請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85192完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈聖峰(Sheng-Feng Shen) | |
| dc.contributor.author | Tzu-Man Hung | en |
| dc.contributor.author | 洪慈蔓 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:49:20Z | - |
| dc.date.copyright | 2022-08-10 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-05 | |
| dc.identifier.citation | Addo-Bediako, A., Chown, S.L. & Gaston, K.J. (2000). Thermal tolerance, climatic variability and latitude. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267, 739-745. Anderson, M.J. (2017). Permutational multivariate analysis of variance (PERMANOVA). In: Wiley StatsRef: Statistics Reference Online. John Wiley & Sons, Ltd., pp. 1-15. Angilletta Jr, M.J., Huey, R.B. & Frazier, M.R. (2010). Thermodynamic effects on organismal performance: is hotter better? Physiological and Biochemical Zoology, 83, 197-206. Angilletta, M.J. (2009). Thermal Adaptation: A Theoretical and Empirical Synthesis. Oxford University Press, Oxford, UK. Araújo, M.B., Ferri‐Yáñez, F., Bozinovic, F., Marquet, P.A., Valladares, F. & Chown, S.L. (2013). Heat freezes niche evolution. Ecology letters, 16, 1206-1219. Bates, D., Mächler, M., Bolker, B. & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1 - 48. Bennett, A.F. (1987). Evolution of the control of body temperature: is warmer better. In: Comparative Physiology: Life in Water and on Land (eds. Dejours, P, Bolis, L, Taylor, C & Weibel, E), pp. 421-431. Bennett, J.M., Calosi, P., Clusella-Trullas, S., Martínez, B., Sunday, J., Algar, A.C. et al. (2018). GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Scientific Data, 5, 1-7. Bishop, T.R., Robertson, M.P., Van Rensburg, B.J. & Parr, C.L. (2017). Coping with the cold: minimum temperatures and thermal tolerances dominate the ecology of mountain ants. Ecological Entomology, 42, 105-114. Blonder, B., Lamanna, C., Violle, C. & Enquist, B.J. (2014). The n-dimensional hypervolume. Global Ecology and Biogeography, 23, 595-609. Brett, J.R. (1956). Some Principles in the Thermal Requirements of Fishes. The Quarterly Review of Biology, 31, 75-87. Brown, J.H. (1981). Two decades of homage to Santa Rosalia: Toward a general theory of diversity. American Zoologist, 21, 877-888. Calosi, P., Bilton, D.T., Spicer, J.I., Votier, S.C. & Atfield, A. (2010). What determines a species’ geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae). Journal of Animal Ecology, 79, 194-204. Castillo-Pérez, E.U., Suárez-Tovar, C.M., González-Tokman, D., Schondube, J.E. & Córdoba-Aguilar, A. (2022). Insect thermal limits in warm and perturbed habitats: dragonflies and damselflies as study cases. Journal of Thermal Biology, 103, 103164. Chan, W.-P., Chen, I.-C., Colwell, R.K., Liu, W.-C., Huang, C.-y. & Shen, S.-F. (2016). Seasonal and daily climate variation have opposite effects on species elevational range size. Science, 351, 1437-1439. Chase, J.M. (2010). Stochastic Community Assembly Causes Higher Biodiversity in More Productive Environments. Science, 328, 1388-1391. Chesson, P. & Huntly, N. (1997). The roles of harsh and fluctuating conditions in the dynamics of ecological communities. The American Naturalist, 150, 519-553. Clay, T.A. & Gifford, M.E. (2018). Thermal constraints of energy assimilation on geographical ranges among lungless salamanders of North America. Journal of Biogeography, 45, 1664-1674. Connell, J.H. (1978). Diversity in Tropical Rain Forests and Coral Reefs. Science, 199, 1302-1310. Darwin, C. (1859). On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London. Darwin, C. (1890). Journal of Researches into the Natural History and Geology of the Countries Visited During the Voyage of H.M.S. 'Beagle' round the World. New edn. J. Murray, London. Dickinson, J.L. & Hatchwell, B.J. (2004). Fitness consequences of helping. In: Ecology and Evolution of Cooperative Breeding in Birds (eds. Dickinson, JL & Koenig, WD). Cambridge University Press Cambridge, pp. 48-66. Duong, T. (2007). ks: kernel density estimation and kernel discriminant analysis for multivariate data in R. Journal of Statistical Software, 21, 1 - 16. Duong, T. & Hazelton, M. (2003). Plug-in bandwidth matrices for bivariate kernel density estimation. Journal of Nonparametric Statistics, 15, 17-30. Fischer, A.G. (1960). Latitudinal variations in organic diversity. Evolution, 14, 64-81. Fitzpatrick, B.M., Fordyce, J.A. & Gavrilets, S. (2008). What, if anything, is sympatric speciation? Journal of Evolutionary Biology, 21, 1452-1459. Fox, J.W. (2013). The intermediate disturbance hypothesis should be abandoned. Trends in Ecology & Evolution, 28, 86-92. Gaston, K.J., Chown, S.L., Calosi, P., Bernardo, J., Bilton, D.T., Clarke, A. et al. (2009). Macrophysiology: a conceptual reunification. The American Naturalist, 174, 595-612. Ghalambor, C.K., Huey, R.B., Martin, P.R., Tewksbury, J.J. & Wang, G. (2006). Are mountain passes higher in the tropics? Janzen's hypothesis revisited. Integrative and comparative biology, 46, 5-17. Hans O. Pörtner, Albert F. Bennett, Francisco Bozinovic, Andrew Clarke, Marco A. Lardies, Magnus Lucassen et al. (2006). Trade‐Offs in Thermal Adaptation: The Need for a Molecular to Ecological Integration. Physiological and Biochemical Zoology, 79, 295-313. Hazel, J.R. (1995). Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annual review of physiology, 57, 19-42. Howard, D.J. (2003). Speciation: Allopatric. In: Encyclopedia of Life Sciences (eLS). Huey, R.B. & Hertz, P.E. (1984). Is a jack-of-all-temperatures a master of none? Evolution, 38, 441-444. Huey, R.B. & Kingsolver, J.G. (1993). Evolution of resistance to high temperature in ectotherms. The American Naturalist, 142, S21-S46. Huston, M.A. (2014). Disturbance, productivity, and species diversity: empiricism vs. logic in ecological theory. Ecology, 95, 2382-2396. Hutchinson, G.E. (1959). Homage to Santa Rosalia or why are there so many kinds of animals? The American Naturalist, 93, 145-159. Janzen, D.H. (1967). Why mountain passes are higher in the tropics. The American Naturalist, 101, 233-249. Jennifer L. Knies, Joel G. Kingsolver & Christina L. Burch (2009). Hotter Is Better and Broader: Thermal Sensitivity of Fitness in a Population of Bacteriophages. The American Naturalist, 173, 419-430. Jørgensen, L.B., Malte, H., Ørsted, M., Klahn, N.A. & Overgaard, J. (2021). A unifying model to estimate thermal tolerance limits in ectotherms across static, dynamic and fluctuating exposures to thermal stress. Scientific reports, 11, 1-14. Kimura, M.T. (2004). Cold and heat tolerance of drosophilid flies with reference to their latitudinal distributions. Oecologia, 140, 442-449. Kingsolver, J.G. & Buckley, L.B. (2017). Quantifying thermal extremes and biological variation to predict evolutionary responses to changing climate. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160147. Leahy, L., Scheffers, B.R., Williams, S.E. & Andersen, A.N. (2022). Arboreality drives heat tolerance while elevation drives cold tolerance in tropical rainforest ants. Ecology, 103, e03549. Lefcheck, J.S. (2016). piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7, 573-579. Leiva, F.P., Calosi, P. & Verberk, W.C.E.P. (2019). Scaling of thermal tolerance with body mass and genome size in ectotherms: a comparison between water- and air-breathers. Philosophical Transactions of the Royal Society B: Biological Sciences, 374, 20190035. Liu, M., Rubenstein, D.R., Cheong, S.A. & Shen, S.-F. (2021). Antagonistic effects of long- and short-term environmental variation on species coexistence. Proceedings of the Royal Society B: Biological Sciences, 288, 20211491. Louca, S., Polz, M.F., Mazel, F., Albright, M.B.N., Huber, J.A., O’Connor, M.I. et al. (2018). Function and functional redundancy in microbial systems. Nature Ecology & Evolution, 2, 936-943. M. R. Frazier, Raymond B. Huey & David Berrigan (2006). Thermodynamics Constrains the Evolution of Insect Population Growth Rates: “Warmer Is Better.”. The American Naturalist, 168, 512-520. Maebe, K., De Baets, A., Vandamme, P., Vereecken, N.J., Michez, D. & Smagghe, G. (2021). Impact of intraspecific variation on measurements of thermal tolerance in bumble bees. Journal of thermal biology, 99, 103002. Mallet, J. (2001). The speciation revolution. Journal of Evolutionary Biology, 14, 887-888. Mayr, E. (1963). Animal species and evolution. Harvard University Press. McGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21, 178-185. McWilliam, M., Pratchett, M.S., Hoogenboom, M.O. & Hughes, T.P. (2020). Deficits in functional trait diversity following recovery on coral reefs. Proceedings of the Royal Society B: Biological Sciences, 287, 20192628. Nascimento, G., Câmara, T. & Arnan, X. (2022). Critical thermal limits in ants and their implications under climate change. Biological Reviews. Nyamukondiwa, C. & Terblanche, J.S. (2010). Within‐generation variation of critical thermal limits in adult Mediterranean and Natal fruit flies Ceratitis capitata and Ceratitis rosa: thermal history affects short‐term responses to temperature. Physiological Entomology, 35, 255-264. Overgaard, J., Kristensen, T.N., Mitchell, K.A. & Hoffmann, A.A. (2011). Thermal tolerance in widespread and tropical Drosophila species: does phenotypic plasticity increase with latitude? The American Naturalist, 178, S80-S96. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O. et al. (2011). Scikit-learn: machine learning in python. Journal of Machine Learning Research 12, 2825-2830. Pigot, A.L., Sheard, C., Miller, E.T., Bregman, T.P., Freeman, B.G., Roll, U. et al. (2020). Macroevolutionary convergence connects morphological form to ecological function in birds. Nature Ecology & Evolution, 4, 230-239. Pinheiro, J.C. & Bates, D.M. (2000). Mixed-effects models in s and s-plus. Springer, New York. Pinsky, M.L., Eikeset, A.M., McCauley, D.J., Payne, J.L. & Sunday, J.M. (2019). Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature, 569, 108-111. Pintanel, P., Tejedo, M., Merino-Viteri, A., Almeida-Reinoso, F., Salinas-Ivanenko, S., López-Rosero, A.C. et al. (2022). Elevational and local climate variability predicts thermal breadth of mountain tropical tadpoles. Ecography, 2022, e05906. Rezende, E.L. & Bozinovic, F. (2019). Thermal performance across levels of biological organization. Philosophical Transactions of the Royal Society B: Biological Sciences, 374, 20180549. Shah, A.A., Gill, B.A., Encalada, A.C., Flecker, A.S., Funk, W.C., Guayasamin, J.M. et al. (2017). Climate variability predicts thermal limits of aquatic insects across elevation and latitude. Functional Ecology, 31, 2118-2127. Shipley, B. (2013). The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology, 94, 560-564. Sunday, J., Bennett, J.M., Calosi, P., Clusella-Trullas, S., Gravel, S., Hargreaves, A.L. et al. (2019). Thermal tolerance patterns across latitude and elevation. Philosophical Transactions of the Royal Society B: Biological Sciences, 374, 20190036. van den Berg, N.I., Machado, D., Santos, S., Rocha, I., Chacón, J., Harcombe, W. et al. (2022). Ecological modelling approaches for predicting emergent properties in microbial communities. Nature Ecology & Evolution. Vasseur, D.A., DeLong, J.P., Gilbert, B., Greig, H.S., Harley, C.D.G., McCann, K.S. et al. (2014). Increased temperature variation poses a greater risk to species than climate warming. Proceedings of the Royal Society B: Biological Sciences, 281, 20132612. Vehrencamp, S.L. (2000). Evolutionary routes to joint-female nesting in birds. Behavioral Ecology, 11, 334-344. Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I. et al. (2007). Let the concept of trait be functional! Oikos, 116, 882-892. von Humboldt, A. (1992). Brave Companions: Portraits in History. (ed. McCullough, D). Touchstone New York, p. 6. Wallace, A.R. (1895). Natural selection and tropical nature: essays on descriptive and theoretical biology. 2nd edn edn. Macmillan, London. Wand, M.P. & Jones, M.C. (1994). Kernel smoothing. Chapman & Hall, Boca Raton, FL, U.S. Wang, H.-Y., Shen, S.-F., Chen, Y.-S., Kiang, Y.-K. & Heino, M. (2020). Life histories determine divergent population trends for fishes under climate warming. Nature Communications, 11, 4088. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85192 | - |
| dc.description.abstract | 研究熱特徵對於了解物種對氣候變化的脆弱性至關重要。然而,人們對環境條件、物種層面的熱性狀適應 (thermal trait adaptation) 和群聚 (assemblage) 層面的功能性狀多樣性 (functional traits diversity) 之間的關係知之甚少。在此,我們利用大型野外實驗,在中國、臺灣和馬來西亞山區以水浴槽實際測量蛾類的耐受溫度極限,同時沿海拔放置Robinson式陷阱收集物種的海拔分布資料,亦使用iButton紀錄當地的微氣候資料,最後還建立了一個基於個體的模型。我們總共收集了653種蛾的熱和形態特徵,以研究環境如何影響物種及群聚層面的熱適應和熱與形態性狀多樣性之間的關係。我們的研究結果表明,與經典的氣候變異度假說 (climate variability hypothesis) 相反,我們沒有發現物種的熱適應範圍隨著氣候變異度的增加而增加。相反,耐寒的物種不耐高溫,耐高溫的物種不耐寒,從而支持了權衡假說 (trade-off hypothesis)。在群聚層面,我們發現較熱環境的群聚具有較高的熱功能多樣性。這是因為在較熱環境的群聚中,物種耐寒性和耐熱性之間的權衡較弱,可能是由於較熱環境的環境限制較少。因此,我們的結果支持有利性假說 (favorability hypothesis)。最後,我們的結果還表明,低海拔和低緯度地區的群聚除了具有較高的物種多樣性外,還具有較高的熱與形態性狀多樣性,因此需要優先關注及保護。 | zh_TW |
| dc.description.abstract | Studying thermal traits are crucial for understanding the species vulnerability to climate change. However, little is known about the relationships among environmental condition, thermal trait adaptation at species level and thermal trait diversity at assemblage level. Here, we used large-scale field experiments to test the critical thermal limits of moths by using water baths in mountain areas of China, Taiwan, and Malaysia. We placed Robinson’s traps along the elevation to collect species’ elevation distribution data, and used iButton to record local microclimate data. Moreover, we constructed an individual-based model. We collected thermal and morphological traits of 653 species of moths to investigate how environments affect the relationship between thermal adaptation and thermal trait diversity at the species and assemblage level. Our results showed that in contrast to the classical climate variability hypothesis, we did not find the thermal tolerance range of species increased with increasing climate variability. On the contrary, cold-tolerant species are less heat-tolerant and vice versa, thus supporting the trade-off hypothesis. At the assemblage level, we found that the assemblages in the hotter environments have higher thermal functional diversity. This is because the trade-off between species’ cold and warm tolerance is weaker in assemblages in the warmer environments, likely due to less environmental constraints in the warmer environments. Therefore, our results support the favorability hypothesis. Ultimately, our results also suggest that assemblages at low elevations and latitudes have high functional diversity in addition to high species diversity, which requires priority attention for conservation. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:49:20Z (GMT). No. of bitstreams: 1 U0001-1507202215283700.pdf: 2986313 bytes, checksum: f87e25ca2dcecd94b251bf84b82c7256 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES vii LIST OF TABLES viii 1. Introduction 1 2. Materials and Methods 4 2.1 Study site and species 4 2.2 Estimating CTmax and CTmin 4 2.3 Elevational distributions of moths 6 2.4 Identification of moth species and morphological measurement 7 2.5 Climatic data determination 7 2.6 Random forest 8 2.7 Relationship between thermal tolerance traits, morphology and ambient temperature 8 2.8 Kernel density estimation 9 2.9 Functional traits hypervolume 10 3. Results 11 4. Discussion 17 5. References 20 6. Figures 26 7. Tables 40 8. Appendix 46 8.1 The analytical model 46 8.2 The eco-evolutionary model (contributed by Ming Liu) 46 8.3 口試過程問答與討論 53 | |
| dc.language.iso | en | |
| dc.subject | 氣候變異度假說 | zh_TW |
| dc.subject | 有利性假說 | zh_TW |
| dc.subject | 功能性狀多樣性 | zh_TW |
| dc.subject | 熱適應 | zh_TW |
| dc.subject | 權衡假說 | zh_TW |
| dc.subject | functional traits diversity | en |
| dc.subject | Climate variability hypothesis | en |
| dc.subject | favorability hypothesis | en |
| dc.subject | trade-off hypothesis | en |
| dc.subject | thermal adaptation | en |
| dc.title | 良性環境促進耐熱性狀多樣性 | zh_TW |
| dc.title | Benign Environments Promote Thermal Trait Diversity | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王慧瑜(Hui-Yu Wang),謝志豪(Chih-Hao Hsieh),陳一菁(I-Ching Chen) | |
| dc.subject.keyword | 氣候變異度假說,有利性假說,權衡假說,熱適應,功能性狀多樣性, | zh_TW |
| dc.subject.keyword | Climate variability hypothesis,favorability hypothesis,trade-off hypothesis,thermal adaptation,functional traits diversity, | en |
| dc.relation.page | 56 | |
| dc.identifier.doi | 10.6342/NTU202201481 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-05 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-10 | - |
| 顯示於系所單位: | 生態學與演化生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1507202215283700.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
