請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85613完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡彥卿(Yann-Ching Tsai) | |
| dc.contributor.author | I-Han Wang | en |
| dc.contributor.author | 王奕涵 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:19:43Z | - |
| dc.date.copyright | 2022-07-08 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-06-29 | |
| dc.identifier.citation | Abrahamson, E. and Amir, E.,1996, “The information content of the president’s letter to shareholders.”, Journal of Business, Finance and Accounting 23(8), 1157-1182 Antweiler, W., and Frank, M. Z., 2004, “Is all that talk just noise? The information content of internet stock message boards.”, The Journal of Finance 59(3), 1259-1294 Arnold, J. and Moizer, P., 1984, “A survey of the methods used by UK investment analysts to appraise investments in ordinary shares”, Accounting and Business Research 14(55), 195-207 Aupperle, K. E., Carroll, A. B. and Hatfield J. D., 1985, “An empirical investigation of the relationship between corporate social responsibility and profitability.”, Academy of Management Journal 28, 446-463 Balakrishnan, R., Qiu, X. Y. and Srinivasan, P., 2010, “On the predictive ability of narrative disclosures in annual reports.”, European Journal of Operational Research 202(3), 789-801 Blei, D. M., Ng, A. Y. and Jordan, M. I., 2003, “Latent dirichlet allocation.”, Journal of Machine Learning Research 3, 993-1022 Breiman, L., 2001, “Random forests.”, Machine Learning 45, 5-32 Bryan, S. H., 1997, “Incremental information content of required disclosures contained in management discussion and analysis.”, The Accounting Review 72(2), 285-301 Clarkson, P. M., Kao, J. L. and Richardson, G. D., 1999, “Evidence that management discussion and analysis (MD&A) is a part of a firm's overall disclosure package.”, Contemporary Accounting Research 16(1), 111-134 Cole, C. J. and Jones, C. L., 2004, “The usefulness of MD&A disclosures in the retail industry.”, Journal of Accounting, Auditing and Finance 19, 361-388 Courtis, J. K., 1998, “Annual report readability variability: tests of the obfuscation hypothesis.”, Accounting, Auditing and Accountability Journal 11(4), 459- 472 Delvin, J., Chang, M. W., Lee, K. and Toutanova, K., 2018, “BERT: Pre-training of deep bidirectional transformer for language understanding.”, arXiv:1810.04805 Eisenhardt, K. M. and Schoonhoven, C. B., 1996, “Resource-based view of strategic alliance formation: Strategic and social effects in entrpreneurial firms.”, Organization Science 7(2), 136-150 Feldman, R., Govindaraj, S., Livnat, J. and Segal B., 2010, “Management’s tone change, post earnings announcement drift and accruals.”, Review of Accounting Studies 15(4), 915-953 Frazier, K. B., Ingram, R. W. and Tennyson, B. M., 1984, “A methodology for the analysis of narrative accounting disclosures.”, Journal of Accounting Research 22(1): 318-331 Glosten, L. R. and Paul, R. M., 1985, “Bid, ask and transaction prices in a specialist market with heterogeneously informed traders.”, Journal of Financial Economics 14, 71-100 Hambrick, D. C. and Mason, P. A., 1984, “Upper echelons: The organization as a reflection of its top managers.”, Academy of Management Review 9, 193-206 Healy, P. M. and Palepu, K. G., 2001, “Information asymmetry, corporate disclosure, and the capital markets: A review of the empirical disclosure literature.”, Journal of Accounting and Economics 31, 405-440 Henry, E., 2008, “Are investors influenced by the way earnings press releases are written?”, The Journal of Business Communication 45, 363-407 Hildebrandt, H. W. and Snyder, R. D., 1981, “The Pollyanna hypothesis in business writing: initial results, suggestions for research.”, Journal of Business Communication 18(1), 5-15 Kohut, G. F. and Segars, A. H., 1992, “The president’s letter to stockholders: An examination of corporate communication strategy.”, Journal of Business Communication 29, 7-21 Li, F., 2008, “Annual report readability, current earnings, and earnings persistence.”, Journal of Accounting and Economics 45(2-3), 221-247 Li, F., 2010, “The information content of forward‐looking statements in corporate filings—A nave Bayesian machine learning approach.”, Journal of Accounting Research 48(5), 1049-1102 Loughran, T. and McDonald, B., 2011, “When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks.”, The Journal of Finance 66(1), 35-65 McGuire, J. B., Sundgren, A., and Schneeweiss, T., 1988, “Corporate social responsibility and firm financial performance.”, Academy of Management Journal 31(4), 854-872 McGuire, J.B., Schneeweiss, T. and Branch, B., 1990, “Perceptions of firm quality: A cause or result of firm performance.”, Journal of Management 16(1), 167-180 Peinelt, N., Nguyen, D. and Liakata, M., 2020, “tBERT: Topic models and BERT joining forces for semantic similarity detection.”, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 7047-7055 Petersen, M. A., 2004, “Information: Hard and Soft.”, Working paper, Northwestern University. Previts, G. J., Bricker, R. J., Robinson, T. R. and Young, S. J., 1994, “A content analysis of sell-side financial analyst company reports.”, Accounting Horizons 8(2), 55-70 Qiu, X. Y., Srinivasan, P. and Street, N., 2006, “Exploring the forecasting potential of company annual reports.”, Proceedings of the American Society for Information Science and Technology 43(1), 1-15 Rogers, R. K. and Grant, J., 1997, “Content analysis of information cited in reports of sell-side financial analysts.”, The Journal of Financial Statement Analysis 3(1), 17-31 Salton, G., Wong, A. and Yang, C. S., 1975, “A vector space model for automatic indexing.”, Communications of the ACM 18(11), 613-620 Schroeder, N. and Gibson, C., 1990, “Readability of management’s discussion and analysis.”, Accounting Horizons 4(4), 78–87 Smith, M. and Taffler, R. J., 2000, “The chairman’s statement- A content analysis of discretionary narrative disclosures.”, Accounting, Auditing and Accountability Journal 13(5), 624-646 Sun, Y., 2010, “Do MD&A disclosures help users interpret disproportionate inventory increases?”, The Accounting Review 85(4), 1411-1440 Swales, Jr., G. S., 1988, “Another Look at the President's Letter to Stockholders.”, Financial Analysts Journal, 71-73 U.S. Securities and Exchange Commission (SEC), 1987, “Concept release on management's discussion and analysis of financial condition and results of operations.”, Securities Act Release No. 6711. U.S. Securities and Exchange Commission (SEC), 2003, “Interpretation: commission guidance regarding management’s discussion and analysis of financial condition and results of operations.”, Securities Act Release No. 8350. Waddock, S. A. and Graves, S. B., 1997, “The corporate social performance-financial performance link.”, Strategic Management Journal 18, 303-319 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85613 | - |
| dc.description.abstract | 本研究以 2018 年問世之自然語言處理方法中的 BERT (Bidirectional Encoder Representation from Transformers) 模型為基礎,將其所衍生出的機器學習方法用以剖析臺灣上市櫃科技產業致股東報告書之資訊價值,並探討其文字內容與財務績效間之關聯性,看能否藉由致股東報告書內容及語調中分析出其與同產業績效平均值的高低關係及其對於企業本身未來績效成長的影響力。 研究中所使用之機器學習方法有兩種,一為將致股東報告書經前處理後轉換成 BERT CLS 向量及經 LDA 後向量,再把兩向量接起來,並以此一新向量形式放入傳統機器學習模型訓練與預測;另一為將致股東報告書經前處理後直接放入 BERT 模型中進行微調並產出預測結果。 實證結果發現,以營業收入淨額作為定義財務績效分類之依據,且與致股東報告書一同進行訓練的情況下,模型預測準確度十分理想,故推論出致股東報告書與財務績效間確實存在關聯性,且致股東報告書內容及語調可用於預測其現在或未來績效是否會高於同產業平均及與自身相比成長與否。 | zh_TW |
| dc.description.abstract | This study analyzed the information value of Report to Shareholders covering all technology companies listed in Taiwan with machine learning methods primarily based on BERT, and explored the impact of text content and tone of Reports to Shareholders on a company’s financial performance, including the company’s financial position when compared with the average performance in the same industry and the future performance growth of the company. In addition, two machine learning methods were utilized in the study. One of the method converted Reports to Shareholders into BERT CLS embedding and vector learned by LDA model, combined the two into a new vector form, and fed the new vector into traditional machine learning models for training and prediction; the other method generated prediction results by directly employing BERT to analyze pre-processed Reports to Shareholders and fine-tuning BERT parameters. The empirical result showed that when using the net operating revenue to define the classification of the financial performance, the accuracy of the model results was great. It could be inferred that there is indeed a correlation between Reports to Shareholders and a company’s financial performance. The content and tone of Reports to Shareholders could thus be used to predict whether a company’s performance will be higher than the industry average and whether it will outgrow its present net operating revenue. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:19:43Z (GMT). No. of bitstreams: 1 U0001-2506202202493400.pdf: 3643891 bytes, checksum: 21aaab64b059c9d71ad8d546e098f78b (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 謝辭 ii 摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 viii 第一章 緒論 1 第一節 研究背景及動機 1 第二節 研究目的與貢獻 2 第三節 研究流程 3 第二章 文獻探討 4 第一節 文字揭露資訊重要性 4 第二節 致股東報告書之預測價值 6 第三節 文字探勘分析方法與應用 7 第三章 研究方法 13 第一節 研究架構 13 第二節 樣本選取 14 第三節 變數定義 16 第四節 模型選擇 18 第五節 資料前處理 21 第四章 實驗結果 26 第一節 敘述性統計 26 第二節 BERT CLS + LDA 放入機器學習模型結果 28 第三節 BERT Fine-Tune 模型結果 41 第五章 結論及建議 50 第一節 研究結論與建議 50 第二節 研究限制 51 參考文獻 52 附錄一 BERT CLS 向量形式實證結果 56 附錄二 LDA 向量形式實證結果 60 附錄三 致股東報告書範例 64 | |
| dc.language.iso | zh-TW | |
| dc.subject | 致股東報告書 | zh_TW |
| dc.subject | BERT | zh_TW |
| dc.subject | 文字探勘 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 績效預測 | zh_TW |
| dc.subject | 致股東報告書 | zh_TW |
| dc.subject | BERT | zh_TW |
| dc.subject | 文字探勘 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 績效預測 | zh_TW |
| dc.subject | Letter to Shareholders | en |
| dc.subject | Letter to Shareholders | en |
| dc.subject | BERT | en |
| dc.subject | Text Mining | en |
| dc.subject | Machine Learning | en |
| dc.subject | Performance Forecasting | en |
| dc.subject | BERT | en |
| dc.subject | Text Mining | en |
| dc.subject | Machine Learning | en |
| dc.subject | Performance Forecasting | en |
| dc.title | 以文字探勘技術分析致股東報告書與績效間之關聯性 | zh_TW |
| dc.title | Application of Text Mining Technology on the Relationship between Report to Shareholders and Performance | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 劉心才(Hsin-Tsai Liu) | |
| dc.contributor.oralexamcommittee | 簡雪芳(Hsueh-Fang Chien),李淑華(Shu-Hua Lee) | |
| dc.subject.keyword | 致股東報告書,BERT,文字探勘,機器學習,績效預測, | zh_TW |
| dc.subject.keyword | Letter to Shareholders,BERT,Text Mining,Machine Learning,Performance Forecasting, | en |
| dc.relation.page | 69 | |
| dc.identifier.doi | 10.6342/NTU202201111 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-07-01 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 會計學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-08 | - |
| 顯示於系所單位: | 會計學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2506202202493400.pdf | 3.56 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
