請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85299
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳俊維(Chun-Wei Chen) | |
dc.contributor.author | Ting-Kuang Chang | en |
dc.contributor.author | 張廷光 | zh_TW |
dc.date.accessioned | 2023-03-19T22:56:06Z | - |
dc.date.copyright | 2022-08-02 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-07-27 | |
dc.identifier.citation | 1. NASA, https://climate.nasa.gov. 2022. 2. Carmichael, P. Materials and Devices for Photoelectrochemical and Photocatalytic Water Splitting. UCL (University College London), 2016. 3. EPIA, Solar Photovoltaic electricity empowering the world. 2011. 4. Kumar, A.; Hasija, V.; Sudhaik, A.; Raizada, P.; Van Le, Q.; Singh, P.; Pham, T.-H.; Kim, T.; Ghotekar, S.; Nguyen, V.-H., Artificial leaf for light-driven CO2 reduction: Basic concepts, advanced structures and selective solar-to-chemical products. Chemical Engineering Journal 2022, 430. 5. Jiang, B.; Henstra, A. M.; Paulo, P. L.; Balk, M.; van Doesburg, W.; Stams, A. J., Atypical one-carbon metabolism of an acetogenic and hydrogenogenic Moorella thermoacetica strain. Arch Microbiol 2009, 191 (2), 123-31. 6. Mock, J.; Wang, S.; Huang, H.; Kahnt, J.; Thauer, R. K., Evidence for a hexaheteromeric methylenetetrahydrofolate reductase in Moorella thermoacetica. J Bacteriol 2014, 196 (18), 3303-14. 7. Huang, H.; Wang, S.; Moll, J.; Thauer, R. K., Electron bifurcation involved in the energy metabolism of the acetogenic bacterium Moorella thermoacetica growing on glucose or H2 plus CO2. J Bacteriol 2012, 194 (14), 3689-99. 8. Ragsdale, S. W.; Pierce, E., Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation. Biochim Biophys Acta 2008, 1784 (12), 1873-98. 9. Zhang, J.; Sewell, C. D.; Huang, H.; Lin, Z., Closing the Anthropogenic Chemical Carbon Cycle toward a Sustainable Future via CO 2 Valorization. Advanced Energy Materials 2021, 11 (47). 10. Alivisatos, A. P.; Blaser, M.; Brodie, E. L.; Chun, M.; Dangl, J. L.; Donohue, T. J.; Dorrestein, P. C.; Gilbert, J. A.; Green, J. L.; Jansson, J. K., A unified initiative to harness Earth's microbiomes. Science 2015, 350 (6260), 507-508. 11. Xiao, K.; Liang, J.; Wang, X.; Hou, T.; Ren, X.; Yin, P.; Ma, Z.; Zeng, C.; Gao, X.; Yu, T.; Si, T.; Wang, B.; Zhong, C.; Jiang, Z.; Lee, C.-S.; Yu, J. C.-m.; Wong, P. K., Panoramic insights into semi-artificial photosynthesis: origin, development, and future perspective. Energy & Environmental Science 2022, 15 (2), 529-549. 12. Geim, A. K.; Novoselov, K. S., The rise of graphene. In Nanoscience and technology: a collection of reviews from nature journals, World Scientific: 2010; pp 11-19. 13. Geim, A. K., Graphene: status and prospects. science 2009, 324 (5934), 1530-1534. 14. Mayorov, A. S.; Gorbachev, R. V.; Morozov, S. V.; Britnell, L.; Jalil, R.; Ponomarenko, L. A.; Blake, P.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T.; Geim, A. K., Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett 2011, 11 (6), 2396-9. 15. Wu, Z.-S.; Ren, W.; Gao, L.; Zhao, J.; Chen, Z.; Liu, B.; Tang, D.; Yu, B.; Jiang, C.; Cheng, H.-M., Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS nano 2009, 3 (2), 411-417. 16. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H., Large-scale pattern growth of graphene films for stretchable transparent electrodes. nature 2009, 457 (7230), 706-710. 17. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M.; Geim, A. K., Fine structure constant defines visual transparency of graphene. Science 2008, 320 (5881), 1308-1308. 18. Balandin, A. A., Thermal properties of graphene and nanostructured carbon materials. Nature materials 2011, 10 (8), 569-581. 19. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. science 2008, 321 (5887), 385-388. 20. Neto, A. C.; Guinea, F.; Peres, N. M.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene. Reviews of modern physics 2009, 81 (1), 109. 21. Wang, H. P.; Sun, K.; Noh, S. Y.; Kargar, A.; Tsai, M. L.; Huang, M. Y.; Wang, D.; He, J. H., High-Performance a-Si/c-Si Heterojunction Photoelectrodes for Photoelectrochemical Oxygen and Hydrogen Evolution. Nano Lett 2015, 15 (5), 2817-24. 22. Liu, B.; Wang, S.; Feng, S.; Li, H.; Yang, L.; Wang, T.; Gong, J., Double‐Side Si Photoelectrode Enabled by Chemical Passivation for Photoelectrochemical Hydrogen and Oxygen Evolution Reactions. Advanced Functional Materials 2020, 31 (3). 23. Kornienko, N.; Zhang, J. Z.; Sakimoto, K. K.; Yang, P.; Reisner, E., Interfacing nature's catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nat Nanotechnol 2018, 13 (10), 890-899. 24. Kuk, S. K.; Ham, Y.; Gopinath, K.; Boonmongkolras, P.; Lee, Y.; Lee, Y. W.; Kondaveeti, S.; Ahn, C.; Shin, B.; Lee, J. K.; Jeon, S.; Park, C. B., Continuous 3D Titanium Nitride Nanoshell Structure for Solar‐Driven Unbiased Biocatalytic CO2Reduction. Advanced Energy Materials 2019, 9 (25). 25. Ye, J.; Hu, A.; Ren, G.; Chen, M.; Zhou, S.; He, Z., Biophotoelectrochemistry for renewable energy and environmental applications. iScience 2021, 24 (8), 102828. 26. Weliwatte, N. S.; Minteer, S. D., Photo-bioelectrocatalytic CO2 reduction for a circular energy landscape. Joule 2021, 5 (10), 2564-2592. 27. Lu, S.; Guan, X.; Liu, C., Electricity-powered artificial root nodule. Nat Commun 2020, 11 (1), 1505. 28. Fujishima, A.; Honda, K., Electrochemical photolysis of water at a semiconductor electrode. nature 1972, 238 (5358), 37-38. 29. Grätzel, M., Photoelectrochemical cells. In Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific: 2011; pp 26-32. 30. Hisatomi, T.; Kubota, J.; Domen, K., Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews 2014, 43 (22), 7520-7535. 31. Xie, S.; Zhang, Q.; Liu, G.; Wang, Y., Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. Chem Commun (Camb) 2016, 52 (1), 35-59. 32. Liu, C.; Dasgupta, N. P.; Yang, P., Semiconductor Nanowires for Artificial Photosynthesis. Chemistry of Materials 2013, 26 (1), 415-422. 33. Zhang, D.; Shi, J.; Zi, W.; Wang, P.; Liu, S. F., Recent Advances in Photoelectrochemical Applications of Silicon Materials for Solar-to-Chemicals Conversion. ChemSusChem 2017, 10 (22), 4324-4341. 34. Zhang, Y.; Zu, F.; Lee, S.-T.; Liao, L.; Zhao, N.; Sun, B., Heterojunction with Organic Thin Layers on Silicon for Record Efficiency Hybrid Solar Cells. Advanced Energy Materials 2014, 4 (2). 35. Jia, Y.; Wei, J.; Wang, K.; Cao, A.; Shu, Q.; Gui, X.; Zhu, Y.; Zhuang, D.; Zhang, G.; Ma, B.; Wang, L.; Liu, W.; Wang, Z.; Luo, J.; Wu, D., Nanotube-Silicon Heterojunction Solar Cells. Advanced Materials 2008, 20 (23), 4594-4598. 36. Jia, Y.; Cao, A.; Bai, X.; Li, Z.; Zhang, L.; Guo, N.; Wei, J.; Wang, K.; Zhu, H.; Wu, D.; Ajayan, P. M., Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping. Nano Lett 2011, 11 (5), 1901-5. 37. Li, X.; Zhu, H.; Wang, K.; Cao, A.; Wei, J.; Li, C.; Jia, Y.; Li, Z.; Li, X.; Wu, D., Graphene-on-silicon Schottky junction solar cells. Adv Mater 2010, 22 (25), 2743-8. 38. Ku, C. K.; Wu, P. H.; Chung, C. C.; Chen, C. C.; Tsai, K. J.; Chen, H. M.; Chang, Y. C.; Chuang, C. H.; Wei, C. Y.; Wen, C. Y.; Lin, T. Y.; Chen, H. L.; Wang, Y. S.; Lee, Z. Y.; Chang, J. R.; Luo, C. W.; Wang, D. Y.; Hwang, B. J.; Chen, C. W., Creation of 3D Textured Graphene/Si Schottky Junction Photocathode for Enhanced Photo‐Electrochemical Efficiency and Stability. Advanced Energy Materials 2019, 9 (29). 39. Kempler, P. A.; Gonzalez, M. A.; Papadantonakis, K. M.; Lewis, N. S., Hydrogen Evolution with Minimal Parasitic Light Absorption by Dense Co–P Catalyst Films on Structured p-Si Photocathodes. ACS Energy Letters 2018, 3 (3), 612-617. 40. Peramaiah, K.; Ramalingam, V.; Fu, H. C.; Alsabban, M. M.; Ahmad, R.; Cavallo, L.; Tung, V.; Huang, K. W.; He, J. H., Optically and Electrocatalytically Decoupled Si Photocathodes with a Porous Carbon Nitride Catalyst for Nitrogen Reduction with Over 61.8% Faradaic Efficiency. Adv Mater 2021, 33 (18), e2100812. 41. Nichols, E. M.; Gallagher, J. J.; Liu, C.; Su, Y.; Resasco, J.; Yu, Y.; Sun, Y.; Yang, P.; Chang, M. C.; Chang, C. J., Hybrid bioinorganic approach to solar-to-chemical conversion. Proc Natl Acad Sci U S A 2015, 112 (37), 11461-6. 42. Cestellos-Blanco, S.; Zhang, H.; Kim, J. M.; Shen, Y.-x.; Yang, P., Photosynthetic semiconductor biohybrids for solar-driven biocatalysis. Nature Catalysis 2020, 3 (3), 245-255. 43. Liu, C.; Gallagher, J. J.; Sakimoto, K. K.; Nichols, E. M.; Chang, C. J.; Chang, M. C.; Yang, P., Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett 2015, 15 (5), 3634-9. 44. Su, Y.; Cestellos-Blanco, S.; Kim, J. M.; Shen, Y.-x.; Kong, Q.; Lu, D.; Liu, C.; Zhang, H.; Cao, Y.; Yang, P., Close-Packed Nanowire-Bacteria Hybrids for Efficient Solar-Driven CO2 Fixation. Joule 2020, 4 (4), 800-811. 45. Xu, L.; Zhao, Y.; Owusu, K. A.; Zhuang, Z.; Liu, Q.; Wang, Z.; Li, Z.; Mai, L., Recent Advances in Nanowire-Biosystem Interfaces: From Chemical Conversion, Energy Production to Electrophysiology. Chem 2018, 4 (7), 1538-1559. 46. Yang, P., Liquid Sunlight: The Evolution of Photosynthetic Biohybrids. Nano Lett 2021, 21 (13), 5453-5456. 47. Sakimoto, K. K.; Zhang, S. J.; Yang, P., Cysteine-Cystine Photoregeneration for Oxygenic Photosynthesis of Acetic Acid from CO2 by a Tandem Inorganic-Biological Hybrid System. Nano Lett 2016, 16 (9), 5883-7. 48. Sakimoto, K. K.; Wong, A. B.; Yang, P., Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 2016, 351 (6268), 74-77. 49. Zhang, H.; Liu, H.; Tian, Z.; Lu, D.; Yu, Y.; Cestellos-Blanco, S.; Sakimoto, K. K.; Yang, P., Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat Nanotechnol 2018, 13 (10), 900-905. 50. Gai, P.; Yu, W.; Zhao, H.; Qi, R.; Li, F.; Liu, L.; Lv, F.; Wang, S., Solar-Powered Organic Semiconductor-Bacteria Biohybrids for CO2 Reduction into Acetic Acid. Angew Chem Int Ed Engl 2020, 59 (18), 7224-7229. 51. Tian, B.; Xu, S.; Rogers, J. A.; Cestellos-Blanco, S.; Yang, P.; Carvalho-de-Souza, J. L.; Bezanilla, F.; Liu, J.; Bao, Z.; Hjort, M.; Cao, Y.; Melosh, N.; Lanzani, G.; Benfenati, F.; Galli, G.; Gygi, F.; Kautz, R.; Gorodetsky, A. A.; Kim, S. S.; Lu, T. K.; Anikeeva, P.; Cifra, M.; Krivosudsky, O.; Havelka, D.; Jiang, Y., Roadmap on semiconductor-cell biointerfaces. Phys Biol 2018, 15 (3), 031002. 52. Fernandez-Moure, J. S.; Mydlowska, A.; Shin, C.; Vella, M.; Kaplan, L. J., Nanometric Considerations in Biofilm Formation. Surg Infect (Larchmt) 2019, 20 (3), 167-173. 53. An, Y. H.; Friedman, R. J., Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. Journal of biomedical materials research 1998, 43 (3), 338-348. 54. Teughels, W.; Van Assche, N.; Sliepen, I.; Quirynen, M., Effect of material characteristics and/or surface topography on biofilm development. Clinical oral implants research 2006, 17 (S2), 68-81. 55. Hori, K.; Matsumoto, S., Bacterial adhesion: From mechanism to control. Biochemical Engineering Journal 2010, 48 (3), 424-434. 56. Oh, J. K.; Yegin, Y.; Yang, F.; Zhang, M.; Li, J.; Huang, S.; Verkhoturov, S. V.; Schweikert, E. A.; Perez-Lewis, K.; Scholar, E. A.; Taylor, T. M.; Castillo, A.; Cisneros-Zevallos, L.; Min, Y.; Akbulut, M., The influence of surface chemistry on the kinetics and thermodynamics of bacterial adhesion. Sci Rep 2018, 8 (1), 17247. 57. Chadwick, G. L.; Jimenez Otero, F.; Gralnick, J. A.; Bond, D. R.; Orphan, V. J., NanoSIMS imaging reveals metabolic stratification within current-producing biofilms. Proc Natl Acad Sci U S A 2019, 116 (41), 20716-20724. 58. Meng, J.; Zhang, P.; Wang, S., Recent progress in biointerfaces with controlled bacterial adhesion by using chemical and physical methods. Chem Asian J 2014, 9 (8), 2004-16. 59. Jeong, H. E.; Kim, I.; Karam, P.; Choi, H. J.; Yang, P., Bacterial recognition of silicon nanowire arrays. Nano Lett 2013, 13 (6), 2864-9. 60. Sakimoto, K. K.; Liu, C.; Lim, J.; Yang, P., Salt-induced self-assembly of bacteria on nanowire arrays. Nano Lett 2014, 14 (9), 5471-6. 61. Ji, Z.; Zhang, H.; Liu, H.; Yaghi, O. M.; Yang, P., Cytoprotective metal-organic frameworks for anaerobic bacteria. Proc Natl Acad Sci U S A 2018, 115 (42), 10582-10587. 62. Blanchet, E.; Duquenne, F.; Rafrafi, Y.; Etcheverry, L.; Erable, B.; Bergel, A., Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2reduction. Energy & Environmental Science 2015, 8 (12), 3731-3744. 63. Fang, X.; Kalathil, S.; Reisner, E., Semi-biological approaches to solar-to-chemical conversion. Chem Soc Rev 2020, 49 (14), 4926-4952. 64. Nevin, K. P.; Woodard, T. L.; Franks, A. E.; Summers, Z. M.; Lovley, D. R., Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 2010, 1 (2). 65. Zhang, T.; Nie, H.; Bain, T. S.; Lu, H.; Cui, M.; Snoeyenbos-West, O. L.; Franks, A. E.; Nevin, K. P.; Russell, T. P.; Lovley, D. R., Improved cathode materials for microbial electrosynthesis. Energy Environ. Sci. 2013, 6 (1), 217-224. 66. Liu, C.; Colón, B. C.; Ziesack, M.; Silver, P. A.; Nocera, D. G., Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 2016, 352 (6290), 1210-1213. 67. Alqahtani, M. F.; Katuri, K. P.; Bajracharya, S.; Yu, Y.; Lai, Z.; Saikaly, P. E., Porous Hollow Fiber Nickel Electrodes for Effective Supply and Reduction of Carbon Dioxide to Methane through Microbial Electrosynthesis. Advanced Functional Materials 2018, 28 (43). 68. Stewart, K. N.; Domaille, D. W., Enhancing Biosynthesis and Manipulating Flux in Whole Cells with Abiotic Catalysis. Chembiochem 2021, 22 (3), 469-477. 69. Pan, Q.; Tian, X.; Li, J.; Wu, X.; Zhao, F., Interfacial electron transfer for carbon dioxide valorization in hybrid inorganic-microbial systems. Applied Energy 2021, 292. 70. Yang, P.; Cai, R.; Kim, J. M.; Cestellos-Blanco, S.; Jin, J., Microbes 2.0: Engineering Microbes with Nanomaterials. AsiaChem Magazine 2020, 1 (1). 71. Xiao, S.; Fu, Q.; Li, Z.; Li, J.; Zhang, L.; Zhu, X.; Liao, Q., Solar-driven biological inorganic hybrid systems for the production of solar fuels and chemicals from carbon dioxide. Renewable and Sustainable Energy Reviews 2021, 150. 72. Kornienko, N.; Sakimoto, K. K.; Herlihy, D. M.; Nguyen, S. C.; Alivisatos, A. P.; Harris, C. B.; Schwartzberg, A.; Yang, P., Spectroscopic elucidation of energy transfer in hybrid inorganic-biological organisms for solar-to-chemical production. Proc Natl Acad Sci U S A 2016, 113 (42), 11750-11755. 73. Cestellos-Blanco, S.; Kim, J. M.; Watanabe, N. G.; Chan, R. R.; Yang, P., Molecular insights and future frontiers in cell photosensitization for solar-driven CO2 conversion. iScience 2021, 24 (9), 102952. 74. Contolini, R. J.; Bernhardt, A. F.; Mayer, S. T., Electrochemical planarization for multilevel metallization. Journal of The Electrochemical Society 1994, 141 (9), 2503. 75. Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S., Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano letters 2009, 9 (12), 4359-4363. 76. Hong, J. Y.; Shin, Y. C.; Zubair, A.; Mao, Y.; Palacios, T.; Dresselhaus, M. S.; Kim, S. H.; Kong, J., A Rational Strategy for Graphene Transfer on Substrates with Rough Features. Adv Mater 2016, 28 (12), 2382-92. 77. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S., Raman spectrum of graphene and graphene layers. Physical review letters 2006, 97 (18), 187401. 78. Stan, C.; Beavers, C.; Kunz, M.; Tamura, N., X-Ray Diffraction under Extreme Conditions at the Advanced Light Source. Quantum Beam Science 2018, 2 (1). 79. Rogalski, A.; Razeghi, M., Semiconductor ultraviolet photodetectors. Opto-Electronics Review 1996, 1996 (1-2), 13-30. 80. Kalaichelvi, P.; Perumalsamy, M.; Arunagiri, A.; Sofiya, K., Synergistic extraction of acetic acid from its aqueous solution. Journal of the University of Chemical Technology and Metallurgy 2007, 42 (3), 291-294. 81. Khan, M. Z. H., Separation of acetic acid from aqueous solution using various organic solvents. Journal of Science and Technology 2013, 5 (2). 82. Hussain, S. Z.; Maqbool, K., GC-MS: Principle, Technique and its application in Food Science. International Journal of Current Science 2014, 13, 116-126. 83. Anicai; Petica; Costovici; Moise; Brincoveanu; Visan, Electrodeposition of Sn–In Alloys Involving Deep Eutectic Solvents. Coatings 2019, 9 (12). 84. Rieth, A. J.; Nocera, D. G., Hybrid Inorganic-Biological Systems: Faradaic and Quantum Efficiency, Necessary but Not Sufficient. Joule 2020, 4 (10), 2051-2055. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85299 | - |
dc.description.abstract | 自工業革命以來,隨著人類的活動大量使用化石燃料,使大氣中二氧化碳濃度逐漸升高,造成全球暖化與氣候變遷等問題,因此開發出除了大自然以外的人工固碳途徑相當重要。其中光電化學系統結合光電轉換與觸媒催化,概念與綠色植物的光合作用相仿,是個建構人工固碳途徑的良好模板。 光電轉換部分以地球含量豐富且能隙較小的矽半導體捕捉太陽能,並利用內部掩埋的方式對傳統的矽基板改植形成矽異質結構,可增加內建電壓並分離照光面與催化面,表面微米級的金字塔抗反射結構也能幫助更多入射光吸收。經由EVA轉印法將單原子層的二維材料石墨烯轉印於矽異質結構基板,以石墨烯的化學惰性作為矽的保護層防止氧化;再搭配其高導電度作為電化學沉積金屬介面的平台,相較物理氣相沉積法更省時、耗費能量更少,所成長的金屬介面也更加牢固。 觸媒催化部分選用細菌生物觸媒,由於電子是經由酵素系統構成的代謝傳導途徑推動反應,因此相較無機觸媒對產物有更高的選擇性。同時細菌生物觸媒具有自我複製的特性,在觸媒老化時能夠自我更新,因此能夠有更持久穩定的催化。將細菌生物觸媒結合矽異質結構基板,能夠分離照光面與催化面,巧妙避開細菌不適合直射太陽光的問題。且以石墨烯作為電化學沉積的平台,可以利用參數略微控制金屬介面之表面形貌供細菌成長,形成一個良好的生物-無機介面,更利於建構生物混合系統。 實驗中Si-HJ/Gr/InSn/Moorella thermoacetica為結構,並利用各式儀器分析,包含以拉曼光譜鑑定轉印在Si-HJ的石墨烯性質、X光繞射儀鑑定InSn合金介面晶體結構與掃描式電子顯微鏡鑑定表面形貌、厭氧醋酸菌M. thermoacetica成長的分布狀況。接著更進一步以電化學實驗與光電化學實驗量測,搭配氣相層析質譜儀定量分析醋酸產物計算法拉第效率。透過建構出一個光合生物混合系統,達到加強細菌生物觸媒代謝途徑轉換二氧化碳成醋酸的目標。 | zh_TW |
dc.description.abstract | Since the Industrial Evolution, the concentration of carbon dioxide in the atmosphere has gradually increased due to the extensive use of fossil fuels in human activities, causing problems such as global warming and climate change. Therefore, developing artificial carbon fixation methods other than nature is quite critical. Among multiple methods, a photoelectrochemical system combining solar to electricity conversion and catalytic catalysis, which is similar to photosynthesis in plants, can serve as a good template for constructing an artificial carbon fixation. For the solar to electricity conversion, we captured the solar energy with an earth-abundant, small band gap silicon-based semiconductor. The traditional silicon substrate was processed with internal buried junction methods to form a silicon heterostructure, which can increase the built-in voltage and decouple the light-harvesting side and catalytic reaction side of the photoelectrode. Besides, the micro-scale pyramid-like anti-reflection structure on the surface can also increase the absorption of incident light. The two-dimensional graphene of a single atomic layer was transferred to the silicon heterostructure by ethylene-vinyl acetate (EVA), and the chemical inertness of graphene acted as a protection layer of silicon from oxidation. Furthermore, compared to physical vapor deposition methods, graphene can serve as a platform for electrochemical deposition of metals due to its high conductivity, which can save time and consume less energy, forming stronger metal interfaces. Bacterial biocatalysts were selected for the catalytic part of the catalyst. Since the metabolic pathway is constructed by the electron-driven enzyme system to complete the conversion, the selectivity of bacterial biocatalysts to the products is higher than that of inorganic catalysts. Meanwhile, bacterial biocatalysts exhibit a more durable and stable catalytic effect due to their ability to self-replicate and self-renewal while aging. Therefore, the combination of bacterial biocatalysts with silicon heterostructure substrate can prevent direct exposure of bacteria to sunlight by decoupling the light-harvesting side and catalytic reaction side of the photoelectrode. In addition, with the use of graphene as a platform for electrochemical deposition, the surface morphology can be slightly controlled by the experimental parameters for bacteria growth, forming a favorable bio-inorganic interface, which was conducive to the construction of a biohybrid system. In this experiment, the Si-HJ/Gr/InSn/Moorella thermoacetica structure was constructed for the biohybrid system for artificial carbon fixation, and various instruments were used for analysis, including Raman spectrum for the property of graphene transferred on Si-HJ, X-ray diffraction (XRD) analysis for the crystal structure and scanning electron microscope (SEM) for the surface morphology of InSn alloy interface, and the grown distribution of strictly anaerobic acetic acid bacteria M. thermoacetica. Furthermore, we can calculate the Faradaic efficiency through the results obtained from electrochemical and photoelectrochemical chronoamperometry measurements and the quantitative analysis of acetic acid production by gas chromatography-mass (GC-MS). In conclusion, a photosynthetic biohybrid system was successfully constructed with the Si-HJ/Gr/InSn/M. thermoacetica structure to enhance the bacteria biocatalyst metabolic pathway for converting carbon dioxide into acetic acid. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:56:06Z (GMT). No. of bitstreams: 1 U0001-2206202219483800.pdf: 9495077 bytes, checksum: b0c5c0f5da06e366d98f4f8eb109ff68 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii 總目錄 v 圖目錄 viii 表目錄 xii 第1章 緒論 1 1.1 研究動機 1 1.2 碳循環 4 1.2.1 自然界固碳反應 4 1.2.2 人工固碳反應 5 1.3 石墨烯 7 1.4 矽異質結構 (Silicon heterojunction, Si-HJ) 8 1.5 生物觸媒 9 第2章 背景文獻回顧 12 2.1 光電化學 12 2.1.1 光電化學的機制與發展 12 2.1.2 光電極半導體材料之選擇 14 2.1.3 石墨烯-矽晶材料光電極 16 2.2 生物觸媒 18 2.2.1 生物觸媒的種類與發展 18 2.2.2 生物-無機介面之研究 (Bio-inorganic interface) 20 2.3 生物混和系統 27 2.3.1 電生物混合系統 (Electric Biohybrid System, EBS) 27 2.3.2 光合生物混合系統 (Photosynthetic Biohybrid System, PBS) 30 第3章 實驗方法 37 3.1 基板的製作 37 3.2 化學氣相沉積(Chemical vapor deposition, CVD)石墨烯 37 3.2.1 銅箔前處裡 37 3.2.2 石墨烯的成長 38 3.2.3 石墨烯轉印 (EVA轉印法) 38 3.3 生物觸媒的成長與樣品標本固定 40 3.4 材料特性與分析 41 3.4.1 光學顯微鏡 (Optical microscopy) 41 3.4.2 拉曼光譜 (Raman spectroscopy) 42 3.4.3 X射線繞射儀 (X-ray diffraction, XRD) 43 3.4.4 掃描式電子顯微鏡 (Scanning electron microscope, SEM) 44 3.5 光電化學的量測 45 3.5.1 太陽光模擬器 45 3.5.2 三極式光電化學反應系統 46 3.5.3 線性掃描伏安法 (Linear sweep voltammetry, LSV) 47 3.5.4 計時安培分析法 (Chronoamperometry) 47 3.6 二氧化碳還原產物分析 48 3.6.1 樣品的萃取 48 3.6.2 氣相層析質譜儀 (Gas chromatography-mass spectrometry, GC-MS) 49 第4章 實驗結果與討論 51 4.1 石墨烯的基本性質鑑定 51 4.2 電化學沉積銦錫合金介面的成長與鑑定 51 4.3 生物觸媒的成長鑑定 54 4.4 Si-HJ/Gr/InSn/M. thermoacetica之電化學二氧化碳還原反應 55 4.5 Si-HJ/Gr/InSn/M. thermoacetica之光電化學二氧化碳還原反應 59 第5章 結論與未來展望 61 參考資料 62 | |
dc.language.iso | zh-TW | |
dc.title | 利用石墨烯/矽異質結構應用在光合生物混合系統之研究 | zh_TW |
dc.title | Application of Graphene/Silicon Heterojunction in Photosynthetic Biohybrid System | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭聰榮(Tsung-Rong Kuo),王迪彥(Di-Yan Wang) | |
dc.subject.keyword | 光電化學,石墨烯,矽異質結構,生物觸媒,光合生物混合系統,二氧化 碳還原反應, | zh_TW |
dc.subject.keyword | Photoelectrochemical (PEC),Graphene (Gr),Silicon heterojunction technology (Si-HJ),Biocatalyst,Photosynthetic biohybrid system (PBS),carbon dioxide reduction reaction (CO2RR), | en |
dc.relation.page | 71 | |
dc.identifier.doi | 10.6342/NTU202201067 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-07-28 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
dc.date.embargo-lift | 2027-07-27 | - |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2206202219483800.pdf 目前未授權公開取用 | 9.27 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。