Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85572
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor佳莉亞(Yulia Galagan)
dc.contributor.authorChang-Gang Huangen
dc.contributor.author黃誠剛zh_TW
dc.date.accessioned2023-03-19T23:18:50Z-
dc.date.copyright2022-07-12
dc.date.issued2022
dc.date.submitted2022-07-01
dc.identifier.citation1. Shafiee, S. & Topal, E. When will fossil fuel reserves be diminished? Energy Policy 37, 181–189 (2009). 2. Allen, M. R. et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458, 1163–1166 (2009). 3. Schleussner, C. F. et al. Differential climate impacts for policy-relevant limits to global warming: The case of 1.5 °c and 2 °c. Earth System Dynamics 7, 327–351 (2016). 4. Gielen, D. et al. The role of renewable energy in the global energy transformation. Energy Strategy Reviews 24, 38–50 (2019). 5. Blaschke, T., Biberacher, M., Gadocha, S. & Schardinger, I. ‘Energy landscapes’: Meeting energy demands and human aspirations. Biomass and Bioenergy 55, 3–16 (2013). 6. Kabir, E., Kumar, P., Kumar, S., Adelodun, A. A. & Kim, K. H. Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews 82, 894–900 (2018). 7. Sopian, K., Cheow, S. L. & Zaidi, S. H. An overview of crystalline silicon solar cell technology: Past, present, and future. AIP Conference Proce. 1877, 20004 (2017). 8. Frost, J. M. et al. Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells Terms of Use. Nano Lett 14, (2014). 9. Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nature Publishing Group 8, (2014). 10. Bi, D. et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Science Advances 2, (2016). 11. Singh, T., Miyasaka, T., Singh, T. & Miyasaka, T. CommuniCation Stabilizing the Efficiency Beyond 20% with a Mixed Cation Perovskite Solar Cell Fabricated in Ambient Air under Controlled Humidity. Adv. Energy Mater. 8, 1700677 (2018). 12. McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016). 13. Gu, S. et al. Tin and Mixed Lead-Tin Halide Perovskite Solar Cells: Progress and their Application in Tandem Solar Cells. Adv. Mater. 32, 1907392 (2020). 14. Goyal, A. et al. Origin of Pronounced Nonlinear Band Gap Behavior in Lead-Tin Hybrid Perovskite Alloys. Chemistry of Materials 30, 3920–3928 (2018). 15. Tombe, S. et al. Optical and electronic properties of mixed halide (X = I, Cl, Br) methylammonium lead perovskite solar cells. J. Mater. Chem. C, 5, 1714 (2017). 16. Szmytkowski, J. et al. Additive effect of bromides and chlorides on the performance of perovskite solar cells fabricated via sequential deposition. Journal of Power Sources 513, 230528 (2021). 17. Li, Q. et al. Halogen Engineering for Operationally Stable Perovskite Solar Cells via Sequential Deposition. Adv. Energy Mater. 9, 19002239 (2019). 18. Hu, Z. et al. A Review on Energy Band-Gap Engineering for Perovskite Photovoltaics. Sol. RRL 3, 1900304 (2019). 19. Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells † Broader context. Cite this: Energy Environ. Sci 7, 982 (2014). 20. Oga, H., Saeki, A., Ogomi, Y., Hayase, S. & Seki, S. Improved understanding of the electronic and energetic landscapes of perovskite solar cells: High local charge carrier mobility, reduced recombination, and extremely shallow traps. J. Am. Chem. Soc. 136, 13818–13825 (2014). 21. Turren-Cruz, H. et al. Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells. Energy Environ. Sci. 11, 78 (2018). 22. Xiang, S. et al. Highly Air-Stable Carbon-Based α-CsPbI3 Perovskite Solar Cells with a Broadened Optical Spectrum. ACS Energy Letters 3, 1824–1831 (2018). 23. Zhang, M.-N. et al. Spectrum projection with a bandgap-gradient perovskite cell for colour perception. Light: Science & Applications 9, 2047 (2020). 24. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). 25. Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO 2 electrodes. Nature 598, (2021). 26. Shockley, W. & Queisser, H. J. Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells. Journal of Applied Physics 32, 510 (2004). 27. de Vos, A. Detailed balance limit of the efficiency of tandemsolar cells. J. Phys. D: Appl. Phys 13, 839–846 (1980). 28. Bush, K. A. et al. Compositional Engineering for Efficient Wide Band Gap Perovskites with Improved Stability to Photoinduced Phase Segregation. ACS Energy Letters 3, 428–435 (2018). 29. Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. il. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett 13, 1764–1769 (2013). 30. Tong, J. et al. Wide-Bandgap Metal Halide Perovskites for Tandem Solar Cells. ACS Energy Letters 6 232–248 (2021). 31. Werner, J. et al. Improving Low-Bandgap Tin-Lead Perovskite Solar Cells via Contact Engineering and Gas Quench Processing. ACS Energy Letters 5, 1215–1223 (2020). 32. Prasanna, R. et al. Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability. Nature Energy 4, 939–947 (2019). 33. Shao, S. et al. Enhancing the Performance of the Half Tin and Half Lead Perovskite Solar Cells by Suppression of the Bulk and Interfacial Charge Recombination. Adv. Mater. 30, (2018). 34. Konstantakou, M. & Stergiopoulos, T. A critical review on tin halide perovskite solar cells. J. Mater. Chem. 5, 11518 (2017). 35. Zhao, D. et al. Low-bandgap mixed tin-lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nature Energy 2, (2017). 36. Zheng, X., Alsalloum, A. Y., Hou, Y., Sargent, E. H. & Bakr, O. M. All-Perovskite Tandem Solar Cells: A Roadmap to Uniting High Efficiency with High Stability. Accounts of Materials Research 1, 63–76 (2020). 37. Sheng, R. et al. Four-Terminal Tandem Solar Cells Using CH3NH3PbBr3 by Spectrum Splitting. Journal of Physical Chemistry Letters 6, 3931–3934 (2015). 38. Jiang, F. et al. A two-terminal perovskite/perovskite tandem solar cell. Journal of Materials Chemistry A 4, 1208–1213 (2016). 39. Eperon, G. E. et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 354, 861–865 (2016). 40. Zhao, D. et al. Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nature Energy 3, 1093–1100 (2018). 41. Lin, R. et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nature Energy 4, 864–873 (2019). 42. Xiao, K. et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nature Energy (2022). 43. Lin, R. et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78 (2022). 44. Ho, M. T. et al. The Potential of Multijunction Perovskite Solar Cells. ACS Energy Lett. 2, 2506–2513 (2017). 45. McMeekin, D. P. et al. Solution-Processed All-Perovskite Multi-Junction Solar Cells. Joule 3, 387–401 (2019). 46. Wang, J. et al. 16.8% Monolithic all-perovskite triple-junction solar cells via a universal two-step solution process. Nature Communications 11, (2020). 47. Xiao, K. et al. Solution-Processed Monolithic All-Perovskite Triple-Junction Solar Cells with Efficiency Exceeding 20%. ACS Energy Lett. 15, 17 (2022). 48. Boyd, C. C. et al. Overcoming Redox Reactions at Perovskite-Nickel Oxide Interfaces to Boost Voltages in Perovskite Solar Cells. Joule 4, 1759–1775 (2020). 49. Głowienka, D. et al. Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3. Nano Energy 67, (2020). 50. Wang, Q. et al. Effects of Self-Assembled Monolayer Modification of Nickel Oxide Nanoparticles Layer on the Performance and Application of Inverted Perovskite Solar Cells. Chem. Sus. Chem. 10, 3794–3803 (2017). 51. Cai, N. et al. Synergistical Dipole–Dipole Interaction Induced Self-Assembly of Phenoxazine-Based Hole-Transporting Materials for Efficient and Stable Inverted Perovskite Solar Cells. Angewandte Chemie - International Edition 60, 20437–20442 (2021). 52. Kim, S. Y., Cho, S. J., Byeon, S. E., He, X. & Yoon, H. J. Self-Assembled Monolayers as Interface Engineering Nanomaterials in Perovskite Solar Cells. Advanced Energy Materials vol. 10 (2020). 53. Li, E. et al. Bonding Strength Regulates Anchoring-Based Self-Assembly Monolayers for Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials 31, (2021). 54. Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction, Science 370, 1300–1309 (2021). 55. Wu, W. Q. et al. Reducing Surface Halide Deficiency for Efficient and Stable Iodide-Based Perovskite Solar Cells. J. Am. Chem. Soc. 142, 3989–3996 (2020). 56. Wei, M. et al. Combining Efficiency and Stability in Mixed Tin–Lead Perovskite Solar Cells by Capping Grains with an Ultrathin 2D Layer. Advanced Materials 32, (2020). 57. Rajagopal, A. et al. Highly Efficient Perovskite–Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage. Advanced Materials 29, 1702140 (2017). 58. Li, C. et al. Thermionic Emission–Based Interconnecting Layer Featuring Solvent Resistance for Monolithic Tandem Solar Cells with Solution-Processed Perovskites. Advanced Energy Materials 8, (2018). 59. Leijtens, T. et al. Tin-lead halide perovskites with improved thermal and air stability for efficient all-perovskite tandem solar cells. Sustainable Energy and Fuels 2, 2450–2459 (2018). 60. Xiao, K. et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nature Energy 5, 870–880 (2020). 61. Yu, Z. et al. Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells. Nature Energy 5, 657–665 (2020). 62. Lai, W. C., Lin, K. W., Guo, T. F., Chen, P. & Liao, Y. Y. Perovskite-based solar cells with inorganic inverted hybrid planar heterojunction structure. AIP Advances 8, (2018). 63. Cheacharoen, R. et al. Encapsulating perovskite solar cells to withstand damp heat and thermal cycling. Sustainable Energy & Fuels 2, 2398–2406 (2018). 64. Boyd, C. C., Cheacharoen, R., Leijtens, T. & McGehee, M. D. Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chemical Reviews 119, 3418–3451 (2019). 65. Aydin, E. et al. Room-Temperature-Sputtered Nanocrystalline Nickel Oxide as Hole Transport Layer for p-i-n Perovskite Solar Cells. ACS Applied Energy Materials 1, 6227–6233 (2018). 66. Liao, Q. et al. A Dual-Functional Conjugated Polymer as an Efficient Hole-Transporting Layer for High-Performance Inverted Perovskite Solar Cells. ACS Appl. Mater. Interfaces 13, 16744–16753 (2021). 67. Chang, C. Y. et al. Facile Fabrication of Self-Assembly Functionalized Polythiophene Hole Transporting Layer for High Performance Perovskite Solar Cells. Advanced Science 8, (2021). 68. Glowienka, D. & Galagan, Y. Light Intensity Analysis of Photovoltaic Parameters for Perovskite Solar Cells. Advanced Materials 34, (2022). 69. Hsiao, K.-C. et al. Enhancing Efficiency and Stability of Hot Casting p−i−n Perovskite Solar Cell via Dipolar Ion Passivation. ACS Appl. Energy Mater. (2019). 70. Lee, P. H. et al. Work-Function-Tunable Electron Transport Layer of Molecule-Capped Metal Oxide for a High-Efficiency and Stable p-i-n Perovskite Solar Cell. ACS Appl Mater Interfaces 12, 45936–45949 (2020). 71. Islam, M. R. et al. Recent Progress and Future Prospects for Light Management of All-Perovskite Tandem Solar Cells. Advanced Materials Interfaces 9 (2022). 72. Lee, P. H. et al. Highly crystalline colloidal nickel oxide hole transport layer for low-temperature processable perovskite solar cell. Chemical Engineering Journal 412, (2021). 73. Moore, D., Heilweck, M. & Petros, P. Saving the planet with appropriate biotechnology: 1. Diagnosing the problems. Mexican Journal of Biotechnology 6 1–30 (2021). 74. Ritchie, H. & Roser, M. Energy consumption by source, World. Our world in data https://ourworldindata.org/energy (2020). 75. Gong, J., Darling, S. B. & You, F. Perovskite photovoltaics: Life-cycle assessment of energy and environmental impacts. Energy and Environmental Science 8, 1953–1968 (2015). 76. National Renewable Energy Laboratory. Best Research-Cell Efficiency Chart. NREL https://www.nrel.gov/pv/cell-efficiency.html (2022). 77. Marinova, N., Valero, S. & Delgado, J. L. Organic and perovskite solar cells: Working principles, materials and interfaces. Journal of Colloid and Interface Science 488, 373–389 (2017). 78. Li, H. & Zhang, W. Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment. Chemical Reviews 120, 9835–9950 (2020). 79. Islam, M. R. et al. Recent Progress and Future Prospects for Light Management of All-Perovskite Tandem Solar Cells. Advanced Materials Interfaces 9 (2022).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85572-
dc.description.abstract太陽能因為其豐沛的能量以及在能量轉換的過程中的零碳排,近年來在新興能源中得到了不少矚目。而在研究領域中,鈣鈦礦太陽能電池由於其低成本、能隙可控性且具有大量製造的潛力等優點,而在近代開始蓬勃發展。此外,為了突破單能隙太陽電池所能達到的效率極限,在元件中使用超過一個能隙的串疊型太陽能電池的概念也開始被提出,而鈣鈦礦的能隙可控性也讓該材料在此項應用上更具發展價值。太陽能電池為多種材料依序塗佈而成的半導體元件,其中不同材料間的異質接面在元件的轉換效率上有著莫大的影響。本篇論文首先針對元件中電洞傳輸層與鈣鈦礦層間的接面作探討,並在兩層間塗佈不同的材料作為鈍化層。而材料中分子上羧基的有無被發現對於整體元件的性質有非常大的影響,羧基被認為可以與基板上的氧化物鍵結,並與鈣鈦礦反應以鈍化其表面的缺陷。此外,在研究中還發現羧基的引入可以很大程度的改變薄膜的親水性,進而對鈣鈦礦的結晶性有所幫助,除了很大程度的增進了實驗的再現性,最終也提高了元件的轉換效率。 鈣鈦礦串疊型太陽能電池是從寬能隙元件開始發展的,在論文的最後延續了上個電洞傳輸層與鈣鈦礦接面的研究,再藉由調整鈣鈦礦材料中溴的含量來控制元件的能隙,用以達到模擬研究中寬能隙元件的最佳能隙範圍,並在沒有任何參雜以及後處理的情況下達到良好的轉換效率,使其為之後發展鈣鈦礦串疊型太陽能電池的基礎。zh_TW
dc.description.abstractThe ubiquitous sunlight would be an important contributor to future energy consumption due to its vast abundance and zero-carbon emission when harvesting energy. Among all solar harvesting techniques, the low cost, tunable bandgap, and potential for future mass production make perovskite solar cells a popular research topic. Furthermore, in order to break the efficiency limit for single junction solar cells, the concept of tandem solar cells emerged in recent years. Therefore, perovskite with tunable bandgap shows huge potential in tandem application. Solar cell tandem devices are fabricated by depositing multiple layers sequentially, thus, the interfaces between the layers plays an important role in device performance. In this thesis, the interface between the hole transporting layer and perovskite was discussed and trying to coat a layer with different materials in between as a passivation layer. Result shows that the presence of carboxylic group in the material can largely affect the performance of device. Carboxylic group has ability to anchor the oxide and passivate perovskite surface at the same time, and resulting in a nice wetting property which not only improves the perovskite crystallinity but also shows a better reproducibility for solar cell devices. Perovskite tandem solar cells started from the development of wide bandgap devices. In the last part, the study of the passivation layer was extended to be used in wide bandgap perovskite solar cells. By controlling the Br ratio in the perovskite material, the bandgaps were tuned to the range which was the optimum obtained from simulations for wide bandgap devices. In the end, an efficient performance for wide bandgap devices were demonstrated to be a base for the research towards all-perovskite tandem solar cell.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:18:50Z (GMT). No. of bitstreams: 1
U0001-2706202202024000.pdf: 4460165 bytes, checksum: d7f15536b6145a9db404a88c661bc59b (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsAcknowledgments i 摘要 ii Abstract iii Contents v List of Figures viii List of Tables xii Chapter 1 Introduction and literature review 1 1-1. Energy sources 1 1-2. Renewable energy 3 1-3. Perovskite photovoltaics 4 1-4. Device architecture of PSCs 7 1-5. The device characterization 9 1-6. Shockley–Queisser limit 10 1-7. Tandem solar cells 11 1-7-1. Configuration of tandem solar cell 12 1-7-2. Materials and bandgap tuning of tandem solar cell 14 1-8. Literature review of all-perovskite tandem solar cell 17 1-8-1. Double-junction all-perovskite tandem solar cells 17 1-8-2. Triple-junction all-perovskite tandem solar cells 19 1-9. Interfaces of tandem solar cells 21 1-9-1. HTL/perovskite 22 1-9-2. ETL/perovskite 24 1-9-3. Recombination layer in 2-T tandem solar cells 24 1-10. Motivation and objective 27 Chapter 2 Experimental section 28 2-1. Chemicals 28 2-2. Instruments 29 2-3. Materials preparation and device fabrication 31 2-3-1. Cleaning of substrates 31 2-3-2. Solution preparation 31 2-3-3. Device fabrication 32 2-4. Current-voltage measurement of PSCs 34 Chapter 3 Results and discussion 35 3-1. Cu:NiOx/perovskites interface passivation 37 3-1-1. Passivation layer materials 37 3-1-2. Characteristics of passivation layers 38 3-1-3. Characteristics of perovskite layer on passivation layers 43 3-1-4. Performance of perovskite solar devices 49 3-1-5. Light intensity analysis 57 3-2. Bandgap tuning and device fabrication for wide bandgap PSC 61 Chapter 4 Conclusion 65 Chapter 5 Recommendation 66 References 69 List of Figures Figure 1-1. Primary energy consumption is measured in terawatt-hours (TWh). Here an inefficiency factor (the 'substitution' method) has been applied for fossil fuels, meaning the shares by each energy source give a better approximation of final energy consumption.73 2 Figure 1-2. Evolution of global temperature (black), atmospheric CO2 concentration (red), CO2 in air trapped in Antarctic ice cores (blue) and solar activity (yellow) from 1960 to 2020.74 2 Figure 1-3. Energy payback time for seven PV modules. P-1 represents the TiO2 perovskite module; P-2 represents the ZnO perovskite module. The estimations are based on rooftop-mounted installation, Southern European insolation, 1.70×103 kWh/m2/year, and a performance ratio of 0.750.75 3 Figure 1-4. Illustration of a cubic ABX3 perovskite crystal structure, where the red atoms represent the X. 5 Figure 1-5. Highest confirmed conversion efficiencies for research cells for a range of photovoltaic technologies, plotted from 1976 to the present.76 6 Figure 1-6. Regular n-i-p PSC (left) and inverted p-i-n (right) architecture in PSCs.77 8 Figure 1-7. Band diagram and main processes of PSC: 1 Absorption of photon and free charges generation; 2 Charge transport; 3 Charge extraction.77 8 Figure 1-8. The regular current-voltage curve with few characteristic points 9 Figure 1-9. Illustration of thermalization loss and transmission loss of Shockley–Queisser limit. 10 Figure 1-10. Shockley–Queisser limit for a solar cell with a cell temperature of 300K illuminated by a black body (BB) with a surface temperature of 6000 K (black curve) compared to the detailed balance limit for standard solar cell test conditions (Tc = 298.15 K, AM 1.5G). fc = 1 means there are no non-radiative recombination paths. 11 Figure 1-11. Illustration of sunlight absorbed by tandem solar cell. 12 Figure 1-12. Illustration of two connection strategies for tandem solar cells a) 4-T structure and b) 2-T structure78 13 Figure 1-13. Efficiency limits for tandem solar cells. a) 2-T and b) 4-T tandem structure. Contour lines and corresponding power conversion efficiency (%) are depicted.57 c) Simulated minimum JSC of a 2T PTSC as a function of active layer thickness. The dashed line represents the current-matching condition. 14 Figure 1-14. Bandgap vs perovskite composition for the CsxFA1−xPb(BryI1−y)3 compositional space, showing a change in Cs along the x axis and a change in Br from 5 to 30% as separate lines.28 15 Figure 1-15. bandgap variation of the MASn1-xPbxI3 solid solution perovskites. 25 to 75% tin mixed perovskites possess a lower optical bandgap, when compared to the two end members. 15 Figure 1-16. The efficiency progress of 2-T and 4-T all-perovskite tandem solar cells from 2016 to 202279. 19 Figure 3-1. Diagram of the energy levels of a typical inverted PSC. 36 Figure 3-2. Molecular structures of passivation materials. a) PTAA, b) P3HT and c) P3HTCOOH 38 Figure 3-3. Architecture of PSC used in this work. 39 Figure 3-4. UV-vis measurement of passivation layers. 40 Figure 3-5. UV-vis measurement for different concentration of P3HTCOOH. 40 Figure 3-6. Contact angles on the PTAA, P3HT, P3HTCOOH and Cu:NiOx with the solvent of perovskite precursor solution. 41 Figure 3-7. Picture of perovskite coated on top of hydrophobic surface. 42 Figure 3-8. SEM images of perovskite films on top of different passivation layers 43 Figure 3-9. AFM height of perovskite films on top of different passivation layers 45 Figure 3-10. Steady-state PL of perovskite films on HTL with passivation layer. 46 Figure 3-11. TRPL decay characteristics of the perovskite films on HTL with passivation layer. 47 Figure 3-12. Architecture of complete PCS which used in this work. 49 Figure 3-13. Performance of devices with different concentration of P3HT. 50 Figure 3-14. Performance of devices with different concentration of P3HTCOOH. 51 Figure 3-15. Performance of devices with different passivation layer. 54 Figure 3-16. Current-voltage curves of different passivation layer sample. 55 Figure 3-17. Maximum power point tracking for different passivation layer sample. 55 Figure 3-18. External quantum efficiency (EQE) spectra and integrated current for different passivation layer samples. 56 Figure 3-19. Light intensity measurement of devices with different passivation layers. 58 Figure 3-20. Ultraviolet–visible spectroscopy (UV-vis) for wide bandgap perovskites. 62 Figure 3-21. Performance of device with wide bandgap perovskites. 64 List of Tables Table 2-1. List of materials used in this research. 28 Table 2-2. List of instruments used for characterization 29 Table 3-1. Fitted Parameters of Photoluminescence Decay Curves of the perovskite films on HTL with passivation layer. 48 Table 3-2. Performance parameters for different passivation layer samples. 54 Table 3-3. Offset points of absorption and bandgaps for wide bandgap perovskites. 63
dc.language.isoen
dc.subject寬能隙太陽能電池zh_TW
dc.subject接面zh_TW
dc.subject電洞傳輸層鈍化zh_TW
dc.subject鈣鈦礦太陽能電池zh_TW
dc.subject羧基zh_TW
dc.subject串疊型太陽能電池zh_TW
dc.subjectperovskite solar cellen
dc.subjecthole transporting layer passivationen
dc.subjectinterfaceen
dc.subjectwide bandgap solar cellen
dc.subjectcarboxylic groupen
dc.subjecttandem solar cellen
dc.title全鈣鈦礦串疊型太陽能電池之接面與能隙優化zh_TW
dc.titleInterface and bandgap optimization toward all-perovskite tandem solar cellen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡豐羽(Feng-Yu Tsai),劉振良(Cheng-Liang Liu)
dc.subject.keyword鈣鈦礦太陽能電池,電洞傳輸層鈍化,接面,羧基,串疊型太陽能電池,寬能隙太陽能電池,zh_TW
dc.subject.keywordperovskite solar cell,hole transporting layer passivation,interface,carboxylic group,tandem solar cell,wide bandgap solar cell,en
dc.relation.page76
dc.identifier.doi10.6342/NTU202201132
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-07-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
dc.date.embargo-lift2022-07-12-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
U0001-2706202202024000.pdf4.36 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved