Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8564
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡植慶(Jyr-Ching Hu)
dc.contributor.authorChao-Lung Tangen
dc.contributor.author唐昭榮zh_TW
dc.date.accessioned2021-05-20T19:58:29Z-
dc.date.available2010-07-22
dc.date.available2021-05-20T19:58:29Z-
dc.date.copyright2010-07-22
dc.date.issued2010
dc.date.submitted2010-07-15
dc.identifier.citationA-Busaidi, A., Hazzard, J.F., Young, R.P., 2005. Distinct element modeling of hydraulically fractured Lac du Bonnet granite. J. Geophys. Res. 110, B06302, doi:10.1029/2004JB003297.
Almagia, R., 1910. Studi geografici sulle feane in Italia, II, 295-315, Roma.
An, B., Tannant, D.D., 2007. Discrete element method contact model for dynamic simulation of inelastic rock impact. Comput. Geosci. 33, 513-521.
Broili, L., 1974. Ein Felssturz im Grossversuch. Rock Mech., Suppl. 3, 69-78.
Campbell, C.S., 1989. Self-lubrication for long runout landslide. J. Geol. 97, 653-665.
Campbell, C.S., 1990. Self-lubrication for long runout landslide: A reply. J. Geol. 98, 794-796.
Campbell, C.S., Cleary, P. W., Hopkins, M., 1995. Large-scale landslide simulations: Global deformation velocities and basal friction. J. Geophys. Res. 100, 8267-8283.
Chandler, N., 2004. Developing Tools for Excavation Design at Canada's Underground Research Laboratory. Int. J. Rock Mech. Min. Sci. 41, 1229-1249.
Chang, K.-J., and Taboada, A., 2009. Discrete element simulation of the Jiufengershan rock-and-soil avalanche triggered by the 1999 Chi-Chi earthquake, Taiwan. J. Geophys. Res. 114, F03003, doi:10.1029/2008JF001075.
Chang, K.-J., Taboada, A., Chan, Y.-C., 2005a, Geological and morphological study of the Jiufengershan landslide triggered by the Chi-Chi Taiwan earthquake. Geomprphology 71, 293-309.
Chang, K.-J., Taboada, A., Lin, M.-L. and Chen, R.-F., 2005b. Analysis of landslide by earthquake shaking using a block-on-slope thermo-mechanical model: Example of Jiufengershan landslide, central Taiwan. Eng. Geol., 80, 151-163.
Chen, R.-F., Chan, Y.-C., Angelier, J., Hu, J.-C., Huang, C., Chang, K.-J., Shih, T.-Y., 2005. Large earthquake-triggered landslides and mountain belt erosion: The Tsaoling case, Taiwan. Comptes Rendus Géoscience, Acad. des Sci. Paris, 337, 1164-1172.
Chen, R.-F., Chang, K.-J., Angelier, J., Chan, Y.-C., Deffontaines, B., Lee, C.-T., and Lin, M.-L., 2006. Topographical changes revealed by high-resolution airbone LiDAR data: The 1999 Tsaoling landslide induced by the Chi-Chi earthquake. Eng. Geol. 88, 160-172.
Chen, T.-C., Lin, M.-L., and Hung, J.-J., 2003. Pseudostatic analysis of Tsao-Ling rockslide caused by Chi-Chi earthquake. Eng. Geol. 71, 31-47.
Cheng, H.-H., 2000. Photogrammetric digital data processing of Tsao-Ling big Landslide. ACRS Taipei, Conference Poster.
Chigria, M., Wang, W.-N., Furuya, T. and Kamai, T., 2003. Geological cause and geomorphological precursors of the Tsaoling landslide triggered by the 1999 Chi-Chi earthquake, Taiwan. Eng. Geol. 68, 259-273.
Cho, N., Martin, C. D., Sego, D. C., 2007. A clumped particle model for rock. Int. J. Rock Mech. Min. Sci. 44, 997-1010.
Cho, N., Matin, C.D., Sego, D.C., 2008. Development of a shear zone in brittle rock subjected to direct shear. Int. J. Rock Mech. Min. Sci. 45, 1335-1346.
Cleary, P.W., and Campbell, C.S., 1993. Self-lubrication for long runout landslides: Examination by computer simulation. J. Geophys. Res. 98, 21911-21924.
Crosta, G., 1998. Regionalization of rainfall thresholds: An aid to landslide hazard evaluation. Environ. Geol. 35, 131-145.
Crosta, G.B., Imposimato, S., Roddeman, D.G., 2003. Numerical modeling of large landslides stability and runout. Nat. Hazard. Earth Syst. Sci. 3, 523-538.
Crosta, G.B., Imposimato, S., Roddeman, D.G., 2005. Small fast-moving flow-like landslides in volcanic deposits: The 2001 Las Colinas Landslide (El Salvador). Eng. Geol. 79, 187-214.
Cundall, P.A., 1971. A computer model for simulating progressive large scale movements in blocky rock systems. Proc. of the Sym. . Int. Soc. Rock Mech. 1 No. II-8.
Davies, T.R., McSaveney, M.J., 1999. Runout of dry granular avalanches. Can. Geotech. J. 36, 313-320.
Davies, T.R.H., 1982. Spreading of rock avalanche debris by mechanical fluidization. Rock Mech. 15, 9 –24.
Diederichs, M.S., Kaiser, Eberhardt, P.K.E., 2004. Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation. Int. J. Rock Mech. Min. Sci. 41, 785-812.
DiToro, G., Goldsby, D.L., Tullis, T.E., 2004. Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Nature 427, 436-439.
Dong, J.-J. ,Lee, W.-R., Lin, M.-L, Huang, A.-B., Lee, Y.-L., 2009. Effects of seismic anisotropy and geological characteristics on the kinematics of the neighboring Jiufengershan and Hungtsaiping landslides during Chi-Chi earthquake. Tectonophysics 466, 438-457.
Eckel, E.B., 1958. Landslides and engineering pratice. Highway Research Boad, Special Report 29, Washington D.C.
Eriscmann, T.H., 1986. Flowing, rolling, bouncing, sliding: Synopsis of basic mechanisms. Acta Mech. 64, 101-110.
Erismann, T.-H., 1979. Mechanisms of large landslides. Rock Mech. 12, 15-46.
Finch, E., Hardy, S., Gawthorpe, R., 2003. Discrete element modelling of contractional fault-propagation folding above rigid basement fault blocks. J. Struct. Geol. 25, 515-528.
Finch, E., Hardy, S., Gawthorpe, R., 2004. Discrete-elementmodelling of extensional fault propagation folding above rigid basement fault blocks. Basin Res. 16, 489-506.
Gareth, S.C., Melosh, H.J., 1994. Acoustic fluidization and the extraordinary mobility of sturzstroms. J. Geophys. Res. 108, B10, 2473, doi:10.1029/2003JB002465.
Goguel, J., 1978. Scale-dependent rockslides mechanisms, with emphasison the role of pore fluid vaporization. In: Rockslides and Avalanches. 1. Voight, B. (Ed.), Natural Phenomena. Elsevier, Amsterdam, pp. 693–705.
Habib, P., 1967. Sur un mode de glissement des massifs rocheux. Comp. Rend. l’ Acad. Sci., Paris, 264, 151-153.
Habib, P., 1975. Production of gaseous pore pressure during rock slides. Rock Mech. 7, 193-197.
Han, R., Shimamoto, T., Hirose, T., Ree, J.-H., Ando J.-I., 2007. Ultralow friction of carbonate faults cause by thermal decomposition. Science 316, 878-881.
Heim, A., 1932. Bergsturz und Menschenleben, 218 pp., Fretz and Wasmuth, Zürich.
Heim, A., 1882. Über Bergstürze. Naturforsch, Gesell. Neujahrsblatt 84, Zürich.
Hirose, T., Bystricky, M., 2007. Extreme dynamic weakening of faults during dehydration by coseiemic shear heating. Geophys. Res. Lett. 34, L14311, doi:10.1029/2007GL030049.
Hoek, E., Brown, E.T., 1980. Underground excavations in rock. Revise Second Edition, The Institution of Mining and Metallurgy, London, 527pp.
Hsü, K.J., 1975. Catastrophic debris streams (sturzstroms) generated by rockfalls. Geol. Soc. Am. Bull. 86, 129-140.
Hsü, K.J., 1978. Albert Heim: Observations on landslides., Rockslides and Avalanches 1, In Voight B. ed., Amsterdam, Elsevier, 70-93.
Hsu, T.-L., Leung, H.-P., 1977. Mass movements in the Tsaoling area, Yunlin-Hsien, Taiwan. Proc. Geol. Soc. China 20, 114-118.
Hu, J.-C., Tang, C.-L., Lo, C.-M., Dong, J.-J., Lee, C.-T., 2010. Catastrophic Hsiaolin landslide in Southern Taiwan triggered by Morakot Typhoon, Insights from 3-D discrete element simulation. EGU poster.
Huang, C.-C., Lee, Y.-H., Liu, H.-P., Keefer, D.K., Jibson, R.W., 2001. Influence of surface-normal ground acceleration on the Initiation of the Jih-Feng-Erh-Shan Landslide during the 1999 Chi-Chi, Taiwan, Earthquake. Bull. Seismol. Soc. Am. 91 (5), 953–958.
Hung, J.-J., 2000. Chi-Chi earthquake induced landslides in Taiwan. Earthquake Eng. Eng. Seismol. 2 (2), 25-33.
Hung, J.-J., Lee, C.-T., Lin, M.-L., 2002. Tsao-Ling rockslides, Taiwan, catastrophic landslides: effects occurrence, and mechanisms. Geol. Soc. Am. Reviews in Eng. Geol. 15, 91-115.
Hungr, G., Fell, R., 2003. Travel distance angle for “rapid” landslides in constructed and natural oil slopes. Can. Geotech. J. 40, 1123-1141.
Hungr, O., Evans, S.G., 2004. Entrainment of debris in rock avalanches: An analysis of a long run-out mechanism. Geol. Soc. Am. 116, 1240-1252.
Hutchinson, J.N., 1968. Mass movement. The Encyclopedia of Geomorphology, R. W. Fairbridge, Reinold 688-695.
Imber, J., Tuckwall, G.W., Childs, C., Walsh, J.J., Manzocchi, T., Heath, A.E., Boson, C.G., Strand, J., 2004. Three-dimensional distinct element modelling of relay growth and breaching along normal faults. J. Struct. Geol. 26, 1897-1911.
Itasca, 2006. User’s Manual, PFC 3D, Itasca Consulting Group, Inc., Minneapolis, Minnesota.
Jemeljanova, E.P., 1963. Morfologičeskaja Klasifikacija opolzněvych javlenij dljacelej inženěrnogeologičeskogo kartirovanija. Voprosy regionalnoj inženěrnoj geologii i metodiki isseledovanij, 1 Moskva 82-100.
Jibson, R.W., 1993. Predicting earthquake-induced landslide displacements using newmark’s sliding block analysis. Transp. Res. Board Rec. 1411, 9-17.
Jibson, R.W., and Keefer, D.K., 1988. Landslides triggered by earthquake in the central Missippi Valley. Tennessee and Kentucky, USGS Professional Paper 1336-c.
Jing, L., 2003. A review of Techniques, advances and outstanding issues in numerical modelling for Rock Mech. and rock engineering. Int. J. Rock Mech. Min. Sci. 40, 283-353.
Johnson, B., 1979. Blackhawk lanslide in California. U.S.A., Rockslides and Avalanches 1, Voight, B. (Ed.), 481-504.
Kuo, C.-Y., Tai, Y.-C., Bouchut, F., Mangeney, A., Pelanti, M., Chen, R.-F., Chang, K.-J., 2009. Simulation of Tsaoling landslide, Taiwan, based on Saint Venant equations over general topography. Eng. Geol. 104, 181-189.
Keefer, D.K., 1984. Landslides caused by earthquakes. Geol. Soc. Am. Bull. 95, 406-421.
Keefer, D.K., 2000. Statistical analysis of an earthquake-induced landslide distribution: the 1989 Loma Prieta, California event. Eng. Geol. 58, 231-249.
Keefer, D. K., Wilson, R.C., 1989. Predicting earthquake-induced landslides with emphasis on arid and semi-arid environment: Inland Geol. Sur. 2, Riverside, California. 118-149.
Keefer D.K., Larsen, M., 2007. Assessing landslide hazards. Science 316, 1136-1138.
Kent, P.E., 1966. The transport mechanism in catastrophic rockfalls. J. Geol. 74, 79-83.
Kilbrun, C.R.J., Sørensen, S.-A., 1998. Runout length of sturzstroms: The control of initial conditions and of fragment dynamics. J. Geophys. Res. 103, B8, 17877-17884.
Kleczkowski, A., 1955. Osuwiska i zjawiska pokrewne. Warszawa: Wydawnictwa Geologiczne.
Ladd G.E., 1935. Landslides, subsidents and rock-falls. Reprint proceedings AREA 36.
Legros, F., 2002. The mobility of long-runout landslides. Eng. Geol. 63, 301-331.
Liao, H.-W., 2000, Landslides triggered by Chi-Chi earthquake. Master Thesis, Institute of Geophysics, National Central University, Chung-Li, 90 p.
Lin, A., Chen, A., Liau, C.-F., Lee, C.-T., Lin, C.-C., Lin, P.-S., Wen, S.-C., Ouchi, T., 2001. Frictional fusion due to coseismic landsliding during the 1999 Chi‐Chi (Taiwan) ML 7.3 Earthquake. Geophys. Res. Lett. 28, 4011-4014, doi:10.1029/2001GL013253
Lucchitta, B.K., 1978, A large landslide on Mars: Geol. Soc. Am. Bull., 89 (11), 1601-1609.
Lucchitta, B.K., 1979. Landslides in Valles Marineris, Mars. J. Geophys. Res. 84, 8097-8113.
McEwen, A.S., 1989, Mobility of large rock avalanches: Evidence from Valles Marineris, Mars. Geology 12, 1111-1114.
Melosh, H.J., 1979. Acoustic fluidization: A new geological process? J. Geophys. Res. 84, 7513-7520.
Nemčok, A. and Rybář, J., 1968. Landslide investigations in Czehoslovakia. Proceedings of the 1st session of the International Association of Eng. Geol. 183-198, Prague.
Nemčok, A., Pašek, J., Rybář, J., 1972. Classification of landslides and other mass movements. Rock Mech. 4, 71-78.
Okura, Y., Kitahara, H., Sammori, T., 2000a. Fluidization in dry landslides. Eng. Geol. 56, 347-360.
Okura, Y., Kitahara, H., Sammori, T., Kawanami, A., 2000b. The effects of rockfall volume on runout distance. Eng. Geol. 58, 109-124.
Okura, Y., Ktahara, H., Kawanami, A., Kurokawa, U., 2003. Topography and volume effects on travel distance of surface failure. Eng. Geol. 67, 243-354.
Plafker, G., Eyzaguirre, V.R., Rock avalanches and wave at Chungar, Peru, in Rockslides and Avalanches, vol. 2, edited by B. Voight, pp. 269–279, Elsevier Sci., New York, 1979.
Potyondy, D.O. and Cundall, P.A., 2004. A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41, 1239-1364.
Quantin, C., Allemand, P., Delacourt, C., 2004. Morphology and geometry of Valles Marineris landslides. Planet. Space Sci. 52, 1011-1022.
Rodionov, N.V., 1939. Klassifikacija opolznej. Trudy MGRI 15.
Sharp, C.E., 1938. Landslide and Relative Phenomena, Columbia University Press, New York.
Shou, K.-J., and Wang, C.-F., 2003. Analysis of the Chiufengershan landslide triggered by the 1999 Chi-Chi earthquake in Taiwan. Eng. Geol. 68, 237-250.
Shreve, R.L., 1968. The Blackhawk landslide. Special paper, Geol. Soc. Am. Bull. 108, 47 pp.
Skemption, A.W., 1966. Bedding-plane slip, residual strength and the Vaiont Landslide. Géotechnique 16, 82-84.
Soukhoviskaya, V., Manga, M., 2006, Martian landslide in Valles Marineris: Wet or dry? Icarus 180, 348-352.
Stiny, J., 1941. Unsere Täler wachsen zu. Geol. Bauwes. 13, 71-79.
Straub, S., 1997. Predictability of long runout landslide motion: implications from granular flow mechanics. Geol. Rundsch. 86, 415– 425.
Strayer, L.M. and Suppe, J., 2002. Out-of-plane motion of a thrust sheet during along-strike propagation of thrust ramp: a distinct-element approach. J. Struct. Geol., 24: 637-650.
Tai-Pei Observatory, 1942, Report on Chia-Yi earthquake on 17th December 1941 (in Japanese), Taiwan Governors Office, 227pp.
Tang, C.-L., Hu, J.-C., Lin, M.-L., Angelier, J., Lu, C.-Y., Chan, Y.-C., Chu, H.-T., 2009. The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: Insights from a discrete element simulation. Eng. Geol. 106, 1-19.
Ter-Stepanian, G., 1966. K revizi terminologie svahovŷch jevů, Čs. Termino. Časop. 5, 282-291.
Terzaghi, K., 1950. Mechanics of landslides. In: Application of Geology to Engineering Practice. Paige, S. (Ed.), Berkey Volume, pp83-124.
Togo, T., Shimamoto, T., Ma, S.L., and Hirose, T., 2009. High-velocity friction of faults: A review and implication for landslide studies. The Next Generation of Research on Earthquske-induces landslides, An Int. Conf. Comm. 10th Anni. of the Chi-Chi Earthquake, 205-216.
USGS, 2004. Landslide Types and Processes, Complied by Highland, L., USGS Fact Sheet 2004-3072.
Varnes, D. J., 1978. Slope movement types and processes. In Special Report 176:Landslides: Analysis and Control (R.L.Schuster and R.J. Krizek, eds.). TRB,National Research Council, Washington,D.C., 11-33.
Voigh, B., Sousa, J., 1994, A comparative analysis of debris avalanche dynamics. Eng. Geol. 38, 261-297.
Voight, B., Faust, C., 1982. Frictional heat and strength loss in some rapid landslides. Géotechnique 32(1), 43-54.
Wang, B., Chen, Y., Wong, T.-F., 2008. A Discrete Element Model for the Development of Compaction Localization in Granular Rock. J. Geophys. Res. 113, B03202, doi: 10.1029/2006JB004501.
Wang, C., Tannant, D. D., Lilly, P. A., 2003. Numerical Analysis of the Stability of Heavily Jointed Rock Slopes Using PFC2D. Int. J. Rock Mech. Min. Sci. 40, 415-424.
Wang, F.W., Sassa, K., Wang, G., 2002. Mechanism of a long-runout landslide triggered by the August 1998 heavy rainfall in Fakushima Prefecture, Japan. Eng. Geol. 63, 169-185.
Wang, W.-N., Chigiram M., Furuya, T., 2003. Geological and geomorphological precursors of the Jiu-fen-erh-shan landslide triggered by the Chi-chi earthquake in central Taiwan. Eng. Geol. 69, 1-13.
Wieczorek, G.F., Willson, R.C. and Harp, E.L., 1982. Map showing slope stability during earthquakes in San Mateo Country, California, U.S. Geol. Surv. Misc. Invest. Ser. Map, Map I-1257E.
Wu, J.-H., Wang, W.-N., Chang, C.-S., Wang, C.-L., 2005, Effects of strength properties of discontinuities on the unstable lower slope in the Chiu-fen-erh-shan landslide, Taiwan. Eng. Geol. 78, 173-186.
Yoon, J., 2007. Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int. J. Rock Mech. Min. Sci. 44, 871-889.
Záruba, Q., Mencl, V., 1961. Landslide and Their Control. Acadmeta, Amsterdam-London-New York, Elsevier, Prague.
Zolotariev, G.S., 1963. Gentičeskije tipy opolznĕj, ich razvitije i izučenije. Materialy sověščanija po voprosam izučenija opolzněj i mer borby s nimi, Kijev: Izd, 165-170, Kievskogo Universiteta.

上可文化,2001:五萬分之一台灣地理人文全覽圖北島,上河文化,台北市。
川田三郎,1942(昭和17年),臺南州斗六郡草嶺の震生湖,東京帝國大學地震研究所彙報(日文),第21號,317-325。
水土保持學會,1992,水土保持手冊,中華水土保持學會。
何春蓀,1956,台灣南投集集大山之地質及煤礦及構造剖面圖,經濟部中央地質調查所,台北。
吳秋雅,2007,九份二山山崩前後構造地形特徵及坡體破壞機制探討,國立台灣大學地質科學研究所碩士論文,台北,117頁。
宋國城、林慶偉、林偉雄、林文正,2000,五萬分之一地質圖甲仙圖幅,經濟部中央地質調查所。
李錫堤、林銘郎、吳禮浩、鄭俊昇,1994,草嶺大崩山區的地質調查及歷次大崩山滑動面的決定,1994岩盤工程研討會,459-467頁。
李錫堤、洪如江、林銘郎、蔡龍珆,1993,草嶺崩塌地工程地質調查與穏定性評估-專題研究報告,經濟部水資局統一規劃委員會,共243頁。
李錫堤、董家鈞、林銘郎,2009,小林村災變之地質背景探討,地工技術,第122期,33-41頁。
李鎮楠, 2000,「草嶺崩坍地受震行為初探」,國立台灣大學土木工程學系碩士論文,台北市,112頁。
周明德,2003,九份二山潛在崩塌地特性之研究,國立台灣大學森林學研究所碩士論文,台北市,70頁。
洪如江,1980,草嶺大崩山之探討,工程環境會刊,第1期,29-30頁。
洪如江,李錫堤,林美聆,林銘郎,鄭富書,陳正興, 2000,天塹可以飛渡、崩山(草嶺順向滑動)足以斷流,地工技術,第77期,5-18頁。
徐世大,1951,談草嶺潭,台大土木,3-5頁。
國家災害防救科技中心,2009,莫拉克颱風災害概述,地工技術,第121期,15-24頁。
許海龍,1987,自然動力作用下草嶺崩山之力學特性研究,工程環境會刊,第8期,41-53頁。
陳正旺,2005,「車籠埔斷層周圍岩石力學特性之初探」,國立台灣大學土木工程學系碩士論文,台北市,169頁。
陳智豪,2001,南投縣九份二山地區岩石材料之工程地質特性研究,國立台灣大學地質科學研究所碩士論文,台北,147頁。
陳樹群、許中立,2009,八八水災堰塞湖類型及其危險度評定,國科會工程處工程科技推展中心,2009台灣八八水災勘災報告討論會議,台灣科技大學,1-8頁。
彭健豪,2008,九份二山地滑區滑動歷程與積行為之研究,國立台灣大學土木工程學研究所碩士論文,台北市,84頁。
黃鑑水、何信昌、劉桓吉,1983,台灣中部草嶺地區之地質與山崩,經濟部地質調所彙刊,第二號,95-112頁。
黃鑑水、謝凱旋、陳勉銘,2000,五萬分之一埔里地質圖幅暨說明書,經濟部中央地質調查所,台北。
廖軒吾,2000,集集地震誘發之山崩,國立中央大學地球物理研究所碩士論文,中壢市,90頁。
劉桓吉、李錦發,1998,五萬分之一地質圖雲林圖幅,經濟部中央地質調查所。
鄭新興、陳文福、蔡喬文,2004,以不同地形資訊探討草嶺地區地形之變遷,台灣地理資訊學刊,第1期,73-90頁。
薛履坦,1951,草嶺潭天然水庫之保固與利用,台灣建設月報,第1期第6卷, 14-21頁。
羅佳明,2009,落石區崖線崩退與崖錐堆積形態之研究,國立台灣大學土木工程學系博士論文,台北市,390頁。
嚴國楨,2000,錦水頁岩殘餘強度與草嶺邊坡穩定關係之研究,國立台灣大學土木工程學系碩士論文,台北市,109頁。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8564-
dc.description.abstract山崩的分佈在全球非常普遍,且往往對民眾造成身命與財產極大的損失,僅就1992至2001年間,山崩在全球造成超過9千人死亡;台灣位於歐亞大陸板塊與菲律海板塊的交接處,為當今世界上最活躍的造山帶之一,地質極為年輕和不穩定,地震頻繁,加上每年夏秋二季的颱風侵襲,因此山坡地上極易發生大型遽變式的山崩事件。在台灣近年來最令人矚目的大型山崩事件有草嶺的連續崩塌事件 (包括1999年集集地震所誘發的山崩事件)、1999年集集地震所誘發的九份二山崩塌事件和2009年莫拉克颱風造成的小林村滅村事件。
近年來對於山崩的研究主要在於崩塌的誘發原因,對於山崩的運動過程及堆積區的衝擊範圍則是著墨較少,本研究採用顆粒體離散元素法 (Granular discrete element method) 來對台灣近年來幾個具代表性的遽變式山崩的運動行為討論之外,其中包括九份二山、草嶺、小林村的事件,並討論目前幾個大型山崩尚未解決的問題,包括是否能經由重複崩塌的草嶺來預估下次的崩塌地點、九份二山的崩塌機制,地形改變對山崩衝擊區的影響等。由於離散元素法在是以外顯時間的計算方式,且模擬過程中可以表現塊體的破裂行以及大尺度位移的特性,因此於山崩的運動過程可以做到非常恰當的模擬。
草嶺1941年的模型在輸入地震波模擬之後,我們發現塊體在受地震力作用時會有互相碰撞的現象,上方的塊體會向下碰撞,造成下方的塊體位移量增加,上方塊體的位移量減少,因此提高了山崩發生的機率,而在受地震作用的同時,塊體內部亦會產生許多裂隙,這些裂隙會有集中的現象,且集中的區域和未來山崩的位置恰好吻合。
除了1941年的崩塌外,我們同時動用二維及三維的程式來模擬草嶺1999年由集集地震所誘發的山崩,二維的模型顯示,草嶺山崩時的滑動面摩擦係數必需小於0.15時,最快滑動速度約每秒45公尺,土石才有可能越過清溪到達2000公尺外的倒交山;三維的結果更顯示滑動面的摩擦係數必需低到0.03以下,堆積區的形貎才有可能會符和真實的地形,而且最快速度可達每秒75公尺,最長的顆粒滑行距離更高達3495公尺,二者會有如此的差異是由於三維的模型要考慮到塊體側向擴張所增加的滑行距離,而耗損更多的動能,因此必需有低摩擦係數提高滑動的速度,才能有足夠的動能;而不管是二維或三維的模型都顯示,如果崩塌塊體在崩塌前就是破碎的,則崩塌體的上層在滑動時會受到嚴重的攪動而被掩埋,這樣就不可能有人在滑動超過2公里後而生存,因此草嶺在1999年因集集地所誘發的山崩塊體在崩塌前是一個有內聚力的塊體。
有關九份二山的崩塌機制是剪出或拱曲到目前仍有爭論,二維的模擬只能討論一個剖面的結果,但我們用三維模擬的結果發現,當集集地震誘發山崩後,滑動面的摩擦係數在0.05時,在模型的北、南二個剖面分別有不同的崩塌機制,在南邊的剖面其崩塌機以拱曲為主,故趾部的顆粒滑行的距離較短,而北邊的剖面的崩塌則是以剪出為主,趾部的顆粒滑行的距離非常遠,由以上的結果讓我們瞭解大型山崩的崩塌機有可能不是單一的,所以當我們在探討大型山崩事件時,如果只由局部的證據去推論整個山崩的機制是無法對整個山崩機制做完整的解釋。
有關2009年莫拉克颱風所誘發的小林村滅村事件之探討,經由三維顆粒離散元素法模擬得到小村村上方的590高地為小林村被掩埋的一個重要關鍵,如果崩塌的土石沒有把590高地削去大半,則大部份的土石會轉向流入小林村北側的溪溝,且形成一個更高的天然壩,但是小林村可能不會在一瞬間被毁減,在天然壩潰壩前村民也許會有足夠的時間逃脫。修正後模型的地形將590高地去除,則大部份的土石會直衝小林村,這也是導致滅村的主要原因。因此所以在山崩模型建造時,不但要考慮前後的地形,還要考慮到崩塌過程中的地形變化,才能做出正確評估或預測土石流動的路徑與堆積區域。
zh_TW
dc.description.abstractThe catastrophic landslides are not rare in the world, but often cause a great loss of lives and properties. Just from 1992 to 2001, the landslides caused more than nine thousand people to die in the world. Taiwan is located in the junction of Eurasian plate and Philippine Sea plate, the most active orogenic belt in the world with young and unstable geological condition. Frequent earthquakes and typhoon season can also contribute to induce large catastrophic landslides. In recent years, the most impressive catastrophic landslide events in Taiwan are Tsaoling repeated landslides, Jiufengershan landslide induced by the 1999 Chi-Chi earthquake and 2009 Hsiaolin buried event caused by the Morakot Typhoon.
Most of the landslide investigations emphasize the landslide triggering mechanism, for the landslide transportation and the deposit-impact areas are less discussed. In this study granular discrete element method will be adopted to study and discuss catastrophic landslide behavior in Taiwan, including the Tsaoling landslide, Jiufengershan landslide and Hsiaolin village events. The study focuses on the Tsaoling repeated landslides to predict the location of the next collapse, the failure mechanism of the Tsaoling landslide, the velocity of transportation, the impact area, and topographic migration of the landslide area. The discrete element method is a time-explicit calculation, and the simulation process can express the crack development and large scale displacement of features, so the landslide movement simulation can be very appropriate for the granular discrete element method.
After the seismic simulation triggered, the parts of the block collided with others during the vibration simulation. The upper part of the block slid a short distance and then stayed on the slope, and the lower part of the block was collided down by the upper part block. When the collision pushed down a certain distance to the lower part of the block, the shear surface just lost the strength of the sliding plane and induced the landslide during the 1941 earthquake. The cracks developed from shear surface to ground surface during the vibration simulation. The distribution of the crack concentrated in some certain zones, just fitted to the future landslide detachment surface (1942 and 1999 events).
Based on a 2-D discrete element simulation of the Tsaoling landslide induced by the Chi-Chi earthquake, the reduction of friction at the sliding surface is predicted. A self-lubrication mechanism is suggested in our study to explain the low residual friction of about 0.15. Low friction favored the propagation of a 125 million cubic meters of rock debris which crossed over and collided against the Chingshui River valley. The maximum velocity of sliding block can reach about 45 m/sec. A quasi-rigid behavior of the sliding mass during the sliding process may explain the 7 survivors after sliding 2250 m. However, in the 3-D simulation, the friction coefficient must be reduced to 0.03, and the maximum velocity and runout distance shall be 78 m/sec and 3495 m to obtain an appropriate result. They have a large difference. The application direction of force in 2-D model is only on one plane, the grain and force behaviors would not be lateral dissipation, so the following grains can only collide back and forward. However, in the 3-D model most of the energy will dissipate because of lateral spreading. If the friction consumes too much kinetic energy, the accumulation appearance must be obviously different from actual deposit area. However, the 3-D model is more likely to reflect real circumstances. Thus, the maximum sliding velocity of the Tsaoling landslide is higher in the two-dimensional model. Either 2- or 3-D models show that if the landslide block is broken before sliding, the upper layer of the landslide block would be disturbed and buried, so the residents living on the block cannot survived after sliding more than 2 kilometers. Hence, the Tsaoling 1999 landslide block induced by the Chi-Chi landslide is cohesive.
There are arguments that the collapse mechanism of the 1999 Jiufengershan landslide is shear out or buckling. The 2-D simulation can only discuss the results of a profile. However, the 3-D simulation profiles show the different failure mechanisms in the landslide block at a friction coefficient of 0.05. For the toe particles, the southern section of the collapse mechanism is buckling with short runout distance, and the northern section of the mechanism is shear out with long runout distance. Thus, the mechanisms of large landslide are not the unitary. The single evidence cannot be explanation to a large landslide.
For the Hsiaolin Village buried by the huge landslide mass induced by the 2009 Morakot Typhoon, the 3-D granular discrete element simulation revealed that the 590 Highland played a key role. If the debris did not cut the 590 Highland, most of the debris would flow into the northern gully of the Hsiaolin Village, and form a higher natural dam. The Hsiaolin Village might not be destroyed in instant. The residents of Hsiaolin might escape before the dam collapsed
The revised model revealed that most of the debris crashed and buried Hsiaolin Village after the modification of 590 Highland. For landslide model construction, the factors of consideration are not only before and after topography, but the terrain changes during sliding. It can make a proper assessment to predict the path and the deposit area.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T19:58:29Z (GMT). No. of bitstreams: 1
ntu-99-D92224002-1.pdf: 50909502 bytes, checksum: 1ce2514adbf7f6b195a64c99eaec15ee (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書……………………………………….……………………………i
誌謝………………………………………………………..……………………ii
中文摘要……………………………………………………………...………………iii
英文摘要………………………………………………………………….…….……. v
第一章 遽變式山崩的機制與模擬………………...………………………………1-1
1.1. 研究動機與目的………………………...………………………………1-2
1.2. 大型山崩之研究……………………..……………………………………1-9
1.3. 長滑行距離山崩……………………………………………………… 1-15
1.4. 遽變式山崩之數值模擬……………………………………………….1-20
1.4.1. 連續體力學法………………………………………...………….1-21
1.4.2. 離散方法……………………………..…………………………....1-23
第二章 研究方法…………………………...……………………………………2-1
2.1. 離散元素法………………………...……………….……………………2-1
2.2. PFC的基本假設…………………...……………………………………2-3
2.2.1. 計算週期……………………..……………………………………2-4
2.2.2. 力-位移定律………………………………………………………2-5
2.2.3. 接觸點的組成模型…………..……………………………………2-8
2.2.3.1接觸-勁度模型…………..……………………………………2-9
2.2.3.2. 滑動模型……………….……………………………………2-9
2.2.3.3. 鍵結模型……………...……………………………………2-10
2.3. PFC模型之建立………………………….………………………………-14
2.3.1. 微觀及宏觀參數…………………………………………………2-14
2.3.2. 岩石的數值測試…………………………………………………2-17
第三章 草嶺山崩之研究…………………………………………………………3-1
3.1. 前人研究…………………………………………………………………3-1
3.2. 草嶺歷年山崩……………………………………………………………3-3
3.2.1. 1941年之草嶺大崩山………………………………………………3-3
3.2.2. 1942年之草嶺崩山…………………………………………………3-4
3.2.3. 1979年之崩塌………………………………………………………3-4
3.2.4. 1999年崩塌…………………………………………………………3-4
3.3. 草嶺的地質………………………………………………………………3-6
3.3.1. 草嶺之域地質………………………………………………………3-6
3.3.2. 草嶺的地質構造…………………………………………………3-10
3.3.3. 草嶺之工程地質…………………………………………………3-12
3.4. 草嶺1941年山崩之成因分析…………………………………………3-14
3.4.1. 1941年12月17日之山崩…………………………………………3-15
3.4.2. Newmark位移法分析結果………………………………………3-16
3.4.3. 草嶺1941年山崩成因之分析之二維PFC模擬結果……………3-19
3.4.3.1. PFC二維模型之建立………………………………………3-19
3.4.3.2. 塊體受震後滑動距離及速度變化之模擬…………………3-24
3.4.3.3. 塊體受震後內部的裂隙發展及應力變化…………………3-27
3.4.4 討論………………………………………………………………3-30
3.4.4.1. 顆粒碰撞……………………………………………………3-31
3.4.4.2. 裂隙發展……………………………………………………3-32
3.4.4.3. 臨界滑動位距離及臨界滑動速度…………………………3-32
3.4.5. 小結………………………………………………………………3-33
3.5. 草嶺1999年山崩之二維模擬…………………………………………3-33
3.5.1. Newmark 位移法分析結果………………………………………3-33
3.5.2. 模擬結果…………………………………………………………3-34
3.5.2.1. 不同摩擦係數之模擬結果…………………………………3-35
3.5.2.2. 不同鍵結強度之模擬結果…………………………………3-37
3.5.2.3. 塊體滑動時的裂解過程……………………………………3-40
3.5.3. 結果與討論………………………………………………………3-41
3.5.3.1. 集集地震對草嶺邊坡穩定的影響……………………….3-41
3.5.3.2. 潤滑機制……………………………………………………3-41
3.5.3.3. 滑行距離……………………………………………………3-43
3.5.3.4. 山崩後的倖存者……………………………………………3-45
3.5.4. 小結及後續研究…………………………………………………3-45
3.6. 草嶺1999年山崩之三維模擬…………………………………………3-46
3.6.1. 參數選定及模型之建立…………………………………………3-46
3.6.2. 三維之模擬結果…………………………………………………3-48
3.6.2.1. 不同摩擦係數的模擬結果…………………………………3-49
3.6.2.2. 不同鍵結強度的模擬結果…………………………………3-50
3.6.2.3. 滑動路徑分析………………………………………………3-54
3.6.3. 結果與討論………………………………………………………3-62
3.5.3.1低摩擦係數…………………………………………………3-62
3.6.3.2. 塊體之堆積…………………………………………………3-63
3.6.3.3. 顆粒滑動速與路徑…………………………………………3-65
3.6.3.4. 顆粒之破裂行為……………………………………………3-66
3.6.4. 小結………………………………………………………………3-66
3.7. 本章總結…………………………………………………………………3-66
第四章 1999年九份二山之山崩研究……………………………………………4-1
4.1. 九份二山崩及研究區域概況……………………………………………4-1
4.2. 九份二山之地質概況……………………………………………………4-2
4.2.1. 地層描述……………………………………………………………4-2
4.2.2. 構造描述……………………………………………………………4-4
4.3. 九份二山崩塌之文獻回顧………………………………………………4-6
4.4. 九份二山之三維數值模擬………………………………………………4-16
4.4.1. 模型的建置………………………………………………………4-17
4.4.2. 數值模擬結果……………………………………………………4-19
4.4.2.1. 不同摩擦係數之模擬結果…………………………………4-20
4.4.2.2. 不同鍵結強度模擬之結果…………………………………4-21
4.4.2.3. 山崩之速度分析……………………………………………4-23
4.4.2.4. 山崩之路徑分析……………………………………………4-34
4.4.2.5. 山崩之崩塌機制……………………………………………4-42
4.5. 結果與討論………………………………………………………………4-47
4.5.1. 顆粒之滑動速度…………………………………………………4-47
4.5.2. 顆粒之滑行距離…………………………………………………4-47
4.5.3. 滑動之機制………………………………………………………4-48
4.5.4. 模擬結果之改善…………………………………………………4-49
4.6. 本章總結……………………………………………………………….4-51
第五章 2009年小林村山崩之初探………………………………………………5-1
5.1. 小林村山崩及研究區域概況……………………………………………5-1
5.1.1 小林村之災變概述…………………………………………………5-1
5.1.2. 小林村之地質概況…………………………………………………5-2
5.2. 小林村崩塌地之分析……………………………………………………5-4
5.2.1. 野外觀察……………………………………………………………5-5
5.2.2. 遙測分析…………………………………………………………5-12
5.3. 小林村崩塌之PFC三維數值模擬……………………………………5-14
5.3.1. 小林村之三維模型之建立……………………………………………5-14
5.3.2. 590高地被錯移之模式……………………………………………5-15
5.3.3. 地型修正後之模擬結果……………………………………………5-20
5.3.3.1. 山崩過程分析………………………………………………5-21
5.3.3.2. 山崩速度分析………………………………………………5-23
5.4. 結果與討論………………………………………………………………5-28
5.4.1. 590高地……………………………………………………………5-29
5.4.2. 顆粒移動的速度…………………………………………………5-30
5.4.3. 堆積區形貎與天然壩. ……………………………………………5-30
5.5. 未來的研究………………………………………………………………5-31
第六章 結論與建議………………………………………………………………6-1
參考文獻……………………………………………………………………………R-1
附錄A 山崩的分類…………………………………………………………………A1
附錄B 塊體的運動模式……………………………………………………………A9
附錄C 力與位移定律……………………………………………………………..A12
附錄D 事件之模型參數表………………………………………………………..A17
附錄E 九份二山模擬結果之顆粒堆積剖面……………………………………..A18
dc.language.isozh-TW
dc.title臺灣遽變式山崩傳送與堆積之顆粒流離散元素模擬zh_TW
dc.titleThe Transportation and Deposition of Catastrophic Landslides in Taiwan: Insight from Granular Discrete Element Simulationen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.coadvisor林銘郎(Ming-Lang Lin)
dc.contributor.oralexamcommittee陳于高(Yu-Gau Chen),饒瑞鈞(Ruey-Juin Rau),詹瑜璋(Yu-Chang Chan),李錫堤(Chyi-Tyi Lee),董家鈞(Jia-Jyun Dong)
dc.subject.keyword山崩,顆粒體離散元素法,滑行距離,剪出,拱曲,zh_TW
dc.subject.keywordLandslide,Granular discrete element method,Runout distance,Buckling,Shear out,en
dc.relation.page240
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-07-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf49.72 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved