Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85155
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊哲人(Jer-Ren Yang)
dc.contributor.authorCheng-Che Luen
dc.contributor.author呂承哲zh_TW
dc.date.accessioned2023-03-19T22:47:02Z-
dc.date.copyright2022-08-15
dc.date.issued2022
dc.date.submitted2022-08-09
dc.identifier.citation1. De Cooman, B., Structure–properties relationship in TRIP steels containing carbide-free bainite. Current Opinion in Solid State and Materials Science, 2004. 8(3-4): p. 285-303. 2. Pereloma, E. and D.V. Edmonds, Phase transformations in steels: fundamentals and diffusion-controlled transformations. 2012: Elsevier. 3. Bhadeshia, H.K.D.H., Geometry of Crystals. Institute of Materials. 2001, London. 4. W.F.Smith, Structure and Properties of Engineering Alloys. 5. Krauss, G., Martensite in steel: strength and structure. Materials science and engineering: A, 1999. 273: p. 40-57. 6. Sato, H. and S. Zaefferer, A study on the formation mechanisms of butterfly-type martensite in Fe–30% Ni alloy using EBSD-based orientation microscopy. Acta materialia, 2009. 57(6): p. 1931-1937. 7. Maki, T., Morphology and substructure of martensite in steels. Phase transformations in steels, 2012: p. 34-58. 8. Morito, S., et al., The morphology and crystallography of lath martensite in Fe-C alloys. Acta materialia, 2003. 51(6): p. 1789-1799. 9. Galindo-Nava, E. and P. Rivera-Díaz-del-Castillo, A model for the microstructure behaviour and strength evolution in lath martensite. Acta Materialia, 2015. 98: p. 81-93. 10. Hoseiny, H., et al., The effect of the martensitic packet size on the machinability of modified AISI P20 prehardened mold steel. Journal of Materials Science, 2012. 47(8): p. 3613-3620. 11. Yan, P., et al., Effect of normalizing temperature on the strength of 9Cr–3W–3Co martensitic heat resistant steel. Materials Science and Engineering: A, 2014. 597: p. 148-156. 12. Zhang, C., et al., Effect of martensitic morphology on mechanical properties of an as-quenched and tempered 25CrMo48V steel. Materials Science and Engineering: A, 2012. 534: p. 339-346. 13. Morito, S., et al., Effect of block size on the strength of lath martensite in low carbon steels. Materials Science and Engineering: A, 2006. 438: p. 237-240. 14. Morito, S., et al., Effect of austenite grain size on the morphology and crystallography of lath martensite in low carbon steels. ISIJ international, 2005. 45(1): p. 91-94. 15. de la Concepción, V.L., H.N. Lorusso, and H.G. Svoboda, Effect of carbon content on microstructure and mechanical properties of dual phase steels. 2015. 16. Dini, G., et al., Predicting of mechanical properties of Fe–Mn–(Al, Si) TRIP/TWIP steels using neural network modeling. Computational Materials Science, 2009. 45(4): p. 959-965. 17. Grässel, O., et al., High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application. International Journal of plasticity, 2000. 16(10-11): p. 1391-1409. 18. Song, B.H., et al., Effect of deformation twin on mechanical properties of a lean manganese twinning induced plasticity (TWIP) steel deformed at quasi-static strain rates. Journal of Korean Institute of Metals and Materials, 2014. 52(1): p. 1-9. 19. De Cooman, B., K. Chin, and J. Kim, High Mn TWIP steels for automotive applications. New trends and developments in automotive system engineering, 2011(1): p. 101-128. 20. Xiong, X., et al., The effect of morphology on the stability of retained austenite in a quenched and partitioned steel. Scripta Materialia, 2013. 68(5): p. 321-324. 21. Wang, J. and S. Van Der Zwaag, Stabilization mechanisms of retained austenite in transformation-induced plasticity steel. Metallurgical and Materials Transactions A, 2001. 32(6): p. 1527-1539. 22. Takahashi, M. and B. HKDH, A model for the microstructure of some advanced bainitic steels. Materials Transactions, JIM, 1991. 32(8): p. 689-696. 23. Muransky, O., et al., Investigation of retained austenite stability in Mn-Si TRIP steel in tensile deformation condition. Journal of Achievements in Materials and Manufacturing Engineering, 2006. 14(1-2): p. 26--30. 24. Basuki, A. and E. Aernoudt, Influence of rolling of TRIP steel in the intercritical region on the stability of retained austenite. Journal of Materials Processing Technology, 1999. 89: p. 37-43. 25. Lee, S.J. and Y.K. Lee. Effect of austenite grain size on martensitic transformation of a low alloy steel. in Materials Science Forum. 2005. Trans Tech Publ. 26. García-Junceda, A., et al., Dependence of martensite start temperature on fine austenite grain size. Scripta Materialia, 2008. 58(2): p. 134-137. 27. Jimenez-Melero, E., et al., Characterization of individual retained austenite grains and their stability in low-alloyed TRIP steels. Acta Materialia, 2007. 55(20): p. 6713-6723. 28. Yang, H.-S. and H. Bhadeshia, Austenite grain size and the martensite-start temperature. Scripta materialia, 2009. 60(7): p. 493-495. 29. Misra, R., et al., Martensite shear phase reversion-induced nanograined/ultrafine-grained Fe–16Cr–10Ni alloy: The effect of interstitial alloying elements and degree of austenite stability on phase reversion. Materials Science and Engineering: A, 2010. 527(29-30): p. 7779-7792. 30. Song, Y., et al., The influence of tempering temperature on the reversed austenite formation and tensile properties in Fe–13% Cr–4% Ni–Mo low carbon martensite stainless steels. Materials Science and Engineering: A, 2011. 528(12): p. 4075-4079. 31. Song, Y., et al., Reversed austenite in 0Cr13Ni4Mo martensitic stainless steels. Materials Chemistry and Physics, 2014. 143(2): p. 728-734. 32. Escobar, J., et al., Compositional analysis on the reverted austenite and tempered martensite in a Ti-stabilized supermartensitic stainless steel: Segregation, partitioning and carbide precipitation. Materials & Design, 2018. 140: p. 95-105. 33. Yuan, L., et al., Nanoscale austenite reversion through partitioning, segregation and kinetic freezing: Example of a ductile 2 GPa Fe–Cr–C steel. Acta Materialia, 2012. 60(6-7): p. 2790-2804. 34. Raabe, D., et al., Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: a pathway to ductile martensite. Acta Materialia, 2013. 61(16): p. 6132-6152. 35. Wang, P., et al., Investigation of the mechanical stability of reversed austenite in 13% Cr–4% Ni martensitic stainless steel during the uniaxial tensile test. Materials Science and Engineering: A, 2013. 586: p. 292-300. 36. Zhang, S., et al., Investigation of the evolution of retained austenite in Fe–13% Cr–4% Ni martensitic stainless steel during intercritical tempering. Materials & Design, 2015. 84: p. 385-394. 37. Niessen, F., Austenite reversion in low-carbon martensitic stainless steels–a CALPHAD-assisted review. Materials Science and Technology, 2018. 34(12): p. 1401-1414. 38. Bhambroo, R., et al., Effect of reverted austenite on mechanical properties of precipitation hardenable 17-4 stainlesssteel. Materials Science and Engineering: A, 2013. 568: p. 127-133. 39. Hsiao, C., C. Chiou, and J. Yang, Aging reactions in a 17-4 PH stainless steel. Materials Chemistry and Physics, 2002. 74(2): p. 134-142. 40. Seetharaman, V., M. Sundararaman, and R. Krishnan, Precipitation hardening in a PH 13-8 Mo stainless steel. Materials Science and Engineering, 1981. 47(1): p. 1-11. 41. Ping, D., et al., Microstructural evolution in 13Cr–8Ni–2.5 Mo–2Al martensitic precipitation-hardened stainless steel. Materials Science and Engineering: A, 2005. 394(1-2): p. 285-295. 42. Wang, D., et al., NiAl precipitation in delta ferrite grains of 17-7 precipitation-hardening stainless steel during low-temperature interstitial hardening. Scripta Materialia, 2015. 108: p. 136-140. 43. Calderon, H. and M. Fine, Coarsening kinetics of coherent NiAl-type precipitates in Fe Ni Al and Fe Ni Al Mo alloys. Materials Science and Engineering, 1984. 63(2): p. 197-208. 44. Niu, M., et al., Precipitate evolution and strengthening behavior during aging process in a 2.5 GPa grade maraging steel. Acta Materialia, 2019. 179: p. 296-307. 45. He, Y., et al., Age hardening and mechanical properties of a 2400 MPa grade cobalt-free maraging steel. Metallurgical and Materials Transactions A, 2006. 37(4): p. 1107-1116. 46. Burgers, W., On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium. Physica, 1934. 1(7-12): p. 561-586. 47. Zhang, C., et al., Effect of aging temperature on the precipitation behavior and mechanical properties of Fe–Cr–Ni maraging stainless steel. Materials Science and Engineering: A, 2021. 806. 48. Thuvander, M., M. Andersson, and K. Stiller, Precipitation process of martensitic PH stainless steel Nanoflex. Materials Science and Technology, 2012. 28(6): p. 695-701. 49. Hagihara, K., T. Nakano, and Y. Umakoshi, Plastic deformation behaviour in Ni3Ti single crystals with D024 structure. Acta Materialia, 2003. 51(9): p. 2623-2637. 50. Seol, J.-B., et al., Influence of carbon content on the microstructure, martensitic transformation and mechanical properties in austenite/ε-martensite dual-phase Fe–Mn–C steels. Acta materialia, 2013. 61(2): p. 558-578. 51. Chen, Y.-W., et al., Microstructural evolutions of low carbon Nb/Mo-containing bainitic steels during high-temperature tempering. Materials Characterization, 2017. 131: p. 298-305. 52. Ande, C.K. and M.H. Sluiter, First-Principles calculations on stabilization of iron carbides (Fe3C, Fe5C2, and η-Fe2C) in steels by common alloying elements. Metallurgical and Materials Transactions A, 2012. 43(11): p. 4436-4444. 53. Zackay, V.F., et al., The enhancement of ductility in high-strength steels. ASM Trans Quart, 1967. 60(2): p. 252-259. 54. E112-10, A., Standard test methods for determining average grain size. 2010, ASTM international. 55. Lian, Y., et al., Influence of Austenitizing Temperature on the Microstructure and Mechanical Properties of an Fe-Cr-Ni-Mo-Ti Maraging Stainless Steel. Journal of Materials Engineering and Performance, 2019. 28(9): p. 5466-5475. 56. Andrews, K., Empirical formulae for the calculation of some transformation temperatures. J. Iron Steel Inst., 1965: p. 721-727. 57. Kakeshita, T., et al., A new model explainable for both the athermal and isothermal natures of martensitic transformations in Fe–Ni–Mn alloys. Materials Transactions, JIM, 1993. 34(5): p. 423-428. 58. Kitahara, H., et al., Crystallographic features of lath martensite in low-carbon steel. Acta materialia, 2006. 54(5): p. 1279-1288. 59. Hirsch, P., et al., Electron Microscopy of Thin Crystals (1965). Butter worths, London: p. 415. 60. Yang, J. and H. Bhadeshia, The dislocation density of acicular ferrite in steel welds. Weld. J, 1990. 69: p. 305-307. 61. Nakada, N., et al., Variant selection of reversed austenite in lath martensite. ISIJ international, 2007. 47(10): p. 1527-1532. 62. Nakada, N., et al., Temperature dependence of austenite nucleation behavior from lath martensite. ISIJ international, 2011. 51(2): p. 299-304.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85155-
dc.description.abstract過去傳統的高強度低合金鋼,雖然在大部分的情況下皆可使用,但因為其合金成份的設計,無法有效地防止材料表面腐蝕,因此無法用於較嚴苛之環境,其發展應用領域也受到限制。而不鏽鋼因為添加了至少12wt%以上的Cr,能夠產生緻密氧化膜,以防止內部繼續腐蝕氧化,此特點若是搭配優秀的強度及延性,其可發展領域將十分廣泛。 本實驗研究之材料為465麻田散鐵系析出硬化型不鏽鋼,分成兩個部分做微結構觀察和性質上的分析。在第一部份先以熱膨脹儀做出465麻時效鋼之膨脹曲線,透過膨脹曲線了解其相變溫度以及發現465麻時效鋼內部具有恆溫麻田散鐵的存在。再以不同沃斯田鐵化溫度觀察在時效之前的初始微結構,以及基底麻田散鐵次結構中的變體,以了解在後續時效處理時,奈米析出物Ni3Ti和逆沃斯田鐵的生長行為。在第二部分將465麻時效鋼以不同溫度做時效處理,了解其析出強化曲線,再選出最具代表性之參數做微結構分析。 在時效處理之後,以TEM觀察奈米析出物Ni3Ti,使用選區繞射技術拍攝出析出物暗場影像,再用ImageJ-Fiji軟體分析其大小趨勢,發現Ni3Ti之長寬比和時效時間成正相關,且是透過差排管擴散進行生長,因此其生長方向和差排<111>方向平行。將HRTEM之影像透過軟體做傅立葉轉換後,得到局部區域之繞射圖譜,有助於了解Ni3Ti奈米析出物和麻田散鐵基底之Burger’s OR方位關係。TEM也用來了解時效處理後逆沃斯田鐵形貌和生長行為,在選區繞射後繞射圖譜中也發現逆沃斯田鐵傾向於恢復成原沃斯田鐵晶粒之方位,和母相麻田散鐵具有KS-OR方位關係,此現象為沃斯田鐵記憶效應(Austenite memory)。透過XRD和EBSD針對逆沃斯田鐵相做定量分析,了解逆沃斯田鐵和時效時間之關係,期望能夠控制逆沃斯田鐵之比率,導入相變誘發塑性變形使465麻時效鋼之延性表現有所提升。本實驗也使用了電子能量損失能譜(Electron energy-loss spectroscopy),發現在510C下,麻田散鐵基底之差排密度變化和添加之合金元素鉬有關,發現鉬能夠有效的降低材料在時效處理下,因差排爬移回復所造成的軟化現象。本實驗最後以萬能拉伸試驗機瞭解不同參數下之機械性質表現,分析其加工硬化率曲線,是否成功導入TRIP effect。zh_TW
dc.description.abstractAlthough traditional high-strength low-alloy steels can be used in most cases, the alloy composition is not designed to effectively prevent surface corrosion, and therefore cannot be used in harsh environments. Stainless steel with at least 12wt% Cr can produce dense oxide film to prevent internal corrosion and oxidation, and if this feature is combined with excellent strength and ductility, it can be used in lots of fields. The material studied in this experiment is 465 martensitic precipitate-hardening stainless steels, which was divided into two parts for microstructural observation and property analysis. In the first part, the expansion curve of the 465 maraging steel was made by a dilatometer to understand the phase transition temperature. The presence of isothermal martensite in 465 maraging steel was also found by expansion curves. The initial microstructure before aging and hierarchical structure of martensite were observed at different austenitization temperatures to understand the differences in microstructure after subsequent aging treatment. In the second part, 465 maraging steels were aged at different temperatures to understand their precipitation hardening curves, and then the most representative parameters were selected for microstructural analysis. After the aging treatment, the nano-precipitates Ni3Ti were observed by TEM, and the dark-field images of the precipitates were taken by the SAED technique, and the size trend was analyzed by ImageJ-Fiji software. It is found that the aspect ratio of Ni3Ti is positively correlated with the aging time, and the growth is carried out by pipe of dislocation, so its growth direction is parallel to the Burger’s vector <111> direction. After Fourier transforming the HRTEM image, diffraction pattern of the local area could help understand the Burger’s orientation relationship between the Ni3Ti nanoprecipitates and martensite matrix. TEM is also used to understand the morphology and growth behavior of reverse austenite after aging treatment. It can find that reverse austenite tends to revert to the orientation of the prior austenite grains, and has a KS-OR with the martensite matrix by the diffraction pattern, this phenomenon is called austenite memory. Quantitative analysis was performed by XRD and EBSD on the reverse austenite to understand the relationship between reverse austenite and aging time. It is expected that the TRIP effect can be achieved by controlling the proportion of reverse austenite to improve the ductility of 465 maraging steels. Electron energy-loss spectroscopy was also used in this experiment. It was found that at 510C, the dislocation density change of martensite matrix was related to the addition of the alloying element molybdenum, which was found to be effective in reducing the softening phenomenon caused by dislocation recovery under aging treatment. Finally, this experiment uses MTS to understand the performance of mechanical properties under different parameters and to analyze the work-hardening rate curve and whether the TRIP effect is successfully introduced.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:47:02Z (GMT). No. of bitstreams: 1
U0001-0408202214064300.pdf: 52481088 bytes, checksum: 98c61a45be4d838e7c08d8dc21f5b2c8 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝i 中文摘要iii Abstractv 目錄viii 圖目錄x 表目錄xv 第一章 前言1 第二章 文獻回顧2 2.1 麻田散鐵2 2.1.1 麻田散鐵相變化2 2.1.2 麻田散鐵的形貌6 2.1.3 板條狀麻田散鐵方位關係8 2.1.4 板條狀麻田散鐵階層結構10 2.2 沃斯田鐵15 2.2.1 殘留沃斯田鐵17 2.2.2 逆沃斯田鐵19 2.3 常見不鏽鋼之簡介25 2.3.1 奈米析出物Ni3Ti28 2.4 合金元素之影響31 2.4.1 相變誘發塑性鋼32 第三章 實驗方法35 3.1 實驗材料35 3.2 實驗儀器及試片製備35 3.3 分析軟體40 3.4 熱處理設計42 第四章 結果與討論44 4.1 熱膨脹曲線觀察44 4.2 沃斯田鐵化溫度之影響47 4.2.1 OM金相及硬度試驗47 4.2.2 時效前微結構觀察51 4.3 時效後之硬度試驗55 4.4 時效後之微結構觀察57 4.4.1 基底內差排密度測量57 4.4.2 逆沃斯田鐵定量及形貌62 4.4.3 奈米析出物Ni3Ti78 4.5 拉伸試驗92 第五章 結論97 第六章 未來工作99 參考文獻100
dc.language.isozh-TW
dc.subject逆沃斯田鐵記憶效應zh_TW
dc.subject465麻時效鋼zh_TW
dc.subject析出強化型不鏽鋼zh_TW
dc.subject板條麻田散鐵zh_TW
dc.subject逆沃斯田鐵相zh_TW
dc.subject差排密度zh_TW
dc.subject方位關係zh_TW
dc.subjectNi3Tizh_TW
dc.subjectKS-ORzh_TW
dc.subject465 maraging steelsen
dc.subjectaustenite memory effecten
dc.subjectKS-ORen
dc.subjectNi3Tien
dc.subjectorientation relationshipen
dc.subjectdislocation densityen
dc.subjectreverse austeniteen
dc.subjectlath martensiteen
dc.subjectprecipitation hardening stainless steelen
dc.title465麻時效不鏽鋼之微結構及機械性質研究zh_TW
dc.titleThe microstructure and mechanical properties of 465 maraging stainless steelen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳志遠(Chih-Yuan Chen),王星豪(Shing-Hoa Wang),張君華(Jyun-Hua Chang),林東毅(Dong-Yih Lin)
dc.subject.keyword465麻時效鋼,析出強化型不鏽鋼,板條麻田散鐵,逆沃斯田鐵相,差排密度,方位關係,Ni3Ti,KS-OR,逆沃斯田鐵記憶效應,zh_TW
dc.subject.keyword465 maraging steels,precipitation hardening stainless steel,lath martensite,reverse austenite,dislocation density,orientation relationship,Ni3Ti,KS-OR,austenite memory effect,en
dc.relation.page108
dc.identifier.doi10.6342/NTU202202057
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
dc.date.embargo-lift2022-08-15-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
U0001-0408202214064300.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
51.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved