Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 會計學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85613
標題: 以文字探勘技術分析致股東報告書與績效間之關聯性
Application of Text Mining Technology on the Relationship between Report to Shareholders and Performance
作者: I-Han Wang
王奕涵
指導教授: 蔡彥卿(Yann-Ching Tsai)
共同指導教授: 劉心才(Hsin-Tsai Liu)
關鍵字: 致股東報告書,BERT,文字探勘,機器學習,績效預測,
Letter to Shareholders,BERT,Text Mining,Machine Learning,Performance Forecasting,
出版年 : 2022
學位: 碩士
摘要: 本研究以 2018 年問世之自然語言處理方法中的 BERT (Bidirectional Encoder Representation from Transformers) 模型為基礎,將其所衍生出的機器學習方法用以剖析臺灣上市櫃科技產業致股東報告書之資訊價值,並探討其文字內容與財務績效間之關聯性,看能否藉由致股東報告書內容及語調中分析出其與同產業績效平均值的高低關係及其對於企業本身未來績效成長的影響力。 研究中所使用之機器學習方法有兩種,一為將致股東報告書經前處理後轉換成 BERT CLS 向量及經 LDA 後向量,再把兩向量接起來,並以此一新向量形式放入傳統機器學習模型訓練與預測;另一為將致股東報告書經前處理後直接放入 BERT 模型中進行微調並產出預測結果。 實證結果發現,以營業收入淨額作為定義財務績效分類之依據,且與致股東報告書一同進行訓練的情況下,模型預測準確度十分理想,故推論出致股東報告書與財務績效間確實存在關聯性,且致股東報告書內容及語調可用於預測其現在或未來績效是否會高於同產業平均及與自身相比成長與否。
This study analyzed the information value of Report to Shareholders covering all technology companies listed in Taiwan with machine learning methods primarily based on BERT, and explored the impact of text content and tone of Reports to Shareholders on a company’s financial performance, including the company’s financial position when compared with the average performance in the same industry and the future performance growth of the company. In addition, two machine learning methods were utilized in the study. One of the method converted Reports to Shareholders into BERT CLS embedding and vector learned by LDA model, combined the two into a new vector form, and fed the new vector into traditional machine learning models for training and prediction; the other method generated prediction results by directly employing BERT to analyze pre-processed Reports to Shareholders and fine-tuning BERT parameters. The empirical result showed that when using the net operating revenue to define the classification of the financial performance, the accuracy of the model results was great. It could be inferred that there is indeed a correlation between Reports to Shareholders and a company’s financial performance. The content and tone of Reports to Shareholders could thus be used to predict whether a company’s performance will be higher than the industry average and whether it will outgrow its present net operating revenue.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85613
DOI: 10.6342/NTU202201111
全文授權: 同意授權(全球公開)
電子全文公開日期: 2022-07-08
顯示於系所單位:會計學系

文件中的檔案:
檔案 大小格式 
U0001-2506202202493400.pdf3.56 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved