Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85312
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林招松(Chao-Sung Lin)
dc.contributor.authorChao-Yu Huangen
dc.contributor.author黃晁裕zh_TW
dc.date.accessioned2023-03-19T22:56:56Z-
dc.date.copyright2022-07-29
dc.date.issued2022
dc.date.submitted2022-07-28
dc.identifier.citation[1] Department of Energy. 'Comparison of Fuel Cell Technologies.' https://www.energy.gov/eere/fuelcells/comparison-fuel-cell-technologies. [2] Lasia A. Hydrogen Evolution Reaction. Handbook of fuel cells 2010. [3] Kanani N., Electroplating: Basic Principles, Processes and Practice. Elsevier, 2004. [4] Vidal-Iglesias F. J., Solla-Gullón J., Rodes A., Herrero E. and Aldaz A. Understanding the Nernst Equation and Other Electrochemical Concepts: An Easy Experimental Approach for Students. Journal of Chemical Education 2012;89:936-39. [5] Lim D., Ku B., Seo D., Lim C., Oh E., Shim S. E. et al. Pulse-Reverse Electroplating of Chromium from Sargent Baths: Influence of Anodic Time on Physical and Electrochemical Properties of Electroplated Cr. International Journal of Refractory Metals and Hard Materials 2020;89:105213. [6] Barker D. and Walsh F. C. Applications of Faraday's Laws of Electrolysis in Metal Finishing. Transactions of the IMF 1991;69:158-62. [7] Kim Y.-S. and Kim J.-G. Electroplating of Reduced-Graphene Oxide on Austenitic Stainless Steel to Prevent Hydrogen Embrittlement. International Journal of Hydrogen Energy 2017;42:27428-37. [8] Bard A. J. and Faulkner L. R. Fundamentals and Applications. Electrochemical Methods 2001;2:580-632. [9] Gharbi O., Thomas S., Smith C. and Birbilis N. Chromate Replacement: What Does the Future Hold? npj Materials Degradation 2018;2:1-8. [10] Directive R., Restriction of Hazardous Substances Directive, ed: EU, 2002. [11] Baral A., Engelken R., Stephens W., Farris J. and Hannigan R. Evaluation of Aquatic Toxicities of Chromium and Chromium-Containing Effluents in Reference to Chromium Electroplating Industries. Archives of Environmental Contamination and Toxicology 2006;50:496-502. [12] Xu L., Pi L., Dou Y., Cui Y., Mao X., Lin A. et al. Electroplating of Thick Hard Chromium Coating from a Trivalent Chromium Bath Containing a Ternary Complexing Agent: A Methodological and Mechanistic Study. ACS Sustainable Chemistry & Engineering 2020;8:15540-49. [13] Adachi K., Kitada A., Fukami K. and Murase K. Crystalline Chromium Electroplating with High Current Efficiency Using Chloride Hydrate Melt-Based Trivalent Chromium Baths. Electrochimica Acta 2020;338:135873. [14] Smart D., Such T. and Wake S. A Novel Trivalent Chromium Electroplating Bath. Transactions of the IMF 1983;61:105-10. [15] Song Y. and Chin D. Current Efficiency and Polarization Behavior of Trivalent Chromium Electrodeposition Process. Electrochimica Acta 2002;48:349-56. [16] Zeng Z., Sun Y. and Zhang J. The Electrochemical Reduction Mechanism of Trivalent Chromium in the Presence of Formic Acid. Electrochemistry Communications 2009;11:331-34. [17] He X., Li C., Zhu Q., Hou B., Jiang Y. and Wu L. Electrochemical Mechanism of Cr (Iii) Reduction for Preparing Crystalline Chromium Coatings Based on 1-Butyl-3-Methylimidazolium Hydrogen Sulfate Ionic Liquid. RSC Advances 2014;4:64174-82. [18] Smith A., Watson A. and Vaughan D. The Role of Oligomeric Olated Species in the Deposition Rate of Chromium from a Commercial Chromium (Iii) Electrolyte. Transactions of the IMF 1993;71:106-12. [19] Helm L. and Merbach A. E. Applications of Advanced Experimental Techniques: High Pressure Nmr and Computer Simulations. Journal of the Chemical Society, Dalton Transactions 2002;633-41. [20] Wang J. Thermodynamic Equilibrium and Kinetic Fundamentals of Oxide Dissolution in Aqueous Solution. Journal of Materials Research 2020;35:898-921. [21] Fang J. L., Theory & Application of Coordination Compounds in Electroplating, ed: Chemical Industry Press, Beijing, 2007. [22] Forster L. S. The Photophysics of Chromium (Iii) Complexes. Chemical Reviews 1990;90:331-53. [23] Baral A. and Engelken R. Modeling, Optimization, and Comparative Analysis of Trivalent Chromium Electrodeposition from Aqueous Glycine and Formic Acid Baths. Journal of the electrochemical society 2005;152:C504. [24] Sheu H. H., Hong T. Y., Lin T. T. and Ger M. D. The Effect of Heat Treatment on the Corrosion Resistance, Mechanical Properties and Wear Resistance of Cr−C Coatings and Cr−C/Al2o3 Composite Coatings Electrodeposited on Low Carbon Steel. International Journal of Electrochemical Science 2018;13:9399-415. [25] Sheu H. H., Lin M. H., Jian S. Y., Hong T. Y., Hou K. H. and Ger M. D. Improve the Mechanical Properties and Wear Resistance of Cr-C Thin Films by Adding Al2o3 Particles. Surface and Coatings Technology 2018. [26] Sheu H. H., Syu J. H., Liu Y. M., Hou K. H. and Ger M. D. A Comparison of the Corrosion Resistance and Wear Resistance Behavior of Cr-C, Ni-P and Ni-B Coatings Electroplated on 4140 Alloy Steel. International Journal of Electrochemical Science 2018;13:3267-78. [27] Chanda U. K., Behera A., Roy S. and Pati S. Evaluation of Ni-Cr-P Coatings Electrodeposited on Low Carbon Steel Bipolar Plates for Polymer Electrolyte Membrane Fuel Cell. International Journal of Hydrogen Energy 2018. [28] Chien C., Liu C., Chen F., Lin K. and Lin C. Microstructure and Properties of Carbon–Sulfur-Containing Chromium Deposits Electroplated in Trivalent Chromium Baths with Thiosalicylic Acid. Electrochimica Acta 2012;72:74-80. [29] Del Pianta D., Frayret J., Gleyzes C., Cugnet C., Dupin J. C. and Le Hecho I. Determination of the Chromium (Iii) Reduction Mechanism During Chromium Electroplating. Electrochimica Acta 2018;284:234-41. [30] Prabhakar J. M., Varanasi R. S., da Silva C. C., de Vooys A., Erbe A. and Rohwerder M. Chromium Coatings from Trivalent Chromium Plating Baths: Characterization and Cathodic Delamination Behaviour. Corrosion Science 2021;187:109525. [31] Asri N. F., Husaini T., Sulong A. B., Majlan E. H. and Daud W. R. W. J. I. J. o. H. E. Coating of Stainless Steel and Titanium Bipolar Plates for Anticorrosion in Pemfc: A Review. 2017;42:9135-48. [32] Colner W. H., Feinleib M. and Reding J. N. Electroplating on Titanium. Journal of The Electrochemical Society 1953;100:485. [33] Sudagar J., Venkateswarlu K. and Lian J. Dry Sliding Wear Properties of a 7075-T6 Aluminum Alloy Coated with Ni-P (H) in Different Pretreatment Conditions. Journal of Materials Engineering and Performance 2010;19:810-18. [34] Sikder A., Sharda T., Misra D., Chandrasekaram D. and Selvam P. Chemical Vapour Deposition of Diamond on Stainless Steel: The Effect of Ni-Diamond Composite Coated Buffer Layer. Diamond and related materials 1998;7:1010-13. [35] Postins C. and Longland J. Advances in Producing Microcracked Chromium Deposits Using a Post Nickel Strike System. Transactions of the IMF 1971;49:84-87. [36] Nurhadiyanto D., Abbas W. and Haruyama S., 'Sus304 Material Coating with Nickel through Electroplating,' in Advances in Mechanical Processing and Design: Springer, 2021, pp. 515-22. [37] Sha C.-H. and Lee C. C. Microstructure and Surface Treatment of 304 Stainless Steel for Electronic Packaging. Journal of Electronic Packaging 2011;133. [38] Peev M. Study of System Power Supply Source–the Galvanic Bath with Pulse Plating Deposition of Nickel Coating. [39] Huang C. A., Chen C. Y., Hsu C. C. and Lin C. S. Characterization of Cr–Ni Multilayers Electroplated from a Chromium (Iii)–Nickel (Ii) Bath Using Pulse Current. Scripta Materialia 2007;57:61-64. [40] Demeri M. Y., Advanced High-Strength Steels: Science, Technology, and Applications. ASM international, 2013. [41] Keeler S. and Kimchi M., Advanced High-Strength Steels Application Guidelines V5. WorldAutoSteel, 2015. [42] Kuziak R., Kawalla R. and Waengler S. Advanced High Strength Steels for Automotive Industry. Archives of civil and mechanical engineering 2008;8:103-17. [43] Kwon O., Lee K. Y., Kim G. S. and Chin K. G., 'New Trends in Advanced High Strength Steel Developments for Automotive Application,' in Materials Science Forum, 2010, vol. 638: Trans Tech Publ, pp. 136-41. [44] Alibeyki M., Mirzadeh H., Najafi M. and Kalhor A. Modification of Rule of Mixtures for Estimation of the Mechanical Properties of Dual-Phase Steels. Journal of Materials Engineering and Performance 2017;26:2683-88. [45] Schaeffler D. Introduction to Advanced High-Strength Steels-Part I. Stamping journal 2004;16:22-28. [46] Bouaziz O., Zurob H. and Huang M. Driving Force and Logic of Development of Advanced High Strength Steels for Automotive Applications. Steel research international 2013;84:937-47. [47] Van Rensselar J. The Riddle of Stell: A-Uhss. Tribology & lubrication technology 2011;67:38. [48] Liu H., Xing Z., Bao J. and Song B. Investigation of the Hot-Stamping Process for Advanced High-Strength Steel Sheet by Numerical Simulation. Journal of Materials Engineering and Performance 2010;19:325-34. [49] Karbasian H. and Tekkaya A. E. A Review on Hot Stamping. Journal of Materials Processing Technology 2010;210:2103-18. [50] Fan D. W. and De Cooman B. C. State‐of‐the‐Knowledge on Coating Systems for Hot Stamped Parts. Steel research international 2012;83:412-33. [51] Lin C., Lee H. and Hsieh S. Microstructure and Formability of Znni Alloy Electrodeposited Sheet Steel. Metallurgical and Materials Transactions A 2000;31:475-85. [52] Li R., Dong Q., Xia J., Luo C., Sheng L., Cheng F. et al. Electrodeposition of Composition Controllable Znni Coating from Water Modified Deep Eutectic Solvent. Surface and Coatings Technology 2019;366:138-45. [53] Lei C., Alesary H. F., Khan F., Abbott A. P. and Ryder K. S. Gamma-Phase Zn-Ni Alloy Deposition by Pulse-Electroplating from a Modified Deep Eutectic Solution. Surface and Coatings Technology 2020;403:126434. [54] Zhang X. G., Corrosion and Electrochemistry of Zinc. Springer Science & Business Media, 1996. [55] Zhang J., Sun C., Yu Z., Cheng J., Li W. and Duan J. The Performance of Zinc Sacrificial Anode in Simulating Marine Fouling Environment. Int. J. Electrochem. Sci 2014;9:5712-21. [56] Beal C., Kleber X., Fabregue D. and Bouzekri M. Embrittlement of a Zinc Coated High Manganese Twip Steel. Materials Science and Engineering: A 2012;543:76-83. [57] Beal C., Kleber X., Fabregue D. and Bouzekri M. Liquid Zinc Embrittlement of Twinning-Induced Plasticity Steel. Scripta Materialia 2012;66:1030-33. [58] Razmpoosh M., Macwan A., Biro E., Chen D., Peng Y., Goodwin F. et al. Liquid Metal Embrittlement in Laser Beam Welding of Zn-Coated 22mnb5 Steel. Materials & Design 2018;155:375-83. [59] Lee C. W., Fan D. W., Sohn I. R., Lee S.-J. and De Cooman B. C. Liquid-Metal-Induced Embrittlement of Zn-Coated Hot Stamping Steel. Metallurgical and Materials Transactions A 2012;43:5122-27. [60] Kondratiuk J., Kuhn P., Labrenz E. and Bischoff C. Zinc Coatings for Hot Sheet Metal Forming: Comparison of Phase Evolution and Microstructure During Heat Treatment. Surface and Coatings Technology 2011;205:4141-53. [61] Abbasi M., Saeed-Akbari A. and Naderi M. The Effect of Strain Rate and Deformation Temperature on the Characteristics of Isothermally Hot Compressed Boron-Alloyed Steel. Materials Science and Engineering: A 2012;538:356-63. [62] Fan D., Park R., Cho Y. and De Cooman B. Influence of Isothermal Deformation Conditions on the Mechanical Properties of 22mnb5 Hpf Steel. steel research international 2010;81:292-98. [63] Lee H. and Sata T. Effects of Oxygen Partial Pressures on Vaporization Rates in the System Mgo-Cr2o3. J Ceramic Soc Japan 1978;86:28-34. [64] Key C., Eziashi J., Froitzheim J., Amendola R., Smith R. and Gannon P. Methods to Quantify Reactive Chromium Vaporization from Solid Oxide Fuel Cell Interconnects. Journal of The Electrochemical Society 2014;161:C373. [65] Mittal A., Albertsson G. J., Gupta G. S., Seetharaman S. and Subramanian S. Some Thermodynamic Aspects of the Oxides of Chromium. Metallurgical and Materials Transactions B 2014;45:338-44. [66] Panda S. K. and Jung I.-H. Comment on “Some Thermodynamic Aspects of the Oxides of Chromium” by A. Mittal, Gj Albertsson, Gs Gupta, S. Seetharaman, and S. Subramanian. Metallurgical and Materials Transactions B 2015;46:5-6. [67] Birks N., Meier G. H. and Pettit F. S., Introduction to the High Temperature Oxidation of Metals. Cambridge university press, 2006. [68] Hasegawa M., 'Ellingham Diagram,' in Treatise on Process Metallurgy: Elsevier, 2014, pp. 507-16. [69] Antunes R. A., Oliveira M. C. L., Ett G. and Ett V. Corrosion of Metal Bipolar Plates for Pem Fuel Cells: A Review. International journal of hydrogen energy 2010;35:3632-47. [70] Lim J. W. Development of Composite-Metal Hybrid Bipolar Plates for Pem Fuel Cells. international journal of hydrogen energy 2012;37:12504-12. [71] Wang X. Z., Muneshwar T. P., Fan H. Q., Cadien K. and Luo J. L. Achieving Ultrahigh Corrosion Resistance and Conductive Zirconium Oxynitride Coating on Metal Bipolar Plates by Plasma Enhanced Atomic Layer Deposition. Journal of Power Sources 2018;397:32-36. [72] Taherian R. A Review of Composite and Metallic Bipolar Plates in Proton Exchange Membrane Fuel Cell: Materials, Fabrication, and Material Selection. Journal of Power Sources 2014;265:370-90. [73] Yi P., Zhang D., Qiu D., Peng L. and Lai X. Carbon-Based Coatings for Metallic Bipolar Plates Used in Proton Exchange Membrane Fuel Cells. International Journal of Hydrogen Energy 2019. [74] Wang H.-C., Sheu H.-H., Lu C.-E., Hou K.-H. and Ger M.-D. Preparation of Corrosion-Resistant and Conductive Trivalent Cr–C Coatings on 304 Stainless Steel for Use as Bipolar Plates in Proton Exchange Membrane Fuel Cells by Electrodeposition. Journal of Power Sources 2015;293:475-83. [75] Mandal P., kumar Chanda U. and Roy S. A Review of Corrosion Resistance Method on Stainless Steel Bipolar Plate. Materials Today: Proceedings 2018;5:17852-56. [76] Bolsinger C., Zorn M. and Birke K. P. J. J. o. e. s. Electrical Contact Resistance Measurements of Clamped Battery Cell Connectors for Cylindrical 18650 Battery Cells. 2017;12:29-36. [77] Lu C. E., Pu N. W., Hou K. H., Tseng C. C. and Ger M. D. The Effect of Formic Acid Concentration on the Conductivity and Corrosion Resistance of Chromium Carbide Coatings Electroplated with Trivalent Chromium. 2013;282:544-51. [78] Fu Y., Lin G., Hou M., Wu B., Shao Z. and Yi B. Carbon-Based Films Coated 316l Stainless Steel as Bipolar Plate for Proton Exchange Membrane Fuel Cells. International Journal of hydrogen energy 2009;34:405-09. [79] Ghaziof S., Golozar M. and Raeissi K. Characterization of as-Deposited and Annealed Cr–C Alloy Coatings Produced from a Trivalent Chromium Bath. Journal of Alloys and Compounds 2010;496:164-68. [80] Wang Y., Liu Y., Li G., Zheng M., Li Y., Zhang A. et al. Microstructure and Flow Accelerated Corrosion Resistance of Cr Coatings Electrodeposited in a Trivalent Chromium Bath. Surface and Coatings Technology 2021;422:127527. [81] Chien C. W. 硫化物對三價鉻電鍍行為的影響. 臺灣大學材料科學與工程學研究所學位論文 2010;1-133. [82] Protsenko V. S., Gordiienko V. O. and Danilov F. I. Unusual' Chemical' Mechanism of Carbon Co-Deposition in Cr-C Alloy Electrodeposition Process from Trivalent Chromium Bath. Electrochemistry communications 2012;17:85-87. [83] Kwon S., Kim M., Park S., Kim D., Kim D., Nam K. et al. Characterization of Intermediate Cr-C Layer Fabricated by Electrodeposition in Hexavalent and Trivalent Chromium Baths. Surface and Coatings Technology 2004;183:151-56. [84] Wijenberg J., Steegh M., Aarnts M., Lammers K. and Mol J. Electrodeposition of Mixed Chromium Metal-Carbide-Oxide Coatings from a Trivalent Chromium-Formate Electrolyte without a Buffering Agent. Electrochimica Acta 2015;173:819-26. [85] Pang X., Gao K., Yang H., Qiao L., Wang Y. and Volinsky A. Interfacial Microstructure of Chromium Oxide Coatings. Advanced Engineering Materials 2007;9:594-99. [86] Anthonysamy S., Ananthasivan K., Kaliappan I., Chandramouli V., Rao P. V., Mathews C. et al. Gibbs Energies of Formation of Chromium Carbides. Metallurgical and Materials Transactions A 1996;27:1919-24. [87] Shigegaki Y., Basu S. and Taniguchi M. Thermal Analysis and Kinetics of Oxidation of “Cr3s4” and “Cr2s3”. Thermochimica Acta 1988;133:215-19. [88] Zhang L., Huang Z., Chang L. and Zheng Q. Comparison of Oxidation Behaviors of Cr7c3 at 1173 K and 1273 K. Materials Research Express 2017;4:106508. [89] Huang Z., Ma S., Xing J. and Sun S. Bulk Cr7c3 Compound Fabricated by Mechanical Ball Milling and Plasma Activated Sintering. International Journal of Refractory Metals and Hard Materials 2014;45:204-11. [90] Lee D. Oxidation of Cr–C Electroplating between 400 and 900° C in Air. Materials and corrosion 2008;59:598-601. [91] 蔡易宸. 合金元素矽鉻銅對低碳鋼高溫氧化的影響. 2020. [92] Morshed Behbahani K., Najafisayar P. and Pakshir M. A New Method for Electroplating of Crack-Free Chromium Coatings. Iranian Journal of Chemistry and Chemical Engineering (IJCCE) 2018;37:117-27. [93] Gaskell D. R. and Laughlin D. E., Introduction to the Thermodynamics of Materials. CRC press, 2017. [94] Wood G. C. High-Temperature Oxidation of Alloys. Oxidation of Metals 1970;2:11-57. [95] Hancock P. and Hurst R., 'The Mechanical Properties and Breakdown of Surface Oxide Films at Elevated Temperatures,' in Advances in Corrosion Science and Technology: Springer, 1974, pp. 1-84. [96] Liu H., Feng Y., Li P., Shi X., Zhu H., Shu J. et al. Enhanced Plasticity of the Oxide Scales by in-Situ Formed Cr2o3/Cr Heterostructures for Cr-Based Coatings on Zr Alloy in 1200° C Steam. Corrosion Science 2021;184:109361. [97] Wu S., Guo B., Li T. and Gui D. Oxidation of Chromium Carbide Coated Q235 Steel in Wet and Dry Air at 750° C. Construction and Building Materials 2015;81:11-14. [98] Huang L. F., Hutchison M., Santucci Jr R., Scully J. R. and Rondinelli J. M. Improved Electrochemical Phase Diagrams from Theory and Experiment: The Ni–Water System and Its Complex Compounds. The Journal of Physical Chemistry C 2017;121:9782-89. [99] Kirchheim R., Heine B., Fischmeister H., Hofmann S., Knote H. and Stolz U. The Passivity of Iron-Chromium Alloys. Corrosion Science 1989;29:899-917. [100] Liu W., Yuan R., Teng Y. and Ma C. Electrochemical Oxidation Mechanism of Thiosalicylic Acid on Activated Glassy Carbon Electrode. Chinese Journal of Applied Chemistry 2014;31:342.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85312-
dc.description.abstract本實驗研究三價鉻鍍膜之抗高溫氧化性質及耐蝕性。抗高溫氧化實驗,鍍膜於22MnB5先進高強度鋼,並藉由SEM、EDS、XRD、TEM、TGA及AES檢測高溫氧化前後之膜層的改變。結果顯示,有機硫化物的添加,能將含有殘留應力之非晶Cr-C膜層轉變為結晶的Cr-C-S膜層,但使電流效率大幅降低,膜層厚度有明顯變薄的趨勢。高溫氧化後之結果顯示,長時間電鍍之Cr-C-S膜層,因膨脹係數與基材有所差異,導致應力的產生,而應力會集中於膜層微裂紋的位置,最終造成膜層由內部裂開。長時間電鍍之Cr-C膜層,因含有許多粗大的裂紋,因此無法有效抑制高溫氧化。相反的,短時間電鍍Cr-C膜層,其膜層厚度約為1 μm,並伴隨著細小的裂紋,此裂紋能有效釋放熱膨脹所造成的應力,且細小的裂紋會於高溫氧化期間被氧化鉻所填滿,進而抵抗高溫氧化的侵襲。 耐蝕性實驗,是將三價鉻電鍍於SS304不鏽鋼上,並使用SEM、EDS、XRD、PDP及EIS檢測膜層性質。結果顯示出,Cr-C膜層之耐蝕性不佳,因此無法用於雙極板之保護膜層。相反的,Cr-C-S膜層之耐蝕性於0.5 M硫酸之腐蝕溶液中,腐蝕電流密度皆達到10-7 A/cm2級數,並以脈衝電鍍50 ASD Cr-C-S膜層有最佳耐蝕性,達到1.61 x 10-7 A/cm2。介電阻抗結果顯示,以50 ASD電鍍之Cr-C-S膜層,於壓力達到120 N以上時,阻抗值皆小於30 mΩ•cm2。綜合耐蝕性及介電阻抗結果得知,以脈衝電鍍50 ASD Cr-C-S膜層,不僅擁有極佳耐蝕性,也展現出低的介面阻抗值,因此較適用於雙極板之保護鍍膜。zh_TW
dc.description.abstractThis investigation studies the high temperature oxidation resistance and corrosion resistance of trivalent chromium coatings. High temperature oxidation resistance test, coating on 22MnB5 advanced high strength steel, and analyze the changes of the film before and after high temperature oxidation by SEM, EDS, XRD, TEM, TGA and AES. The results showed that the addition of organic sulfide could change the amorphous Cr-C film containing residual stress to crystalline Cr-C-S film, but the current efficiency was significantly reduced and the film thickness tended to be significantly thinner. The result of high temperature oxidation shows that the Cr-C-S layer plated for a long time has a different expansion coefficient from that of the substrate, resulting in the generation of stress, which is concentrated in the location of microcracks in the layer and eventually causes the layer to crack from the inside. The Cr-C film that is electroplated for a long time contains many coarse cracks, so it cannot effectively inhibit high-temperature oxidation. On the contrary, the short-time electroplating Cr-C film has a thickness of about 1 μm and is accompanied by small cracks. This crack can effectively release the stress caused by thermal expansion, and the small cracks will be filled up with oxide during high temperature oxidation. The corrosion resistance test is to electroplate trivalent chromium on SS304 stainless steel, and use SEM, EDS, XRD, PDP and EIS to analyze the properties of the film. The results show that the corrosion resistance of Cr-C film is poor, so it cannot be used for protective film of bipolar plate. On the contrary, the corrosion resistance of Cr-C-S films with 0.5 M sulfuric acid as corrosion solution, the corrosion current density is 10-7 A/cm2, and 50 ASD Cr-C-S film has the best corrosion resistance by pulse electroplating which is 1.61 x 10-7 A/cm2. The interfacial contact resistance results show that the Cr-C-S film electroplated with 50 ASD, when the pressure reaches 120 N or more, the resistance is less than 30 mΩ•cm2. Comprehensive corrosion resistance and interfacial contact resistance results show that pulse plating 50 ASD Cr-C-S film not only has excellent corrosion resistance, but also exhibits low interfacial contact resistance, so it is more suitable for protective coating of bipolar plates.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:56:56Z (GMT). No. of bitstreams: 1
U0001-2707202214275500.pdf: 12681286 bytes, checksum: 1dfd8ebd1b1e1acc09f822c6fead1bc1 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝.....................I 摘要.....................II Abstract.....................III 目錄.....................V 圖目錄.....................VIII 表目錄.....................XV 第一章 前言.....................1 第二章 文獻回顧.....................3 2.1 電鍍.....................3 2.1.1 電鍍原理.....................3 2.1.2 電鍍鉻.....................7 2.1.3 預鍍鎳.....................15 2.1.4 脈衝電鍍.....................16 2.2 先進高強度鋼.....................21 2.3 熱沖壓.....................24 2.3.1 熱沖壓製程.....................24 2.3.2 液態金屬誘導脆化.....................26 2.4 高溫氧化理論.....................28 2.5 燃料電池.....................32 2.6 介面阻抗.....................38 第三章 實驗方法.....................40 3.1 實驗流程.....................40 3.2 樣品製備.....................41 3.2.1 22MnB5鋼.....................41 3.2.2 SS304不鏽鋼.....................42 3.3分析方法.....................44 3.3.1 掃描式電子顯微鏡(Scanning electron microscopy, SEM).....................44 3.3.2 X光繞射分析(X-ray diffraction, XRD).....................44 3.3.3 熱重分析(Thermogravimetric analysis, TGA).....................44 3.3.4 歐傑電子能譜(Auger Electron Spectroscopy, AES).....................45 3.3.5 穿透式電子顯微鏡(Transmission electron microscope, TEM).....................45 3.3.6 動電位極化(Potentiodynamic polarization, PDP).....................45 3.3.7 電化學阻抗(Electrochemical impedance spectroscopy,EIS).....................46 3.3.8 介面阻抗(Interfacial contact resistance, ICR).....................46 第四章 結果與討論.....................48 4.1 三價鉻電鍍於22MnB5鋼之抗高溫氧化行為.....................48 4.1.1 直流電鍍電荷數6480庫侖試樣微結構分析.....................48 4.1.2 直流電鍍電荷數6480庫侖試樣高溫氧化後微結構分析.....................56 4.1.3 50 ASD Cr-C(S)膜層電鍍不同時間試樣微結構分析.....................64 4.1.4 50 ASD Cr-C(S)膜層電鍍不同時間試樣高溫氧化後微結構分析.....................69 4.1.5 熱重分析.....................80 4.1.6 Auger電子能譜分析.....................82 4.1.7 Cr-C(S)試樣高溫氧化後TEM分析.....................83 4.2 燃料電池雙極板-SS304不鏽鋼.....................92 4.2.1 前導實驗.....................92 4.2.2 電流型式及電流密度影響.....................96 4.2.3 介電阻抗.....................108 第五章 結論.....................110 未來展望.....................112 參考文獻.....................113
dc.language.isozh-TW
dc.subject雙極板zh_TW
dc.subject三價鉻電鍍zh_TW
dc.subject介面阻抗zh_TW
dc.subject耐蝕性zh_TW
dc.subject高溫氧化zh_TW
dc.subjectinterfacial contact resistanceen
dc.subjecttrivalent chromium electroplatingen
dc.subjecthigh temperature oxidationen
dc.subjectbipolar plateen
dc.subjectcorrosion resistanceen
dc.title三價鉻電鍍膜於900℃之抗高溫氧化及耐腐蝕性質研究zh_TW
dc.titleHigh-temperature oxidation at 900℃ and corrosion resistance of Cr-based coating electroplated in trivalent chromium bathsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree博士
dc.contributor.oralexamcommittee金重勳(Tsung-Shune Chin),葛明德(Ming-Der Ger),李岳聯(Yueh-Lien Lee),顏鴻威(Hung-Wei Yen)
dc.subject.keyword三價鉻電鍍,高溫氧化,雙極板,耐蝕性,介面阻抗,zh_TW
dc.subject.keywordtrivalent chromium electroplating,high temperature oxidation,bipolar plate,corrosion resistance,interfacial contact resistance,en
dc.relation.page121
dc.identifier.doi10.6342/NTU202201777
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
dc.date.embargo-lift2025-08-01-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
U0001-2707202214275500.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
12.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved