Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85849
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor鄭佳昆(Chia-Kuen Cheng)
dc.contributor.authorYu-Hsuan Kangen
dc.contributor.author康聿萱zh_TW
dc.date.accessioned2023-03-19T23:26:21Z-
dc.date.copyright2022-09-27
dc.date.issued2022
dc.date.submitted2022-09-26
dc.identifier.citation1. 呂怡君、林晏州 (2016),步道上遊客人數對擁擠感受之影響。戶外遊憩研究, 29(1), 57-77。 2. 林晏州 (2000),社會遊憩容許量評估方法之比較。戶外遊憩研究,13(1),1-20。 3. 吳孟娟 (2002)。步道衝擊預測模式與遊憩容許量評定之研究。國立臺灣大學園藝暨景觀研究所碩士論文,台北市。 4. 吳家穎 (2012)。應用藍幕技術探討遊客在溪頭自然教育公園中步道之動態擁擠感。國立虎尾科技大學休閒遊憩研究所碩士論文,雲林縣。 5. 吳婉瑄 (2019)。使用者的分佈模式對於擁擠感的影響。國立臺灣大學園藝暨景觀研究所碩士論文,台北市。 6. 吳婉瑄、鄭佳昆 (2018)。以沉浸式虛擬實境法測量擁擠知覺之效度研究。第20屆休閒、遊憩、觀光國際論壇暨學術研討會,國立台灣大學。 7. 吳紫宸、李英弘(2009)。九族文化村擁擠感之研究。造園景觀學報,15(3), 1-21。 8. 陳映均、林晏州 (2014)。都市街道景觀封閉感之研究。 都市與計劃, 41(1), 99-115。 9. 歐聖榮、李美芬(2001)。景觀空間封閉感及偏好知覺之研究。2001 休閒、遊憩、觀光研究成果研討會(III),87-105 。 10. 歐聖榮(2001)。景觀空間封閉感及擁擠感之研究(Nsc89-2313-B-005-202)。 國家科學委員會,台北市:行政院表CM03,44。 11. 顏宏旭、吳家穎(2018)。應用藍幕技術探討溪頭自然教育公園中步道之動態擁擠知覺。戶外遊憩研究, 31(4), 95-120。 12. 顏宏旭 (2013)。動態擁擠感之研究-藍幕特效後製模擬技術之應用(Nsc 100-2410-H-150-009)。行政院國家科學委員會。 13. 羅啟峰、張韶靖(2018)。擁擠知覺、從眾行為與滿意度之關係研究。商學學報,26,157-182。 14. 陳庭輝, & 林裕彬. (2005). 戶外人工光源演色及色溫對視覺感知影響之研究—以模擬夜間都市公園之步道為例。造園景觀學報, 11(2), 41-66. 15. Abd-Alhamid, F., Kent, M., Bennett, C., Calautit, J., & Wu, Y. (2019). Developing an innovative method for visual perception evaluation in a physical-based virtual environment. Building and Environment, 162, 106278. 16. Adams, L., & Zuckerman, D. (1991). The effect of lighting conditions on personal space requirements. The journal of general psychology, 118(4), 335-340. 17. Andereck, K. L., & Becker, R. H. (1993). Perceptions of carry‐over crowding in recreation environments. 15(1), 25-35. 18. Anderson, A. M. (1933). Syllabus of design and color: Bruce Publishing Company. 19. Asgarzadeh, M., Koga, T., Hirate, K., Farvid, M., & Lusk, A. (2014). Investigating oppressiveness and spaciousness in relation to building, trees, sky and ground surface: A study in tokyo. Landscape and Urban Planning, 131, 36-41. 20. Ashley, M. (1898). Concerning the significance of intensity of light in visual estimates of depth. Psychological Review, 5(6), 595. 21. Bailenson, J. N., Blascovich, J., Beall, A. C., & Loomis, J. M. (2001). Equilibrium theory revisited: Mutual gaze and personal space in virtual environments. Presence: Teleoperators & Virtual Environments, 10(6), 583-598. 22. Bandini, S., Crociani, L., Gorrini, A., Nishinari, K., & Vizzari, G. (2020). Unveiling the hidden dimension of pedestrian crowds: Introducing personal space and crowding into simulations. Fundamenta Informaticae, 171(1-4), 19-38. 23. Baum, A., & Davis, G. E. (1976). Spatial and social aspects of crowding perception. 8(4), 527-544. 24. Baum, A., Paulus, P., Stokols, D., & Altman, I. (1987). Handbook of environmental psychology. Handbook of Environmental Psychology. 25. Blut, M., & Iyer, G. R. (2019). Consequences of perceived crowding: A meta-analytical perspective. Journal of Retailing. 26. Bokharaei, S., & Nasar, J. L. (2016). Perceived spaciousness and preference in sequential experience. Human factors, 58(7), 1069-1081. 27. Brengman, M., Willems, K., & Joye, Y. (2012). The impact of in-store greenery on customers. Psychology & Marketing, 29(11), 807-821. 28. Bultena, G., Albrecht, D., & Womble, P. (1981a). Freedom versus control: A study of backpackers’ preferences for wilderness management. Leisure Sciences, 4(3), 297-310. 29. Bultena, G., Field, D., Womble, P., & Albrecht, D. (1981b). Closing the gates: A study of backcountry use‐limitation at mount mckinley national park. Leisure Sciences, 4(3), 249-267. doi: 10.1080/01490408109512966 30. Cha, S. H., Koo, C., Kim, T. W., & Hong, T. (2019). Spatial perception of ceiling height and type variation in immersive virtual environments. Building and Environment, 163, 106285. 31. Chiang, Y.-C., Nasar, J. L., & Ko, C.-C. (2014). Influence of visibility and situational threats on forest trail evaluations. Landscape and Urban Planning, 125, 166-173. 32. Coules, J. (1955). Effect of photometric brightness on judgments of distance. Journal of experimental psychology, 50(1), 19. 33. Desor, J. A. (1972). Toward a psychological theory of crowding. Journal of personality and social psychology, 21(1), 79. 34. Dion, D. (1999). A theoretical and empirical study of retail crowding. ACR European Advances. 35. Ditton, R. B., Fedler, A. J., & Graefe, A. R. (1983). Factors contributing to perceptions of recreational crowding. Leisure Sciences, 5(4), 273-288. 36. Dosen, A. S., & Ostwald, M. J. (2017). Lived space and geometric space: Comparing people’s perceptions of spatial enclosure and exposure with metric room properties and isovist measures. Architectural Science Review, 60(1), 62-77. 37. Elbachir, S., & Chenini, A. (2017). How crowding influences emotional, perceptual and behavioural reactions in store. Maghreb Review of Economic and Management, 423(4167), 1-18. 38. Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 392(6676), 598-601. 39. Eroglu, S. A., Machleit, K., & Barr, T. F. (2005). Perceived retail crowding and shopping satisfaction: The role of shopping values. Journal of business research, 58(8), 1146-1153. 40. Evans, G. W., & Wener, R. E. (2007). Crowding and personal space invasion on the train: Please don’t make me sit in the middle. Journal of Environmental Psychology, 27(1), 90-94. 41. Flynn, J. E. (1988). Lighting-design decisions as interventions in human visual space. Environmental aesthetics: Theory, research, and application, 156-172. 42. Fujiyama, T., Childs, C., Boampomg, D., & Tyler, N. (2005). Investigation of lighting levels for pedestrians-some questions about lighting levels of current lighting standards. 43. Gärling, T. (1969). Studies in visual perception of architectural spaces and rooms: Ii. Judgments of open and closed space by category rating and magnitude estimation. [https://doi.org/10.1111/j.1467-9450.1969.tb00034.x]. Scandinavian Journal of Psychology, 10(1), 257-268. 44. Hall, E. T. (1966). The hidden dimension. 1966: New York: Doubleday. 45. Hammitt, W. E. (1983). Toward an ecological approach to perceived crowding in outdoor recreation. Leisure Sciences, 5(4), 309-320. 46. Harrell, G. D., Hutt, M. D., & Anderson, J. C. (1980). Path analysis of buyer behavior under conditions of crowding. Journal of Marketing research, 17(1), 45-51. 47. Hayward, S. C., & Franklin, S. S. (1974). Perceived openness-enclosure of architectural space. Environment and Behavior, 6(1), 37-52. 48. Herzog, T. R., & Kutzli, G. E. (2002). Preference and perceived danger in field/forest settings. Environment and behavior, 34(6), 819-835. 49. Hou, Y., Zhang, K., & Li, G. (2021). Service robots or human staff: How social crowding shapes tourist preferences. Tourism Management, 83, 104242. 50. Iachini, T., Coello, Y., Frassinetti, F., & Ruggiero, G. (2014). Body space in social interactions: A comparison of reaching and comfort distance in immersive virtual reality. PLoS ONE, 9(11), e111511. 51. Iachini, T., Coello, Y., Frassinetti, F., Senese, V. P., Galante, F., & Ruggiero, G. (2016). Peripersonal and interpersonal space in virtual and real environments: Effects of gender and age. Journal of Environmental Psychology, 45, 154-164. 52. Kim, D., Lee, C.-K., & Sirgy, M. J. (2016). Examining the differential impact of human crowding versus spatial crowding on visitor satisfaction at a festival. Journal of Travel & Tourism Marketing, 33(3), 293-312. 53. Kisker, J., Gruber, T., & Schöne, B. (2019). Experiences in virtual reality entail different processes of retrieval as opposed to conventional laboratory settings: A study on human memory. Current Psychology. 54. Kottasz, R. (2006). Understanding the influences of atmospheric cues on the emotional responses and behaviours of museum visitors. Journal of Nonprofit & Public Sector Marketing, 16(1-2), 95-121. 55. Lanier, M., Waddell, T. F., Elson, M., Tamul, D. J., Ivory, J. D., & Przybylski, A. (2019). Virtual reality check: Statistical power, reported results, and the validity of research on the psychology of virtual reality and immersive environments. Computers in Human Behavior, 100, 70-78. 56. Leichtmann, B., & Nitsch, V. (2020). How much distance do humans keep toward robots? Literature review, meta-analysis, and theoretical considerations on personal space in human-robot interaction. Journal of environmental Psychology, 68, 101386. 57. Loo, C. (1975). The psychological study of crowding: Some historical roots and conceptual developments. American behavioral scientist, 18(6), 826-842. 58. Machleit, K., Eroglu, S., & Mantel, S. (2000). Perceived retail crowding and shopping satisfaction: What modifies this relationship? Journal of Consumer Psychology, 9(1), 29-42. 59. Machleit, K. A., Kellaris, J. J., & Eroglu, S. A. (1994). Human versus spatial dimensions of crowding perceptions in retail environments: A note on their measurement and effect on shopper satisfaction. Marketing Letters, 5(2), 183-194. 60. Manav, B., & Yener, C. (1999). Effects of different lighting arrangements on space perception. Architectural Science Review, 42(1), 43-47. 61. Manning, R. E. (1999). Studies in outdoor recreation: Search and research for satisfaction. 62. Manning, R. E., Valliere, W. A., & Wang, B. (1999). Crowding norms: Alternative measurement approaches. Leisure sciences, 21(2), 97-115. 63. Matusiak, B. (2006). The impact of window form on the size impression of the room—full-scale studies. Architectural Science Review, 49(1), 43-51. 64. Maxwell, L. E. (2003). Home and school density effects on elementary school children: The role of spatial density. Environment and behavior, 35(4), 566-578. 65. Mcgrew, P. L. (1970). Social and spatial density effects on spacing behaviour in preschool children. Journal of child psychology and psychiatry, 11(3), 197-205. 66. Mehta, R. (2013). Understanding perceived retail crowding: A critical review and research agenda. Journal of Retailing and Consumer Services, 20(6), 642-649. 67. Motloch, J. L. (2000). Introduction to landscape design: John Wiley & Sons. 68. Nasar, J. L., & Bokharaei, S. (2017). Impressions of lighting in public squares after dark. Environment and Behavior, 49(3), 227-254. 69. Novelli, D., Drury, J., & Reicher, S. (2010). Come together: Two studies concerning the impact of group relations on personal space. British Journal of Social Psychology, 49(2), 223-236. 70. Oberfeld, D., Hecht, H., & Gamer, M. (2010). Surface lightness influences perceived room height. Quarterly Journal of Experimental Psychology, 63(10), 1999-2011. 71. Paes, D., Arantes, E., & Irizarry, J. (2017). Immersive environment for improving the understanding of architectural 3d models: Comparing user spatial perception between immersive and traditional virtual reality systems. Automation in Construction, 84, 292-303. 72. Palmer, J. F., & Roos-Klein Lankhorst, J. (1998). Evaluating visible spatial diversity in the landscape. Landscape and Urban Planning, 43(1-3), 65-78. 73. Proshansky, H. M., Ittelson, W. H., & Rivlin, L. G. (1972). Freedom of choice and behavior in a physical setting. 74. Rompay, T. J. L. V., Galetzka, M., Pruyn, A. T. H., & Garcia, J. M. (2008). Human and spatial dimensions of retail density: Revisiting the role of perceived control. Psychology and Marketing, 25(4), 319-335. 75. Schmidt, D. E., & Keating, J. P. (1979). Human crowding and personal control: An integration of the research. Psychological Bulletin, 86(4), 680. 76. Serino, A. (2019). Peripersonal space (pps) as a multisensory interface between the individual and the environment, defining the space of the self. Neuroscience & Biobehavioral Reviews, 99, 138-159. 77. Serino, A., Noel, J.-P., Mange, R., Canzoneri, E., Pellencin, E., Ruiz, J. B., . . . Herbelin, B. (2018). Peripersonal space: An index of multisensory body–environment interactions in real, virtual, and mixed realities. [Original Research]. Frontiers in ICT, 4(31). 78. Stamps, A. E. (2003). Permeability and environmental enclosure. Perceptual and Motor Skills, 96(3_suppl), 1305-1310. 79. Stamps, A. E. (2005a). Elongation and enclosure. Perceptual and motor skills, 101, 303-308. 80. Stamps, A. E. (2005b). Visual permeability, locomotive permeability, safety, and enclosure. Environment and Behavior, 37(5), 587-619. 81. Stamps, A. E. (2006). Surface location and enclosure. 102(2), 517-528. 82. Stamps, A. E. (2007). Evaluating spaciousness in static and dynamic media. Design Studies, 28(5), 535-557. 83. Stamps, A. E. (2009). On shape and spaciousness. Environment and Behavior, 41(4), 526-548. 84. Stamps, A. E. (2010). Effects of permeability on perceived enclosure and spaciousness. Environment and Behavior, 42(6), 864-886. 85. Stamps, A. E. (2011). Effects of area, height, elongation, and color on perceived spaciousness. Environment and Behavior, 43(2), 252-273. 86. Stamps, A. E. (2013). Effects of multiple boundaries on perceived spaciousness and enclosure. Environment and Behavior, 45(7), 851-875. 87. Stamps, A. E., & Krishnan, V. V. (2004). Perceived enclosure of space, angle above observer, and distance to boundary. Perceptual and Motor Skills, 99(3_suppl), 1187-1192. 88. Stamps, A. E., & Krishnan, V. V. (2006). Spaciousness and boundary roughness. Environment and Behavior, 38(6), 841-872. 89. Stamps Iii, A. E. (2005). Enclosure and safety in urbanscapes. Environment and behavior, 37(1), 102-133. 90. Stamps Iii, A. E. (2008a). Some findings on prospect and refuge theory: Ii. Perceptual and motor skills, 107(1), 141-158. 91. Stamps Iii, A. E. (2008b). Some findings on prospect and refuge: I. Perceptual and motor skills, 106(1), 147-162. 92. Stokols, D. (1972a). On the distinction between density and crowding: Some implications for future research. Psychological Review, 79(3), 275-277. 93. Stokols, D. (1972b). A social-psychological model of human crowding phenomena. Journal of the American Institute of Planners, 38(2), 72-83. 94. Stokols, D., Rall, M., Pinner, B., & Schopler, J. (1973). Physical, social, and personal determinants of the perception of crowding. Environment and Behavior, 5(1), 87. 95. Sundstrom, E. (1975). An experimental study of crowding: Effects of room size, intrusion, and goal blocking on nonverbal behavior, self-disclosure, and self-reported stress. Journal of Personality and Social Psychology, 32(4), 645. 96. Teneggi, C., Canzoneri, E., Di pellegrino, G., & Serino, A. (2013). Social modulation of peripersonal space boundaries. Current Biology, 23(5), 406-411. 97. Thiel, P., Harrison, E. D., & Alden, R. S. (1986). The perception of spatial enclosure as a function of the position of architectural surfaces. Environment and Behavior, 18(2), 227-245. 98. Van Oosterhout, T., & Visser, A. (2008). A visual method for robot proxemics measurements. Paper presented at the Proceedings of Metrics for Human-Robot Interaction: A Workshop at the Third ACM/IEEE International Conference on Human-Robot Interaction (HRI 2008). Citeseer. 99. Vartanian, O., Navarrete, G., Chatterjee, A., Fich, L. B., Gonzalez-Mora, J. L., Leder, H., . . . Skov, M. (2015). Architectural design and the brain: Effects of ceiling height and perceived enclosure on beauty judgments and approach-avoidance decisions. Journal of Environmental psychology, 41, 10-18. 100. Vaske, J. J., & Shelby, L. B. (2008). Crowding as a descriptive indicator and an evaluative standard: Results from 30 years of research. Leisure Sciences, 30(2), 111-126. 101. Wang, T.-H., Wu, W.-H., Shen, L., & Cheng, C.-K. (2021). Exploring the validity of using immersive virtual reality technique on perceived crowding of recreational environment. Landscape and Ecological Engineering, 17(3), 299-308. 102. Wänström Lindh, U. (2012). Light shapes spaces: Experience of distribution of light and visual spatial boundaries. 103. Wänström Lindh, U., & Billger, M. (2021). Light distribution and perceived spaciousness: Light patterns in scale models. Sustainability, 13(22), 12424. 104. Wänström Lindh, U., Billger, M., & Aries, M. (2020). Experience of spaciousness and enclosure: Distribution of light in spatial complexity. Journal of Sustainable Design & Applied Research, 8(1). 105. Zarghami, E., Karimimoshaver, M., Ghanbaran, A., & Saadativaghar, P. (2019). Assessing the oppressive impact of the form of tall buildings on citizens: Height, width, and height-to-width ratio. Environmental Impact Assessment Review, 79, 106287.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85849-
dc.description.abstract擁擠感是景觀遊憩相關領域中長期被研究的議題之一,經常作為戶外遊憩環境品質的重要指標。而在環境心理學、商業及行銷領域領域的研究將擁擠區分為「人」及「空間」兩種概念,認為除了「人」會造成擁擠之外,還有「空間」的特徵、因素會造成影響。商業領域研究明確定義「人群擁擠(human crowding)」及「空間擁擠(spatial crowding)」兩種不同的擁擠概念,同時將空間感知視為擁擠的一部分(Harrell et al., 1980);然而在景觀遊憩相關領域則是將空間感知及擁擠感作區分。各種空間感知中,寬敞感(spacious)及封閉感(enclosure)兩者為最常被討論的概念,很多學者認為兩者空間感知彼此相關,雖然有研究表明此兩種空間感知會各自受到不同因子影響,仍有學者會將此兩種概念混用。 另外隨著科技的進步,人們生活型態改變,夜間活動時間增加,提高照明設施的使用,照明不僅能營造氛圍也能使人體驗空間,已有許多研究在探討照明對於室內及戶外空間的影響與運用,其中最常討論光亮度及光分布對於空間感知的影響。已知照明可以影響封閉感、寬敞感等空間感知,還有研究指出照明也會影響個人空間,Adams & Zuckerman (1991)研究結果發現照明的減少會導致個體增加個人空間的需求;還有學者認為照明降低會導致受試者盡量減少社交互動(Adams & Zuckerman, 1991; Wänström Lindh et al., 2020)。因此推論照明可能也會影響擁擠感,因此,照明、空間感知及擁擠感三者之間的關係及影響機制仍需要更深入探討。 在許多研究中已確認沉浸式虛擬體驗(IVR)技術可以提高研究的生態有效性,特別是在擁擠相關的研究上可以更真實地傳達空間感受,故本篇論文三個研究均於校園召募受測者至實驗室以IVR技術展示虛擬場景,針對實驗場景評估其封閉感、寬敞感與擁擠感並進行分析比較。 研究一將已知邊界為重要空間因子作為研究操作,透過將人體及柱體作為不同的空間組成元素,形成空間邊界以引發其空間感知及擁擠感,結果發現不同類型的空間組成元素,會使個體感受到顯著不同的空間感知及擁擠感,而且封閉感正向影響擁擠感,寬敞感負向影響擁擠感。 研究二將人體與柱體作為空間中的阻礙物,於阻礙物最外圍的是三個不同距離級別的邊界,結果發現不同類型的阻礙物,也會對空間感知及擁擠感造成顯著差異,且與研究一結果一樣,封閉感正向影響擁擠感,寬敞感負向影響擁擠感;除此之外,還發現即使沒有阻礙物的存在,只有牆體形成的空間邊界,底面積不同仍會引起不同程度的擁擠感。 研究三將實體邊界改為由高對比的光分布來界定空間,納入光亮度、光分布等自變項,並放置同樣數量的阻礙物(人體/柱體),及確認有無實際邊界的影響,而應變項除了空間感知及擁擠感外,還加入了可及性的概念來測量。研究結果顯示照明的確會影響可及性、空間感知及擁擠感,當光亮度越高、光分布越大,視覺與移動可及性會上升、寬敞感上升、封閉感及擁擠感下降;但是當有阻礙物時,則會抵消照明前述的影響,甚至呈現相反的趨勢:當光分布越大,移動可及性、寬敞感及擁擠感皆會下降。整體研究結果確認了空間感知與擁擠感之關係,以及人與非人因素以及照明對於空間感知及擁擠感的影響,可為未來戶外遊憩空間設計作為一個參考,在應用上可更了解使用者行為。zh_TW
dc.description.abstractCrowding constitutes a long-standing issue in the field of outdoor recreation, which often be used as an important indicator of recreational environment quality. While most of the studies in recreation/landscape field considered crowding mainly from social/human perspective, researchers in the field of psychology and retail had divided crowding into social/human and space dimensions. Social/human crowding are elicited from the density of people and social conditions; and spatial crowding is mainly affected by the physical and spatial conditions of a space. It is important to understand the differences of crowding that elicited by human and other objects. Among various spatial perceptions, spaciousness and enclosure are the most frequently discussed concepts. Although studies had indicated that spaciousness and enclosure were affected by different factors, many scholars believed those two concepts relate to each other, and even use them interchangeably. Thus, this study attempts to understand how crowding influenced by different types of obstacle (human avatar/column) and the perception of enclosure and spaciousness. In addition, with the advancement of science and technology, people's lifestyles have changed, the time spended on nocturnal activities has increased, and the use of lighting facilities has been improved. Lighting can not only enhance environmental atmosphere but also enable people to experience the space. There are many studies on the impact of lighting on indoor and outdoor spaces and its applications, of which the influence of luminance and light distribution on spatial perception is most often discussed. It is known that lighting can affect the perception of space such as enclosure and spaciousness, and some studies have pointed out that lighting can also affect personal space. Adams & Zuckerman (1991) found that the reduction of luminance will lead to an increase in the individual's demand for personal space; and some scholars believe that lighting can also affect personal space. Lower luminance causes individuals to minimize social interactions (Adams & Zuckerman, 1991; Wänström Lindh et al., 2020). Therefore, it is inferred that lighting may also affect the perciption of crowding. For the reasons aforementioned, the relationships between lighting, spatial perception and crowding and the influencing mechanism still need to be further explored. Three studies that applied IVR (immersive virtual reality) technique was conducted for the purposes of this thesis. Computer generated IVEs (immersive virtual environemt) was used to simulate different crowding conditions. The stimuli scenes were a cylinder room with different areas, and respondents were set at the center of the room, surrounded by different numbers of obstacles (avatars/columns). Respondents were asked to evaluate their perception of crowding, enclosure, and spaciousness toward the simulated scenes with randomized order. Study 1 used the avatars and columns as different types of spatial components to form spatial boundaries to induce different spatial perception and crowdedness. It is found that different types of spatial components will significantlyinfluence individuals’ spatial perceptions and perceived crowding. Moreover, enclosure would positively affect perceived crowding, and spaciousness negatively affects perceived crowding. Study 2 used the avatars and columns as different types of obstacles in space, and the outermost of the obstacles was the boundary of three different distance levels. It was found that different types of obstacles also had significant effects on spatial perception and perceived crowding, which was consistent with previous studies. The results are similar to Study 1: enclosure positively affects crowding, and spaciousness negatively affects crowding. In addition, it is also found that simply walled empty spaces of different areas would have significant effects on perceived crowding, even without any obstacle inside. In Study 3, the physical boundary was defineed by a high-contrast light distribution, and independent variables such as luminance and light distribution were included, and the same number of obstacles(human avatar/column) were placed, and the influence of the actual boundary was confirmed. In addition to spatial perception and perceived crowding, the dependent variables also adds the concept of accessibility to measure. The results of the study show that lighting does affect accessibility, spatial perception and perceived crowding. When the luminance is higher and the light distribution is larger, the visual and mobile accessibility will increase, spaciousness will increase, but enclosure and perceived crowding will decrease. When In the presence of obstacles, the aforementioned effects of lighting are counteracted, and even the opposite trend occurs: as the light distribution increases, mobile accessibility, spaciousness, and crowding all decrease.The results would contribute to the design of outdoor recreational spaces, as well as the understanding of user behavior.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:26:21Z (GMT). No. of bitstreams: 1
U0001-2209202219461200.pdf: 4560874 bytes, checksum: f6431cba7657e3708a750cc7896ed15b (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 I 摘要 II Abstract IV 目錄 VII 表目錄 X 圖目錄 XII 第一章 緒論 1 第一節、研究緣起 1 第二節、研究目的 4 第三節、研究流程 5 第二章 文獻回顧 7 第一節、擁擠感 7 一、定義 7 二、擁擠感發生機制 8 三、人群擁擠與空間擁擠 9 四、擁擠感之影響因子 12 第二節、空間感知–封閉感與寬敞感 20 一、封閉感之影響因子 21 二、寬敞感之影響因子 22 三、封閉感與寬敞感之影響因子 23 第三節、照明對空間感知及擁擠感之影響 27 一、照明對空間感知的影響 27 二、照明對擁擠感的影響 28 第四節、小結 29 第三章 不同空間組成元素對空間感知及擁擠感之影響 31 第一節、研究背景 31 一、研究緣起 31 二、研究問題與架構 31 第二節、研究方法 32 一、研究設計 32 二、實驗流程 38 三、資料處理與分析方法 39 第三節、研究結果 39 樣本敘述與信度分析 39 一、不同空間組成與空間感知之關係 39 二、不同空間組成及空間感知對於擁擠感之影響 40 第四節、小結 41 一、不同的空間組成對空間感知及擁擠感之影響 41 二、空間感知對擁擠感之影響 41 第四章 封閉感、寬敞感與不同阻礙類型對擁擠感之影響 43 第一節、研究背景 43 一、研究緣起 43 二、研究問題 44 第二節、研究方法 45 一、研究設計 45 二、實驗流程 50 三、資料處理與分析方法 51 第三節、研究結果 51 一、樣本敘述與信度分析 51 二、不同類型阻礙物對空間感知之影響 51 三、不同類型阻礙物對擁擠感之影響 52 四、沒有阻礙物時,不同大小的面積所造成的擁擠感之影響 53 五、封閉感、寬敞感與擁擠感之關係 54 第四節、小結 55 第五章 阻礙物類型與照明方式對封閉感、寬敞感及擁擠感的影響 57 第一節、研究背景 57 一、研究緣起 57 二、研究問題 59 第二節、研究方法 59 一、研究設計 59 二、實驗流程 64 三、資料處理與分析方法 65 第三節、研究結果 65 一、樣本敘述與信度分析 65 二、不同照明方式對可及性、空間感知及擁擠感之影響 65 三、照明方式與阻礙物類型對可及性、空間感知及擁擠感之影響 67 四、光亮度與邊界對可及性、空間感知及擁擠感之影響 70 五、 72 光亮度、阻礙物、邊界對可及性、空間感知及擁擠感之影響 72 第四節、小結 75 一、照明方式與阻礙物類型對可及性、空間感知及擁擠感之影響 75 二、光亮度、阻礙物、邊界對可及性、空間感知及擁擠感之影響 76 第六章 結論與建議 79 第一節、結論與討論 79 一、不同類型的空間組成元素及阻礙物對空間感知之影響 80 二、不同空間組成元素、阻礙物對擁擠感之影響 81 三、照明與阻礙物對可及性之影響 83 四、照明與阻礙物對空間感知之影響 84 五、照明與阻礙物對擁擠感之影響 85 第二節、未來研究建議與應用 86 一、研究限制與未來研究建議 86 二、研究應用 87 引用文獻 89
dc.language.isozh-TW
dc.title照明方式、阻礙物類型與空間因子對空間感知及擁擠感之影響zh_TW
dc.titleThe Effects of Lighting, Obstacle Types and Spatial Factors on Spatial Perceptions and Perceived Crowding.en
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇愛媜(Ai-Tsen Su),林晏州(Yann-Jou Lin),顏宏旭(Hung-hsu Yien),林建堯(Chien-Yau Lin)
dc.subject.keyword封閉感,寬敞感,空間感知,擁擠感,zh_TW
dc.subject.keywordEnclosure,Spaciousness,Spatial perceptions,Crowding,en
dc.relation.page107
dc.identifier.doi10.6342/NTU202203844
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-26
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
dc.date.embargo-lift2022-09-27-
Appears in Collections:園藝暨景觀學系

Files in This Item:
File SizeFormat 
U0001-2209202219461200.pdf4.45 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved