請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84977
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許聿翔 | zh_TW |
dc.contributor.advisor | Yu-Hsiang Hsu | en |
dc.contributor.author | 王奕勛 | zh_TW |
dc.contributor.author | Yi-Xun Wang | en |
dc.date.accessioned | 2023-03-19T22:36:02Z | - |
dc.date.available | 2023-12-26 | - |
dc.date.copyright | 2022-08-26 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | [1] S. Patel, H. Park, P. Bonato, L. Chan, and M. Rodgers, "A review of wearable sensors and systems with application in rehabilitation," Journal of neuroengineering and rehabilitation, 9(1), 1-17, 2012. [2] M. Dehghani and R. M. Dangelico, "Smart wearable technologies: Current status and market orientation through a patent analysis," IEEE International Conference on Industrial Technology (ICIT), 1570-1575, 2017. [3] G. V. RESEAR., "Wearable Technology Market Size, Share & Trends Analysis Report By Product (Wrist-Wear, Eye-Wear & Head-Wear, Foot-Wear, Neck-Wear, Body-wear), By Application, By Region, And Segment Forecasts, 2021 - 2028.", Market Analysis Report, 2018, https://www.grandviewresearch.com/industry-analysis/wearable-technology-market [4] J. J. Rodrigues, D. B. D. R. Segundo, H. A. Junqueira, M. H. Sabino, R. M. Prince, J. Al-Muhtadi, "Enabling technologies for the internet of health things," Ieee Access, 6, 13129-13141, 2018. [5] W.H.O. "Ageing and health.", Fact sheets, 2021, https://www.who.int/news-room/fact-sheets/detail/ageing-and-health [6] L. Sura, A. Madhavan, G. Carnaby, and M. A. Crary, "Dysphagia in the elderly: management and nutritional considerations," Clinical interventions in aging, 7, 287, 2012. [7] E. H. de Lima Alvarenga, G. P. Dall’Oglio, E. Z. Murano, and M. Abrahão, "Continuum theory: presbyphagia to dysphagia? Functional assessment of swallowing in the elderly," European Archives of Oto-Rhino-Laryngology, 275(2), 443-449, 2018. [8] D. Britton, "The impact of aging and progressive neurological disease on swallowing: a concise overview," Journal of Texture Studies, 47(4), 257-265, 2016. [9] K. Matsuo and J. B. Palmer, "Anatomy and physiology of feeding and swallowing: normal and abnormal," Physical medicine and rehabilitation clinics of North America, 19(4), 691-707, 2008. [10] H. Firmin, S. Reilly, and A. Fourcin, "Non-invasive monitoring of reflexive swallowing," Speech Hearing and Language, 10(1), 171-184, 1997. [11] J. A. Robbins, "Normal swallowing and aging," in Seminars in neurology, 1996 by Thieme Medical Publishers, Inc., 16(4), 309-317, 1996. [12] C. S. Easterling and E. Robbins, "Dementia and dysphagia," Geriatric Nursing, 29(4), 275-285, 2008. [13] 彭昶仁. "認識吞嚥障礙.彰化基督教醫院.", 電子報116期, 2014, https://www.cch.org.tw/vmpc/news/news_detail.aspx?oid=265 [14] J. M. Wilkinson, D. C. Codipilly, and R. P. Wilfahrt, "Dysphagia: evaluation and collaborative management," American Family Physician, 103(2), 97-106, 2021. [15] L. W. Baijens, P. Clavé, P. Cras, O. Ekberg, A. Forster, G. F. Kolb, "European Society for Swallowing Disorders–European Union Geriatric Medicine Society white paper: oropharyngeal dysphagia as a geriatric syndrome," Clinical interventions in aging, 11, 1403, 2016. [16] M. A. Malouh, J. A. Cichero, Y. J. Manrique, L. Crino, E. T. Lau, L. M. Nissen, "Are medication swallowing lubricants suitable for use in dysphagia? Consistency, viscosity, texture, and application of the international dysphagia diet standardization initiative (IDDSI) framework," Pharmaceutics, 12(10), 924, 2020. [17] M.-L. Huckabee, P. Macrae, and K. Lamvik, "Expanding instrumental options for dysphagia diagnosis and research: ultrasound and manometry," Folia Phoniatrica et Logopaedica, 67(6), 269-284, 2015. [18] R. Wootton, "Telemedicine," Bmj, 323(7312), 557-560, 2001. [19] S. Stojanović, and B. Belic, "Laryngeal Manifestations of Rheumatoid Arthritis", Innovative Rheumatology. London, United Kingdom: IntechOpen, doi: 10.5772/51730, 2013. [20] W.-Y. Shieh, C.-M. Wang, H.-Y. K. Cheng, and C.-H. Wang, "Using wearable and non-invasive sensors to measure swallowing function: Detection, verification, and clinical application," Sensors, 19(11), 2624, 2019. [21] E. Sazonov, S. Schuckers, P. Lopez-Meyer, O. Makeyev, N. Sazonova, E. L. Melanson, "Non-invasive monitoring of chewing and swallowing for objective quantification of ingestive behavior," Physiological measurement, 29(5), 525, 2008. [22] Q. Li, "Development of a system to monitor laryngeal movement during swallowing using a bend sensor," PloS one, 8(8), 70850, 2013. [23] 黃聖文, "可觀測吞嚥行為之壓電纖維感測器開發," 碩士論文, 應用力學研究所, 國立臺灣大學, 2021. [24] S. Ye, J. Fuh, and L. Lu, "Effects of Ca substitution on structure, piezoelectric properties, and relaxor behavior of lead-free Ba (Ti0. 9Zr0. 1) O3 piezoelectric ceramics," Journal of alloys and compounds, 541, 396-402, 2012. [25] H. Shao, H. Wang, and J. Fang, "Piezoelectric energy conversion performance of electrospun nanofibers," Energy Harvesting Properties of Electrospun Nanofibers, 1-42, 2019. [26] T. Tanaka, G. Montanari, and R. Mulhaupt, "Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications," IEEE transactions on Dielectrics and Electrical Insulation, 11(5), 763-784, 2004. [27] D. Damjanovic, "Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics," Reports on Progress in Physics, 61(9), 1267, 1998. [28] R. A. Kishore and S. Priya, "A review on low-grade thermal energy harvesting: Materials, methods and devices," Materials, 11(8), 1433, 2018. [29] J. Bender and J. Krim, "Applications of the piezoelectric quartz crystal microbalance for microdevice development," in Microscale Diagnostic Techniques: Springer, 227-259, 2005. [30] H. Kawai, "The piezoelectricity of poly (vinylidene fluoride)," Japanese journal of applied physics, 8(7), 975, 1969. [31] Q. Zhang, V. Bharti, and X. Zhao, "Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly (vinylidene fluoride-trifluoroethylene) copolymer," Science, 280(5372), 2101-2104, 1998. [32] E. Kabir, M. Khatun, L. Nasrin, M. J. Raihan, and M. Rahman, "Pure β-phase formation in polyvinylidene fluoride (PVDF)-carbon nanotube composites," Journal of Physics D: Applied Physics, 50(16), 163002, 2017. [33] Y. Higashihata, J. Sako, and T. Yagi, "Piezoelectricity of vinylidene fluoride-trifluoroethylene copolymers," Ferroelectrics, 32(1), 85-92, 1981. [34] H. Ohigashi and K. Koga, "Ferroelectric copolymers of vinylidenefluoride and trifluoroethylene with a large electromechanical coupling factor," Japanese journal of applied physics, 21(8A), L455, 1982. [35] J. Nunes-Pereira, "Poly (vinylidene fluoride) and copolymers as porous membranes for tissue engineering applications," Polymer Testing, 44, 234-241, 2015. [36] Y. Maeda, H. Kanetsuna, K. Nagata, K. Matsushige, and T. Takemura, "Direct observation of phase transitions of polyethylene under high pressure by a PSPC x‐ray system," Journal of Polymer Science: Polymer Physics Edition, 19(9), 1313-1324, 1981. [37] G. Davis, J. McKinney, M. Broadhurst, and S. Roth, "Electric‐field‐induced phase changes in poly (vinylidene fluoride)," Journal of Applied Physics, 49(10), 4998-5002, 1978. [38] B. Servet and J. Rault, "Polymorphism of poly (vinylidene fluoride) induced by poling and annealing," Journal de Physique, 40(12), 1145-1148, 1979. [39] R. G. Kepler and R. Anderson, "Ferroelectric polymers," Advances in physics, 41(1), 1-57, 1992. [40] A. Baji, Y.-W. Mai, Q. Li, and Y. Liu, "Electrospinning induced ferroelectricity in poly (vinylidene fluoride) fibers," Nanoscale, 3(8), 3068-3071, 2011. [41] L. Rayleigh, "XX. On the equilibrium of liquid conducting masses charged with electricity," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 14(87), 184-186, 1882. [42] J. Zeleny, "The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces," Physical Review, 3(2), 69, 1914. [43] P. K. Baumgarten, "Electrostatic spinning of acrylic microfibers," Journal of colloid and interface science, 36(1), 71-79, 1971. [44] B. Vonnegut and R. L. Neubauer, "Production of monodisperse liquid particles by electrical atomization," Journal of colloid science, 7(6), 616-622, 1952. [45] V. G. Drozin, "The electrical dispersion of liquids as aerosols," Journal of colloid science, 10(2), 158-164, 1955. [46] G. I. Taylor, "Disintegration of water drops in an electric field," Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 280(1382), 383-397, 1964. [47] Coaxial Electrospraying & Electrospinning Machine & Equipment, "Coaxial Electrospinning,"Coaxial, 2013, https://nanotechnologysolutions.wordpress.com/2013/07/29/coaxial-electrospinning/ [48] H. Karakaş, "Electrospinning of nanofibers and their applications," Istanbul Technical University, Textile Technologies and Design Faculty, 2015. [49] W. E. Teo and S. Ramakrishna, "A review on electrospinning design and nanofibre assemblies," Nanotechnology, 17(14), R89, 2006. [50] H. Yoshimoto, Y. Shin, H. Terai, and J. Vacanti, "A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering," Biomaterials, 24(12), 2077-2082, 2003. [51] J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, "Electrospinning of collagen nanofibers," Biomacromolecules, 3(2), 232-238, 2002. [52] D. Li, Y. Wang, and Y. Xia, "Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays," Nano letters, 3(8), 1167-1171, 2003. [53] C. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, "Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering," Biomaterials, 25(5), 877-886, 2004. [54] P. D. Dalton, D. Klee, and M. Möller, "Electrospinning with dual collection rings," Polymer, 46(3), 611-614, 2005. [55] 朱信融, "以靜電紡絲研製高排列性聚 (偏氟乙烯-三氟乙烯) 薄膜及相關複合膜應用之研究," 碩士論文, 應用力學研究所, 國立臺灣大學, 2016. [56] 林哲宇, 賈澤民, 胡李琳, 江俊諺, 古嘉豪, 陳耀麟, "超音波影像原理簡介," 物理治療, 35(3), 180-187, 2010. [57] 陳國智. 張志華. "懂得這三個原則,肺部超音波不再是無字天書," 第三卷第二期, 台灣急診醫學通訊, 2020, https://www.sem.org.tw/EJournal/Detail/209 [58] T. G. Leighton, "What is ultrasound?," Progress in biophysics and molecular biology, 93(1-3), 3-83, 2007. [59] K. oguchi, E. saitoh, M. baba, S. kusudo, T. tanaka, and K. onogi, "The repetitive saliva swallowing test (RSST) as a screening test of functional dysphagia (2) Validity of RSST," The Japanese Journal of Rehabilitation Medicine, 37(6), 383-388, 2000. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84977 | - |
dc.description.abstract | 本論文目標為使用壓電吞嚥感測貼布監測人體吞嚥行為之演算法開發,量測舌骨上緣及其上方1公分、甲狀軟骨上緣及其上緣上方1公分等四個位置的吞嚥訊號,並以量測不同年齡層的男性及女性的吞嚥行為來開發演算法。本研究建立一套資料擷取系統,可同時收集這四組訊號,分析甲狀軟骨、舌骨及兩者之間的作動關係,做為吞嚥參數,並由各年齡層的吞嚥分布趨勢計算差異倍數。實驗結果顯示男性年長與青壯年參數具有差異倍數的有甲狀軟骨的總行程時間及比例、上升及下降時間、下降速度、上升及下降速度比、甲狀軟骨及舌骨的速度比及起動時間差,而女性年長與青壯年參數具有差異倍數的參數較少,有甲狀軟骨及舌骨的總行程時間、起動時間差以及連續吞嚥次數,共同具有差異的參數有甲狀軟骨的總行程時間及甲狀軟骨及舌骨的起動時間差。本研究並分析吞嚥次數的相關性,男性受試者的相關係數R為0.9073,女性受試者的相關性係數R為0.8142,皆具有高度相關性。本論文並使用超音波影像分析舌骨及甲狀軟骨的運動行為,用以驗證壓電吞嚥感測貼布訊號的可靠度,其中舌骨的起始時間之相關係數R為0.522,甲狀軟骨的起始時間之相關係數R為0.706,舌骨的回復時間之相關係數R為0.797,甲狀軟骨的回復時間之相關係數R為0.983,舌骨的總行程時間之相關係數R為0.771,甲狀軟骨的總行程時間之相關係數R為0.759,舌骨與甲狀軟骨的起始時間差之相關係數R為0.904,此研究成功驗證吞嚥感測貼布所量測到的訊號可代表舌骨及甲狀軟骨進行吞嚥運動時所產生的喉部皮膚表面形變訊號。總結,本研究以實際實驗驗證壓電吞嚥感測貼布可以建立人體吞嚥行為參數,並將可作為即時吞嚥監測之個人化裝置。 | zh_TW |
dc.description.abstract | The aim of this thesis is to develop an algorithm to use a piezoelectric swallowing patch sensor (SPS) to monitor the swallowing process. Four SPSs are used for this study, and they are placed at the upper border of the hyoid bone, 1 cm above the upper border of the hyoid bone, the upper border of the thyroid cartilage, and 1cm above the upper border of the thyroid cartilage. Swallowing patterns of different ages of male and female subjects are measured and compared using a data acquisition system, which can simultaneously collect these four sets of signals in real-time. Experimental findings show that there is a significant difference between senior and young subjects, including the total traveling time of thyroid, the ratio of thyroid rising and falling time and speed, and the difference in their activating time. For female subjects, fewer differences were found, only the total traveling time of thyroid, the difference of activating time between thyroid and hyoid bone, and the continuous swallowing number. It was found that the total traveling time of the thyroid cartilage, and the difference in activating time between thyroid cartilage and hyoid bone also have significant differences for both male and female. The correlation analysis of the number of swallowing times per 20 seconds also is carried out.The correlation coefficient of male subjects is 0.9073, and the correlation coefficient of female subjects is 0.8142. Both of these data show a high correlation. In this study, the ultrasonic imaging method is also used to analyze the motion behavior of the hyoid bone and the thyroid cartilage for verifying the reliability of the piezoelectric swallowing patch sensor. The correlation coefficient of the activating time of the hyoid bone and thyroid cartilage are 0.522 and 0.706. The correlation coefficient of the recovery time of the hyoid bone and the thyroid cartilage are 0.797 and 0.983. The correlation coefficient of the traveling time of the hyoid bone and the thyroid cartilage are 0.771 and 0.759. The correlation coefficient of the activating time difference of the hyoid and the thyroid cartilage is 0.904. In summary, this study successfully verifies the performance and reliability of the SPS using the ultrasound imaging method. Quantification methods and parameters are developed. The SPS can potentially be applied for personalized swallowing sensors. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:36:02Z (GMT). No. of bitstreams: 1 U0001-1808202222132300.pdf: 12905917 bytes, checksum: 46aea22472bc834abff6ad947746f79a (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 誌謝 i 摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 xi 第1章 緒論 1 1.1 研究背景與動機 1 1.1.1 吞嚥正常與吞嚥困難 3 1.1.2 吞嚥檢測方法 5 1.1.3 文獻回顧 7 1.2 研究目標 11 1.3 論文架構 12 第2章 壓電材料 14 2.1 壓電材料介紹 14 2.1.1 壓電效應、介電效應、焦電效應 14 2.1.2 壓電材料種類 17 2.2 高分子壓電材料介紹 17 2.2.1 聚-偏氟乙烯 PVDF 17 2.2.2 聚(偏氟乙烯-三氟乙烯) P(VDF-TrFE) 18 第3章 製程介紹 20 3.1 靜電紡絲 20 3.1.1 靜電紡絲原理 20 3.1.2 滾筒式靜電紡絲收集器 22 3.2 壓電吞嚥感測貼布製程 23 3.2.1 P(VDF-TrFE)溶液配置 23 3.2.2 靜電紡絲實驗架設 24 3.2.3 壓電吞嚥感測貼布製程 25 第4章 研究方法與實驗架設 28 4.1 吞嚥行為之演算法開發 28 4.1.1 比較不同之RTV矽橡膠封裝寬度及貼附位置介紹 28 4.1.2 壓電吞嚥訊號及各參數介紹 32 4.1.3 資料擷取系統之分析流程及演算法開發 37 4.1.4 資料擷取系統操作介面 43 4.2 超音波 44 4.2.1 超音波原理 44 4.2.2 各式超音波探頭 44 4.2.3 喉部超音波影像成像位置 45 4.2.4 超音波影像之分析流程 47 4.3 吞嚥行為之演算法開發與超音波影像驗證之實驗架設 52 4.3.1 量測各年齡層受試者的吞嚥行為之實驗架設 52 4.3.2 壓電吞嚥感測貼布結合超音波影像之量測 54 第5章 實驗結果與討論 56 5.1 各年齡層之吞嚥行為差異 56 5.1.1 甲狀軟骨之單次吞嚥差異 56 5.1.2 舌骨之單次吞嚥差異 61 5.1.3 甲狀軟骨及舌骨作動關係之單次吞嚥差異 66 5.1.4 連續吞嚥差異及程式閥值問題 73 5.2 壓電吞嚥感測貼布結合超音波影像分析之結果 80 5.2.1 超音波影像驗證壓電吞嚥訊號 80 5.2.2 不同受試者之超音波驗證結果 81 第6章 結論與未來展望 95 6.1 結論 95 6.2 未來展望 97 REFERENCES 98 附錄1 103 附錄2 123 附錄3 124 附錄4 125 附錄5 126 附錄6 127 附錄7 128 附錄8 129 附錄9 131 | - |
dc.language.iso | zh_TW | - |
dc.title | 以壓電吞嚥感測貼布擷取人體吞嚥行為之演算法開發與實驗驗證 | zh_TW |
dc.title | Development and experimental verification of an analysis method for using a piezoelectric swallow patch sensor to monitor the swallowing process | en |
dc.type | Thesis | - |
dc.date.schoolyear | 110-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 王亭貴;蕭名彥;林哲宇 | zh_TW |
dc.contributor.oralexamcommittee | Tyng-Guey Wang;Ming-Yen Hsiao;Che-Yu Lin | en |
dc.subject.keyword | 壓電吞嚥感測貼布,吞嚥困難,穿戴式裝置,靜電紡絲,壓電纖維, | zh_TW |
dc.subject.keyword | piezoelectric swallowing sensor patch,dysphagia,wearable device,electrospinning,piezoelectric fiber, | en |
dc.relation.page | 134 | - |
dc.identifier.doi | 10.6342/NTU202202564 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2022-08-22 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 應用力學研究所 | - |
dc.date.embargo-lift | 2024-08-21 | - |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-110-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 12.6 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。