Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8579
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor范正成
dc.contributor.authorWen-Wen Liaoen
dc.contributor.author廖雯雯zh_TW
dc.date.accessioned2021-05-20T19:58:36Z-
dc.date.available2010-07-15
dc.date.available2021-05-20T19:58:36Z-
dc.date.copyright2010-07-15
dc.date.issued2010
dc.date.submitted2010-07-13
dc.identifier.citation1. 王鐵橋(2006),「邊坡綠化技術及其施工方法選擇」,中國水土保持科學,4(supp.):148-149。
2. 吳明峰(2006),「石塊之覆蓋率及嵌入對溝間土壤沖蝕影響之研究」,國立台灣大學生物環境系統工程學研究所,博士論文。
3. 李元智(2003),「南部橫貫公路中高海拔道路邊坡噴植植生工法之研究」,國立屏東科技大學水土保持系碩士班,碩士學位論文。
4. 林庭暐(2000) ,「不同黏著劑噴植對紅土礫石坡面保護與植物生長影響」,國立中興大學水土保持學系研究所,碩士論文。
5. 邱創益、陳慶雄、謝杉舟、陳光輝(1995)「噴播技術在植生方法之研究(二) 」,83年度水土保持及集水區經營研究計畫成果彙編,pp.238-242。
6. 張于漢(2006),「石塊覆蓋對溝間土壤沖蝕及薄膜流流速之影響」,國立台灣大學生物環境系統工程學研究所,碩士論文。
7. 許文年、王鐵橋 (2001),混凝土護坡綠化添加劑,專利、公開號:CN1358685A。
8. 許榮峰(2002) ,「土壤團粒化劑濃度對紅壤抗蝕性與種子發芽之研究」,國立中興大學水土保持學系研究所,碩士論文。
9. 黃建霖、范正成、楊文仁(2007) ,「水泥噴凝植生敷蓋技術在混凝土陡坡之應用研究」,地工技術雜誌。
10. 山寺喜成(1969) ,「綠化工程中防止土壤遭侵蝕之研究(Ⅲ)」,第80次日本林學會演講集。
11. 倉田益二郎(1979) ,綠化工技術,森田出版株式會社。
12. Al-Durrah, M.M., and J.M. Bradford. (1982). Parameters for describing soil detachment due to single water-drop impact. Soil Sci. Soc. Am. J. 46(4): 836-840.
13. Alder, R. B. (1950), Ifluence of seasonal and cultural conditions on aggregation of Hagerstown soil. Soil Sci: 193-203.
14. Daniel, P. R., A. J. M. Smucker and D. Santos., (2000). Alfalfa Root and Shoot Mulching Effects on Soil Hydraulic Properties and Aggregation, Soil Science Society of America Journal 64:725-731.
15. Edwards, W.M., and W.E. Larson. (1969). Infiltration of water into soils as influenced by surface seal development. Trans. ASAE 12:463-465,470.
16. Fan, J.C, W.J. Yang, M.F. Wu and C.H. Liu, (2006) “Determination and analysis of interrill erosion of a soil with coarse fragments in Taiwan”, Transactions of the ASABE, 49(5):1305-1314.
17. Feng, Z. Y. and Lin, Y. K.,(2002). Slope Protection Techniques Considering Environmental, Ecological and Landscape Requirements, Sino-Geotechnical Journall 92, 5-18.(in Taiwan)
18. Foster, G.R. (1982). Modeling the erosion process. In Hann, C.T., Jonson, H.P., and Brakensiek, D.L. (eds), Hydrologic Modeling of Small Watersheds, Monogr. Ser., vol. 5. American Society of Agricultural Engineers, St. Joseph. 297-380.
19. Foster, G.R., C.B. Johnson, and W.C. Moldenhauer. (1982). Hydraulics of failure of unanchored cornstalk and wheat straw mulches for erosion control. Transactions of the ASAE 25(4):940-947.
20. Gilley, J. E., D. A. Woolhiser, and D. B. McWhorter. (1985)a. Interrill soil erosion - part I: Development of model equations. Transactions of the ASAE 28(1):147-153,159.
21. Gilley, J. E., D. A. Woolhiser, and D. B. McWhorter. (1985)b. Interrill soil erosion - part II: Testing and use of model equations. Transactions of the ASAE 28(1): 154-159.
22. Green-Growing Concrete Group, (2000) “Green-Growing Concrete Using Coal Ash from Power Plant Developed.”.
23. Gyasi-Agyei, Y. (2004), ”Optimum Use of Erosion Control Blankets and Waste Ballast (Rock) Mulch to Aid Grass Establishment on Steep Slopes”, ASCE,Volume 9, Issue 2, 150-159.
24. Herrera-Viedma, E., Herrera, F., Chiclana, F. and Luque, M (2004), “Some Issues on Consistency of Fuzzy Preference Relations,” European Journal of Operational Research,_154, 98-109.
25. Jennings, G. D., A. R. Jarrett, and J.R. Hoover. (1988). Evaluating the effect of puddling on infiltration using the Green and Ampt equation. Transactions of the ASAE 31(3): 761-768.
26. Kirby, M. J. and R. P. C. Morgan. (1980). Soil Erosion. John Wiley & Sons.
27. Kruse, R. et al. (2004), “Native plant regeneration and introduction of non-natives following post-fire rehabilitation with straw mulch and barley seeding”, Elsevier, Amsterdam, Netherlands 196, 299-310.
28. Liebenow, A. M., W. J. Elliot, J. M. Laflen, and K. D. Kohl. (1990). Interrill erodibility: Collection and analysys of data from cropland soils. Transactions of the ASAE 33(6): 1882-1888.
29. Meyer, L. D. (1981). How rain intensity affects interrill erosion. Transactions of the ASAE 24(6): 1472-1475.
30. Meyer, L. D., and W. C. Harmon. (1984.) Susceptibility of agricultural soils to interrill erosion. Soil Sci. Soc. of Am. J. 48:1152-1157.
31. Mohammed Ibrahim, et al. (1999), “Use of Surface Treatment Materials to Improve Concrete Durability”, ASCE Volume 11, Issue 1, 36-40.
32. Mutchler, C. K., and L. M. Hansen. 1970. Splash of a water-drop at terminal velocity. Science 169: 1311-1312.
33. Nijlawan, S.D. and L.E. Clmstead (1947). The effect of sample pretreatment upon soil aggregation in wet-sieve analysis. Soil Sci. Am. Proc. :21-50.
34. Randy, B. Foltz and Natalie S Copeland (2007), ” Field Testing of Wood-based Biomass Erosion Control Materials on Obliterated Roads”, paper number 078046, ASABE Annual Meeting, Sponsored by ASABE Minneapolis Convention Center, Minneapolis, 17 - 20 June 2007.
35. Simonson, W. H., US Bureau of Public Road, and US Department of Commerce (2003), Landscape design and its relation to the modern highway, US Department of Transportation Federal Highway Administration.
36. Shangning, J. and P. W. Ungerb (2001), ”Soil Water Accumulation under Different Precipitation, Potential Evaporation, and Straw Mulch Conditions”, Soil Science Socity of America Journal 65:442-448.
37. Toyo Greenland Co. Ltd, “Sustainable Vegetation System on Steep Concrete Slope at Princess Margaret Hospital Building.”
38. Takenaka Corporation (1999),“Implementation of Green-Growing Concrete for Planting Arboreal Vegetation”
39. Watson, D. A., and J. M. Laflen. (1986). Soil strength, slope and rainfall intensity effects on interrill erosion. Transactions of the ASAE 29(1): 98-102.
40. Wu, H. L. and Feng, Z. Y. (2006), “Ecological Engineering Methods for Soils and Water Conservation in Taiwan”, Ecological Engineering 28, 333-344.
41. Winterkorn, Han F. (1942), Mechanism of water attack on dry cohesive soil system. Soil Sci:259-273.
42. Yoder, R.E. (1936), A direct method of aggregate analysis and a study of the physical natural of erosion losses. J.Am.Soc.Agron:28,337-351.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8579-
dc.description.abstract本研究的主要目的在於透過模糊偏好關係(Fuzzy Preference Relations) 建立一較為客觀之適用性評估指標,從眾多適用於坡面困難工址的植生技術中,遴選出於施工方法、經濟層面、使用限制等,綜合表現較佳的技術—水泥噴凝植生覆蓋技術(Shotcrete Vegetation Mulching Technique , SVMT)。並以此技術為基礎,進行室內之人工降雨試驗,降雨強度約120mm/hr,試驗坡度60度,分6種齡期進行降雨試驗 (分別為1、3、7、14、28、56天),測試其抵抗降雨沖蝕之能力及表面強度大小,本研究將蒐集包括逕流量、沖蝕量、試體表面強度、表面流速、覆蓋之試驗數據。
試驗結果顯示,水泥噴凝植生覆蓋技術(SVMT)因水泥的固化作用可於施工後三天內快速的提升護坡土壤強度、達到快速抗沖蝕能力。且SVMT試體的表面強度為傳統試體的3~10倍,具有較佳的凝聚性及剪力強度,7天內SVMT試體的抗沖蝕能力明顯優於傳統試體,14天後由於傳統試體土壤結構的改變,沖蝕量陡降,但通氣性、透水性變差,植生效果不彰。然而,各試體之逕流量及流速等結果差異不顯著,顯示工法或齡期非主要影響因子。在覆蓋情形的部分,SVMT於7天後之覆蓋約為傳統的10倍,表示水泥的添加提供了坡面有效的抗沖蝕能力及強度,能有效的留住表土及種子,更能達到植生覆蓋的目的。
(坡面植生困難工址於本研究中係定義為「坡度45度以上之一般邊坡、或噴凝土護坡、混凝土擋牆及岩石坡面等不易植生之坡面」。)
zh_TW
dc.description.abstractThe main purpose of this study is to establish adaptability evaluation indexes by using the method of Fuzzy Preference Relations, FPR, for choosing an optimum method among all the revegetation methods applied on the difficult sites of the slopes. In this study, difficult sites of slope revegetation is defined as「 Slopes steeper than 45 degrees, and with a protective cover of shotcrete, or with rock, or common slopes, or concrete retaining walls…etc., which are difficult to be revegetated」. Accordingly, the method of Shotcrete Vegetation Mulching Technique (SVMT), was then chosen based upon the evaluation indexes of economy, restriction and construction. Using the SVMT method, samples for erosion tests were prepared in the erosion boxes with a length of 125 cm, a width of 100 cm and a height of 11 cm. Using a rainfall simulator developed by Forster et al. (1982) and Fan and Wu (1993), erosion tests were conducted on the samples with the ages of 1, 3, 7, 14, 28 and 56 days, respectively, with a rainfall intensity of 120 mm/hour and a steepness of 60 degrees. During the tests, the data of runoff, erosion, surface strength, surface velocity and vegetation cover were obtained to evaluate the resistance to soil erosion and soil strength.
From the obtained results, it was found that the SVMT method was able to strengthen the resistance to erosion and stability of the slope within 3 days after the samples were prepared. Aside from this, the surface strength of soil slopes prepared using the SVMT method were 3 to 10 times higher than those using the conventional method, and approved to be better in both cohesion and shear strength. The results also showed the erosion of the soil samples with the ages less 7 days using the SVMT method were much less than those using the conventional method. However, due to the change of soil structure, the erosion of the samples prepared using the conventional method were slightly less then those using the SVMT method, yet the ventilation and permeability became worse, and consequently the vegetation effects were deteriorated. From the test results, it was found the runoff and velocities of the samples prepared using the two methods were quite similar, indicating revegetation method and the age were not the main factors affecting runoff and velocity. For the vegetation cover of the samples prepared using the two methods with the ages greater than 7 days, and after rainfall erosion tests, the vegetation cover of the SVMT method were approximately 10 times of those of the conventional method, which implied that concrete cement were effective in providing sufficient resistance to erosion and stability to hold the soil and seed. As a result, the SVMT method was approved more capable of revegetation on the difficult sites of the slopes.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T19:58:36Z (GMT). No. of bitstreams: 1
ntu-99-R97622001-1.pdf: 6846841 bytes, checksum: b590ecdfdca4be603e988586b3c36834 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents謝誌 I
中文摘要 II
Abstract III
圖目錄 VII
表目錄 IX
第一章 研究動機與目的 1
1.1研究動機 1
1.2研究目的 2
第二章 文獻回顧 3
2.1坡地生態工程之重要性 3
2.2紋溝間土壤沖蝕發生機制 3
2.3噴植覆蓋植生工法的相關研究 5
2.4可應用於困難工址的植生技術 6
2.4.1多孔性綠化水泥植生技術(Green-Growing Concrete) 6
2.4.2纖維加勁土壤噴植技術(Continuous Fiber Reinforced Soil) 7
2.4.3水泥噴凝植生覆蓋技術(Shotcrete Vegetation Mulching Technique,SVMT) 10
2.4.4薄層木屑堆肥團粒化劑噴植植生工法(TCP) 10
2.5模糊偏好關係(Fuzzy Preference Relations, Fuzzy PreRa) 12
第三章 研究方法 15
3.1適用性評估指標之建立及評分 15
3.1.1評估指標說明 15
3.1.2問卷設計及受訪者統計 16
3.1.3評估因子權重之計算 20
3.1.4各式工法適用性評估 22
3.2降雨沖蝕試驗的材料與設備 22
3.2.1噴植材料 22
3.2.2沖蝕試驗箱 25
3.2.3人工降雨機 31
3.3沖蝕試體製作及養護 33
3.4人工降雨沖蝕試驗 36
3.5逕流流速量測 37
3.6表面強度試驗 42
3.6.1直接剪力試驗 42
3.6.2袖珍貫入器(pocket penetrometer) 46
3.7表面覆蓋分析 47
第四章 試驗結果與討論 49
4.1各工法適用性評估之結果 49
4.2人工降雨試驗之結果與討論 57
4.2.1逕流量量測結果與討論 57
4.2.2沖蝕量結果與討論 61
4.2.3試體強度 67
4.2.4試體表面流速 70
4.2.5表面覆蓋分析結果與討論 70
第五章 結論與建議 76
5.1結論 76
5.2建議 77
參考文獻 79
附錄A:坡面困難工址植生技術之適用性評估指標問卷 82
附錄B:降雨機率定 88
附錄C:人工降雨沖蝕試驗數據 89
dc.language.isozh-TW
dc.title植生困難之坡面的適用工法之評估及試驗研究zh_TW
dc.titleEvaluation and Experiments on revegetation methods applicable to difficult slope sites.en
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳榮河,林俊全,盧光輝
dc.subject.keyword水力覆蓋,水泥噴凝植生覆蓋技術,植生綠化,坡面植生困難工址,模糊偏好關係,zh_TW
dc.subject.keywordhydraulic mulching,Shotcrete Vegetation Mulching Technique(SVMT),revegetation,difficult sites of slope revegetation,Fuzzy Preference Relations,en
dc.relation.page100
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-07-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf6.69 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved