characterization and potential prebiotic activity. Food & Function 2018, 9, 1557-1569. Pustjens, A. M.; Schols, H. A.; Kabel, M. A.; Gruppen, H., Characterisation of cell wall polysaccharides from rapeseed (Brassica napus) meal. Carbohydr. Polym. 2013, 98, 1650. Rakhmanberdyeva, R. K.; Shashkov, A. S.; Bobakulov, K. M.; Azizov, D. Z.; Malikova, M. K.; Ogay, D. K., The structure and prebiotic activity of arabinogalactan from Ferula Kuhistаnica. Carbohydrate Research 2021, 505, 108342. Redgwell, R. J.; Curti, D.; Fischer, M.; Nicolas, P.; Fay, L. B., Coffee bean arabinogalactans: acidic polymers covalently linked to protein. Carbohydrate Research 2002, 337, 239-253. Rexová-Benková, Ľ.; Markoviĉ, O., Pectic Enzymes. In Advances in Carbohydrate Chemistry and Biochemistry, Tipson, R. S.; Horton, D., Eds. Academic Press: 1976; Vol. 33, pp 323-385. Ridley, B. L.; O'Neill, M. A.; Mohnen, D., Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 2001, 57, 929-967. Rivero-Urgell, M.; Santamaria-Orleans, A., Oligosaccharides: application in infant food. Early Human Development 2001, 65, S43-S52. Roberfroid, M.; Slavin, J., Nondigestible Oligosaccharides. Critical Reviews in Food Science and Nutrition 2000, 40, 461-480. Round, A. N.; Rigby, N. M.; MacDougall, A. J.; Morris, V. J. J. C. R., A new view of pectin structure revealed by acid hydrolysis and atomic force microscopy. 2010, 345, 487-497. Ruhaak, L. R.; Deelder, A. M.; Wuhrer, M., Oligosaccharide analysis by graphitized carbon liquid chromatography-mass spectrometry. Analytical and bioanalytical chemistry 2009, 394, 163-74. Ryttersgaard, C.; Le Nours, J.; Lo Leggio, L.; Jørgensen, C. T.; Christensen, L. L. H.; Bjørnvad, M.; Larsen, S., The Structure of Endo-β-1,4-galactanase from Bacillus licheniformis in Complex with Two Oligosaccharide Products. Journal of Molecular Biology 2004, 341, 107-117. Séveno, M.; Voxeur, A.; Rihouey, C.; Wu, A.; Ishii, T.; Chevalier, C.; Ralet, M.-C.; Driouich, A.; Marchant, A.; Lerouge, P., Structural characterization of the pectic polysaccharide rhamnogalacturonan II using an acidic fingerprinting methodology. Planta 2009, 230, 947-57. Saang'onyo, D. In Optimization And Validation Of Direct Analysis In Real Time Mass Spectrometry (dart-Ms) For Quantitation Of Sugars To Advance Biofuel Production, 2011; 2011. Saulnier, L.; Thibault, J. F. J. J. o. t. S. o. F.; Agriculture, Ferulic acid and diferulic acids as components of sugar‐beet pectins and maize bran heteroxylans. 1999, 79, 396-402. Schäfer, J.; Brett, A.; Trierweiler, B.; Bunzel, M., Characterization of Cell Wall Composition of Radish (Raphanus sativus L. var. sativus) and Maturation Related Changes. Journal of Agricultural and Food Chemistry 2016, 64, 8625-8632. Šebela, M. J. S. E., Solid mixed matrices and their advantages in matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. 2016, 28, 10-14. Sechet, J.; Htwe, S.; Urbanowicz, B.; Agyeman, A.; Feng, W.; Ishikawa, T.; Colomes, M.; Kumar, K. S.; Kawai-Yamada, M.; Dinneny, J. R.; O'Neill, M. A.; Mortimer, J. C., Suppression of Arabidopsis GGLT1 affects growth by reducing the L-galactose content and borate cross-linking of rhamnogalacturonan-II. The Plant journal : for cell and molecular biology 2018, 96, 1036-1050. Sengkhamparn, N.; Verhoef, R.; Schols, H. A.; Sajjaanantakul, T.; Voragen, A. G. J. C. R., Characterisation of cell wall polysaccharides from okra (Abelmoschus esculentus (L.) Moench). 2009, 344, 1824-1832. Shakhmatov, E. G.; Makarova, E. N.; Belyy, V. A. J. I. j. o. b. m., Structural studies of biologically active pectin-containing polysaccharides of pomegranate Punica granatum. 2019, 122, 29-36. Sharangi, A. B., Medicinal and therapeutic potentialities of tea (Camellia sinensis L.) – A review. Food Research International 2009, 42, 529-535. Shevchuk, A.; Megías-Pérez, R.; Zemedie, Y.; Kuhnert, N., Evaluation of carbohydrates and quality parameters in six types of commercial teas by targeted statistical analysis. Food Research International 2020, 133, 109122. Sila, D.; Van Buggenhout, S.; Duvetter, T.; Fraeye, I.; De Roeck, A.; Van Loey, A.; Hendrickx, M. J. C. R. i. F. S.; Safety, F., Pectins in processed fruits and vegetables: Part II—Structure–function relationships. 2009, 8, 86-104. Singh, B. N.; Shankar, S.; Srivastava, R. K., Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochemical Pharmacology 2011, 82, 1807-1821. Smallwood, M.; Yates, E. A.; Willats, W. G. T.; Martin, H.; Knox, J. P., Immunochemical comparison of membrane-associated and secreted arabinogalactan-proteins in rice and carrot. Planta 1996, 198, 452-459. Stacey, N. J.; Roberts, K.; Knox, J. P. J. P., Patterns of expression of the JIM4 arabinogalactan-protein epitope in cell cultures and during somatic embryogenesis in Daucus carota L. 1990, 180, 285-292. Sun, L.; Ropartz, D.; Cui, L.; Shi, H.; Ralet, M.-C.; Zhou, Y. J. C. p., Structural characterization of rhamnogalacturonan domains from Panax ginseng CA Meyer. 2019, 203, 119-127. Talmadge, K. W.; Keegstra, K.; Bauer, W. D.; Albersheim, P. J. P. p., The structure of plant cell walls: I. The macromolecular components of the walls of suspension-cultured sycamore cells with a detailed analysis of the pectic polysaccharides. 1973, 51, 158-173. Tang, X.-C.; He, Y.-Q.; Wang, Y.; Sun, M.-X., The role of arabinogalactan proteins binding to Yariv reagents in the initiation, cell developmental fate, and maintenance of microspore embryogenesis in Brassica napus L. cv. Topas. Journal of Experimental Botany 2006, 57, 2639-2650. Thibault, J.-F.; Ralet, M.-C. J. A. d. f. t., 32 Pectins, their Origin, Structure and Functions. 2008, 369-378. Thongaram, T.; Hoeflinger, J. L.; Chow, J.; Miller, M. J., Prebiotic Galactooligosaccharide Metabolism by Probiotic Lactobacilli and Bifidobacteria. Journal of Agricultural and Food Chemistry 2017, 65, 4184-4192. Tsumuraya, Y.; Ozeki, E.; Ooki, Y.; Yoshimi, Y.; Hashizume, K.; Kotake, T., Properties of arabinogalactan-proteins in European pear (Pyrus communis L.) fruits. Carbohydrate Research 2019, 485, 107816. van Bueren, A. L.; Mulder, M.; van Leeuwen, S.; Dijkhuizen, L. J. S. r., Prebiotic galactooligosaccharides activate mucin and pectic galactan utilization pathways in the human gut symbiont Bacteroides thetaiotaomicron. 2017, 7, 1-13. van de Vis, J. W.; Searle-van Leeuwen, M. J. F.; Siliha, H. A.; Kormelink, F. J. M.; Voragen, A. G. J., Purification and characterization of Endo-1,4-β-D-galactanases from Aspergillus niger and Aspergillus aculeatus: Use in combination with arabinanases from Aspergillus niger in enzymic conversion of potato arabinogalactan. Carbohydrate Polymers 1991, 16, 167-187. Vandevenne, E.; Van Buggenhout, S.; Duvetter, T.; Brouwers, E.; Declerck, P. J.; Hendrickx, M. E.; Van Loey, A.; Gils, A., Development and evaluation of monoclonal antibodies as probes to assess the differences between two tomato pectin methylesterase isoenzymes. Journal of Immunological Methods 2009, 349, 18-27. Verhertbruggen, Y.; Marcus, S. E.; Haeger, A.; Ordaz-Ortiz, J. J.; Knox, J. P., An extended set of monoclonal antibodies to pectic homogalacturonan. Carbohydrate Research 2009, 344, 1858-1862. Verhoef, R.; Lu, Y.; Knox, J. P.; Voragen, A. G. J.; Schols, H. A., Fingerprinting complex pectins by chromatographic separation combined with ELISA detection. Carbohydrate Research 2009, 344, 1808-1817. Vial, J.; Hennion, M.-C.; Fernandez-Alba, A.; Agüera, A. J. J. o. C. A., Use of porous graphitic carbon coupled with mass detection for the analysis of polar phenolic compounds by liquid chromatography. 2001, 937, 21-29. Vincken, J.-P.; Schols, H. A.; Oomen, R. J. F. J.; Beldman, G.; Visser, R. G. F.; Voragen, A. G. J., Pectin — the Hairy Thing. In Advances in Pectin and Pectinase Research, Voragen, F.; Schols, H.; Visser, R., Eds. Springer Netherlands: Dordrecht, 2003; pp 47-59. Voragen, A. G.; Coenen, G.-J.; Verhoef, R. P.; Schols, H. A. J. S. C., Pectin, a versatile polysaccharide present in plant cell walls. 2009, 20, 263-275. Voragen, A. G. J., Technological aspects of functional food-related carbohydrates. Trends in Food Science and Technology 1998, 9, 328-335. Wang, N.; Xu, P.; Yao, W.; Zhang, J.; Liu, S.; Wang, Y.; Zhang, Y., Structural elucidation and anti-diabetic osteoporotic activity of an arabinogalactan from Phellodendron chinense Schneid. Carbohydrate Polymers 2021, 118438. Wang, Y.; Ho, C., Polyphenolic Chemistry of Tea and Coffee: A Century of Progress. Journal of agricultural and food chemistry 2009, 57, 8109-14. Wang, Y.; Wei, X.; Jin, Z., Structure analysis of a neutral polysaccharide isolated from green tea. Food Research International 2009, 42, 739-745. Westphal, Y.; Schols, H. A.; Voragen, A. G. J.; Gruppen, H., Introducing porous graphitized carbon liquid chromatography with evaporative light scattering and mass spectrometry detection into cell wall oligosaccharide analysis. J. Chromatogr. A 2010, 1217, 689. Willats, W. G. T.; Marcus, S. E.; Knox, J. P., Generation of a monoclonal antibody specific to (1→5)-α-l-arabinan. Carbohydrate Research 1998, 308, 149-152. Wu, D.; Zheng, J.; Hu, W.; Zheng, X.; He, Q.; Linhardt, R. J.; Ye, X.; Chen, S., Structure-activity relationship of Citrus segment membrane RG-I pectin against Galectin-3: The galactan is not the only important factor. Carbohydrate Polymers 2020, 245, 116526. Xing, J.; Apedo, A.; Tymiak, A.; Zhao, N. J. R. C. i. M. S., Liquid chromatographic analysis of nucleosides and their mono‐, di‐and triphosphates using porous graphitic carbon stationary phase coupled with electrospray mass spectrometry. 2004, 18, 1599-1606. Yapo, B. M.; Koffi, K. L. J. J. o. a.; chemistry, f., Yellow passion fruit rind a potential source of low-methoxyl pectin. 2006, 54, 2738-2744. Yapo, B. M., Pectic substances: From simple pectic polysaccharides to complex pectins—A new hypothetical model. Carbohydrate Polymers 2011, 86, 373-385. Yapo, B. M. J. B., Pineapple and banana pectins comprise fewer homogalacturonan building blocks with a smaller degree of polymerization as compared with yellow passion fruit and lemon pectins: implication for gelling properties. 2009, 10, 717-721. Yapo, B. M. J. J. o. a.; chemistry, f., Biochemical characteristics and gelling capacity of pectin from yellow passion fruit rind as affected by acid extractant nature. 2009, 57, 1572-1578. York, W. S.; Darvill, A. G.; McNeil, M.; Stevenson, T. T.; Albersheim, P., Isolation and characterization of plant cell walls and cell wall components. In Methods in Enzymology, Academic Press: 1986; Vol. 118, pp 3-40. Yu, L.; Zhang, X.; Li, S.; Liu, X.; Sun, L.; Liu, H.; Iteku, J.; Zhou, Y.; Tai, G. J. C. P., Rhamnogalacturonan I domains from ginseng pectin. 2010, 79, 811-817. Zhang, L.; Wang, P.; Qin, Y.; Cong, Q.; Shao, C.; Du, Z.; Ni, X.; Li, P.; Ding, K., RN1, a novel galectin-3 inhibitor, inhibits pancreatic cancer cell growth in vitro and in vivo via blocking galectin-3 associated signaling pathways. Oncogene 2017, 36, 1297-1308. Zhang, X.; Chen, H.; Zhang, N.; Chen, S.; Tian, J.; Zhang, Y.; Wang, Z., Extrusion treatment for improved physicochemical and antioxidant properties of high-molecular weight polysaccharides isolated from coarse tea. Food Research International 2013, 53, 726-731. Zhong, Y.; Chiou, Y.-S.; Pan, M.-H.; Shahidi, F. J. F. c., Anti-inflammatory activity of lipophilic epigallocatechin gallate (EGCG) derivatives in LPS-stimulated murine macrophages. 2012, 134, 742-748. Zhu, J.; Chen, Z.; Chen, L.; Yu, C.; Wang, H.; Wei, X.; Wang, Y., Comparison and structural characterization of polysaccharides from natural and artificial Se-enriched green tea. International Journal of Biological Macromolecules 2019, 130, 388-398. 张丽霞; 湖南农学院学报, 施. J., 红茶和绿茶初制过程中维生素 C 变化动态研究. 1991, 627-632.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85994-
dc.description.abstract茶飲主要是從茶葉 (Camellia sinensis) 和茶芽所萃取而得的飲品,因茶飲具有許多保健功能,因此越來越受到歡迎。其中茶葉多醣被認為是茶飲所含活性成分之一,茶葉多醣(TPS)主要由異質聚醣所含的果膠多醣組成(約90%),由於茶葉多醣為一結構複雜且分子量龐大的化合物,因此我們利用酵素水解結合液相層析串聯質譜建立一種分析策略來克服茶葉多醣結構的複雜性以獲得分子特徵。茶葉多醣中的主要單醣成分是半乳糖,阿拉伯糖,鼠李糖和半乳糖醛酸。此外,茶葉多醣包含鼠李糖半乳糖醛酸聚醣及其分支,像是阿拉伯聚醣、I型阿拉伯半乳聚醣(AG-I)和II型阿拉伯半乳聚醣(AG-II)。根據骨架的種類可以把AG分成兩種型式,AG-Ⅰ為以1,4半乳醣為骨幹且在三號碳的位置帶有阿拉伯半乳寡醣的側支;AG-Ⅱ則以1,3-半乳醣為骨幹,且在六號碳的位置上帶有阿拉伯半乳寡醣的側支。為了鑑定茶葉多醣中的複雜結構,使用內聚半乳醣醛酸酶(endo-polygalacturonase),β-1,4-半乳糖苷酶,α-1,5-阿拉伯糖苷酶和β-1,6-半乳糖苷酶將阿拉伯半乳聚醣水解成具有結構特徵性的阿拉伯寡醣、半乳寡醣和阿拉伯半乳寡醣,複雜程度會隨著發酵程度降低。接著利用超高效液相層析串聯質譜分析寡醣異構物和鍵結斷裂模式。我們根據層析圖和質譜圖的結果可以發現(1→4),(1→6)和(1→3)醣苷鍵是AG中的主要鍵結組成,(1→5) 醣苷鍵為阿拉伯聚醣的主要鍵結組成,並使用單株抗體鑑定茶葉多醣的結果表明,它具有RG-I,AG-I、AG-II和阿拉伯聚醣的抗原表位特徵結構。zh_TW
dc.description.abstractTea, water extraction of leaves, and buds of the tea plant (Camellia sinensis L.), are popular beverages. Tea polysaccharides (TPS) in the drink are mainly composed of heteroglycan, including pectic polysaccharides. It needs an analysis strategy to overcome the complexity of tea polysaccharides structure to obtain molecular characteristics. We developed an analytic approach by combining enzyme-assisted liquid chromatography-tandem mass spectrometry. The main monosaccharide components in TPS were galactose, arabinose, rhamnose, and galacturonic acid. Our results of sugar linkage analysis indicated that TPS was pectic polysaccharides composed of rhamnogalacturonan and its branches, arabinan, type I arabinogalactan (AG-I), and type II arabinogalactan (AG-II). We selected endo-polygalacturonanase (PGs), arabinogalactan endo--1,4-galactanase, endo-1,5--L-arabinanase, endo--1,6-galactanase and their combination to release the branches form pectic polysaccharides for further analysis on ultra-high-performance liquid- chromatography-tandem mass spectrometry. The structural characteristics of released arabino-oligosaccharides, galacto-oligosaccharides, and arabino-galacto-oligosaccharides were elucidated according to the fragmentation pattern of each oligomer group. The results showed that (1 → 4), (1 → 6), and (1 → 3) linkages were the main glycosidic structures found in AGs. The complexity decreased as the fermentation degree increased. We further used monoclonal antibodies used for embryogenic cell clusters to verify the epitopes of RG- I, AG-I, and AG-II, which consist of the results obtained from newly developed enzyme-assisted liquid chromatography-tandem mass spectrometry. The developed analytic platform facilitates the routine analysis of pectic polysaccharides from various tea products.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:32:02Z (GMT). No. of bitstreams: 1
U0001-1409202211582800.pdf: 12497993 bytes, checksum: 4efb5fbec7ba2e66ac22c9a632fff46b (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents摘要 i Abstract iii 第一章、 前言 1 第二章、文獻回顧 2 2.1 茶葉 2 2.1.2 金萱茶 (臺茶12號) 5 2.1.3 茶葉之化學組成 5 2.1.4 茶葉多醣 8 2.2 果膠多醣 8 2.2.1 半乳糖醛酸聚醣 ( Homogalacturonan, HG ) 9 2.2.2 鼠李糖半乳糖醛酸聚醣 Ⅰ ( Rhamnogalacturonan-I, RG-I) 11 2.2.3 阿拉伯聚醣 (Arabinan) 13 2.2.4 阿拉伯半乳聚醣 (Arabinogalactan Type I, AG I) 13 2.2.5 阿拉伯半乳聚醣 (Arabinogalactan type II, AG-II) 14 2.2.6 鼠李半乳醣醛酸聚醣II (Rhamnogalacturonan II, RG-II) 14 2.2.7 木聚半乳糖 (Xylogalacturonan, XG) 15 2.2.8 果膠多醣結構假設模型 16 2.2.9 果膠生物活性 19 2.3 半纖維素 20 2.4 寡醣 20 2.4.1 非消化寡醣 20 2.4.2 半乳寡醣 (Galactooligosaccharides, GOS) 21 2.4.3 阿拉伯寡醣 21 2.4.4 阿拉伯半乳聚醣 21 2.5 果膠酵素和阿拉伯半乳寡醣酵素 22 2.5.2 endo-β-1,4-galactanase 22 2.5.3 endo-α-1,5-L-arabinanase 23 2.5.4 Recombinant Hypocrea rufa Endo-β-1,6-galactanase 23 2.6 糖組成與糖苷鍵結解析 23 2.6.1 茶葉多糖之單醣組成 23 2.6.2 茶葉多醣醣苷鍵結組成 24 2.6.2.1 氣相層析串聯質譜儀 (GC/MS) 24 2.6.2.2 甲基化分析 (Methylation analysis) 24 2.6.2.3 茶葉多醣醣苷鍵結組成 25 2.7 可辨認果膠多醣結構之單株抗體 25 2.7.1 可辨認果膠多醣結構之單株抗體 26 2.8 多孔石墨化碳液相層析 27 2.9 質譜儀 28 2.9.1 游離法 29 2.9.2 質量分析器 31 2.9.3 串聯質譜 34 2.9.4 三段四極柱 35 2.10 寡醣離子碎片命名系統 36 2.11 寡醣質譜斷片離子解析 38 第三章、實驗目的與研究架構 41 第四章、材料與方法 42 4.1 實驗材料 42 4.2.1 綠茶 42 4.2.2 包種茶 42 4.2.3 紅茶 42 4.2 樣品製備方法 42 4.2.1 金萱茶葉磨粉處裡 43 4.2.2 80% v/v 乙醇不溶物之熱水萃取物之製備 43 4.2.3 粗多醣製備 43 4.2.4 非消化水溶性多醣製備 43 4.2.5 利用Endo-Polygalacturonanase 44 4.2.6 經酵素水解所得阿拉伯半乳寡醣製備 44 4.2.6.1 使用endo-β-1,4-galactanase (1,4-GLN) 44 4.2.6.2 使用endo-α-1,5-L-arabinanase (1,5-ABN) 45 4.2.6.3 使用Recombinant Hypocrea rufa endo-β-1,6-galactanase (1,6-GLN) 45 4.2.6.4 使用endo-β-1,4-galactanase (1,4-GLN) 和endo-α-1,5-L- 46 arabinanase (1,5-ABN) 46 4.2.6.5 使用endo-β-1,4-galactanase (1,4-GLN)、endo-α-1,5-L-arabinanase (1,5-ABN) 和Recombinant Hypocrea rufa endo-β-1,6-galactanase (1,6-GLN) 46 4.3 試藥與儀器設備 46 4.3.1 化學藥劑與試劑 46 4.3.2 標準品 48 4.3.3 酵素 49 4.3.4 單株抗體 49 4.3.5 細胞株 (cell line) 49 4.3.6 分析套組 49 4.3.7 儀器設備 50 4.4 分析方法 52 4.4.7 使用液相層析串聯質譜儀分析阿拉伯半乳寡醣 59 4.4.8 細胞試驗 62 第五章、結果與討論 65 5.1 金萱茶葉非消化水溶性多醣各電荷區分比率與組成 65 5.2 利用不同酵素組合所得金萱茶葉非消化水溶性多醣茶葉多醣組成 67 5.3 金萱非消化水溶性多醣醣苷鍵結分析 72 5.4 金萱茶葉非消化水溶性多醣與單株抗體親和力 80 5.5 各式茶類與不同酵素組合之結構組成比較 93 5.6 各類茶葉多醣經酵素水解之轉換效率 96 5.7 比較各式茶類與不同酵素組合水解所得二醣異構物結構輪廓 97 5.8 比較各式茶類與不同酵素組合水解所得三醣異構物結構輪廓 104 5.9 比較各式茶類與不同酵素組合水解所得四醣異構物結構輪廓 110 5.10 比較各式茶類與不同酵素組合水解所得五醣異構物結構輪廓 120 5.11 比較各式茶類與不同酵素組合水解所得六醣異構物結構輪廓 131 第六章、結論 147 第七章、參考文獻 148 第八章、附錄 159
dc.language.isozh-TW
dc.subject阿拉伯半乳聚醣zh_TW
dc.subject茶葉多醣zh_TW
dc.subject阿拉伯半乳寡醣zh_TW
dc.subject酵素轉換zh_TW
dc.subject液相層析串聯質譜zh_TW
dc.subjectUHPLC-MS/MSen
dc.subjecttea polysaccharideen
dc.subjectarabinogalactanen
dc.subjectarabinogalacto-oligosaccharideen
dc.subjectenzymatic conversionen
dc.title以酵素輔助高效能液相串聯質譜法分析不同發酵程度金萱茶中阿拉伯半乳聚醣結構特徵zh_TW
dc.titleStructural characterization of arabinogalactans from Jhinhsuan tea with different degrees of fermentation by enzyme-assisted ultra-high-performance liquid chromatography-tandem mass spectrometryen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張永和(Yung-Ho Chang),楊麗嬋(Li-Chan Yang),邱群惠(Chun-Hui Chiu),陳明煦(MING-HSU CHEN)
dc.subject.keyword茶葉多醣,阿拉伯半乳聚醣,阿拉伯半乳寡醣,酵素轉換,液相層析串聯質譜,zh_TW
dc.subject.keywordtea polysaccharide,arabinogalactan,arabinogalacto-oligosaccharide,enzymatic conversion,UHPLC-MS/MS,en
dc.relation.page252
dc.identifier.doi10.6342/NTU202203388
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-21
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
dc.date.embargo-lift2027-09-15-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
U0001-1409202211582800.pdf
  此日期後於網路公開 2027-09-15
12.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved