請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84939完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 薛承輝(Chun-Hway Hsueh) | |
| dc.contributor.author | Yi-Siang Lin | en |
| dc.contributor.author | 林逸翔 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:33:50Z | - |
| dc.date.copyright | 2022-08-26 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-24 | |
| dc.identifier.citation | [1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high‐entropy alloys with multiple principal elements novel alloy design, Adv. Eng. Mater. 6 (5) (2004) 299–303. [2] W. Zhang, P.K. Liaw, Y. Zhang, Science and technology in high-entropy alloys, Sci. China Mater. 61 (1) (2018) 2–22. [3] J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu, Y. Liu, A review on fundamental of high entropy alloys with promising high–temperature properties, J. Alloys Compd. 760 (2018) 15–30. [4] J.W. Yeh, Recent progress in high-entropy alloys, Ann. Chim.: Sci. Mater 31 (6) (2006) 633–648. [5] D.L. Beke, G. Erdélyi, On the diffusion in high-entropy alloys, Mater. Lett. 164 (2016) 111–113. [6] S. Wei, S. J. Kim, J. Kang, Y. Zhang, Y. Zhang, T. Furuhara, E.S. Park, C.C. Tasan, Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility, Nat. Mater. 19 (11) (2020) 1175–1181. [7] Z. Xu, H. Zhang, X. Du, Y. He, H. Luo, G. Song, L. Mao, T. Zhou, L. Wang, Corrosion resistance enhancement of CoCrFeMnNi high-entropy alloy fabricated by additive manufacturing, Corros. Sci. 177 (2020) 108954. [8] Y.J. Hsu, W.C. Chiang, J.K. Wu, Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution, Mater. Chem. Phys. 92 (1) (2005) 112–117. [9] G.Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy, Acta Mater. 118 (2016) 152–163. [10] D. Xu, M. Wang, T. Li, X. Wei, Y. Lu, A critical review of the mechanical properties of CoCrNi-based medium-entropy alloys, Microstruct. 2 (2022) 2022001. [11] G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi, Acta Mater. 128 (2017) 292–303. [12] A.S. Tirunilai, T. Hanemann, C. Reinhart, V. Tschan, K.P. Weiss, G. Laplanche, J. Freudenberger, M. Heilmaier, A. Kauffmann, Comparison of cryogenic deformation of the concentrated solid solutions CoCrFeMnNi, CoCrNi and CoNi, Mater. Sci. Eng. A 783 (2020) 139290. [13] H.W. Deng, Z.M. Xie, B.L. Zhao, Y.K. Wang, M.M. Wang, J.F. Yang, T. Zhang, Y. Xiong, X.P. Wang, Q. F. Fang, C.S. Liu, Tailoring mechanical properties of a CoCrNi medium-entropy alloy by controlling nanotwin-HCP lamellae and annealing twins, Mater. Sci. Eng. A 744 (2019) 241–246. [14] H.W. Deng, M.M. Wang, Z.M. Xie, T. Zhang, X.P. Wang, Q.F. Fang, Y. Xiong, Enhancement of strength and ductility in non-equiatomic CoCrNi medium-entropy alloy at room temperature via transformation-induced plasticity, Mater. Sci. Eng. A 804 (2021) 140516. [15] Y. Chen, Y. Fang, X. Fu, Y. Lu, S. Chen, H. Bei, Q. Yu, Origin of strong solid solution strengthening in the CrCoNi-W medium entropy alloy, J Mater Sci Technol 73 (2021) 101–107. [16] I. Moravcik, H. Hadraba, L. Li, I. Dlouhy, D. Raabe, Z. Li, Yield strength increase of a CoCrNi medium entropy alloy by interstitial nitrogen doping at maintained ductility, Scr. Mater. 178 (2020) 391–397. [17] R. Chang, W. Fang, X. Bai, C. Xia, X. Zhang, H. Yu, B. Liu, F. Yin, Effects of tungsten additions on the microstructure and mechanical properties of CoCrNi medium entropy alloys, J. Alloys Compd. 790 (2019) 732–743. [18] H. Chang, T.W. Zhang, S.G. Ma, D. Zhao, R.L. Xiong, T. Wang, Z.Q. Li, Z.H. Wang, Novel Si-added CrCoNi medium entropy alloys achieving the breakthrough of strength-ductility trade-off, Mater. Des. 197 (2021) 109202. [19] Y.Y. Shang, Y. Wu, J.Y. He, X.Y. Zhu, S.F. Liu, H.L. Huang, K. An, Y. Chen, S.H. Jiang, H. Wang, X.J. Liu, Z.P. Lu, Solving the strength-ductility tradeoff in the medium-entropy NiCoCr alloy via interstitial strengthening of carbon, Intermetallics 106 (2019) 77–87. [20] D. Lee, M.P. Agustianingrum, N. Park, N. Tsuji, Synergistic effect by Al addition in improving mechanical performance of CoCrNi medium-entropy alloy, J. Alloys Compd. 800 (2019) 372–378. [21] Y.L. Zhao, T. Yang, Y. Tong, J. Wang, J.H. Luan, Z.B. Jiao, D. Chen, Y. Yang, A. Hu, C.T. Liu, J.J. Kai, Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy, Acta Mater. 138 (2017) 72–82. [22] R. Chang, W. Fang, J. Yan, H. Yu, X. Bai, J. Li, S. Wang, S. Zheng, F. Yin, Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: experiments and first-principle calculations, J Mater Sci Technol 62 (2021) 25–33. [23] D. Lee, H.U. Jeong, K.H. Lee, J.B. Jeon, N. Park, Precipitation and grain-boundary strengthening of Al-added CoCrNi medium-entropy alloys, Mater. Lett. 250 (2019) 127–130. [24] W. Zhang, D. Yan, W. Lu, Z. Li, Carbon and nitrogen co-doping enhances phase stability and mechanical properties of a metastable high-entropy alloy, J. Alloys Compd. 831 (2020) 154799. [25] Z. Zeng, M. Xiang, D. Zhang, J. Shi, W. Wang, X. Tang, W. Tang, Y. Wang, X. Ma, Z. Chen, W. Ma, K. Morita, Mechanical properties of Cantor alloys driven by additional elements: a review, J. Mater. Res. 15 (2021) 1920–1934. [26] H. Shahmir, J. He, Z. Lu, M. Kawasaki, T.G. Langdona, Microstructure and properties of a CoCrFeNiMn high-entropy alloy processed by equal-channel angular pressing, Mater. Sci. Eng. A 705 (2017) 411–419. [27] H. Shahmir, J. He, Z. Lu, M. Kawasaki, T.G. Langdona, Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion, Mater. Sci. Eng. A 676 (2016) 294–303. [28] P.A. Rad, P. Sathiyamoorthi, N.T.C. Nguyen, J.W. Bae, H.Shahmir, H.S. Kim, Fine-tuning of mechanical properties in V10Cr15Mn5Fe35Co10Ni25 high-entropy alloy through high-pressure torsion and annealing, Mater. Sci. Eng. A 771 (2020) 138604. [29] J. Zhou, H. Liao, H. Chen, A. Huang, Effects of hot-forging and subsequent annealing on microstructure and mechanical behaviors of Fe35Ni35Cr20Mn10 high-entropy alloy, Mater. Charact. 178 (2021) 111251. [30] D.G. Kim, Y.H. Jo, J.M. Park, W.M. Choi, H.S. Kim, B.J. Lee, S. SuSohn, S. Lee, Effects of annealing temperature on microstructures and tensile properties of a single FCC phase CoCuMnNi high-entropy alloy, J. Alloys Compd. 812 (2020) 152111. [31] W. Liu, W. Xiao, C. Xu, M. Liu, C. Ma, Synergistic effects of Gd and Zr on grain refinement and eutectic Si modification of Al-Si cast alloy, Mater. Sci. Eng. A 693 (2017) 93–100. [32] Y. Zhao, D. Zhang, J. Feng, X. Chen, T. Deng, B. Jiang, F. Pan, Effect of Gd addition on the age hardening response of Mg–6Zn-1Mn alloy, J. Mater. Res. 9 (4) (2020) 8834–8841. [33] X. Chen, Q. Li, J. Chen, L. Zhu, Microstructure and mechanical properties of Mg-Gd-Y-Sm-Al alloy and analysis of grain refinement and strengthening mechanism, J. Rare Earths 37 (12) (2019) 1351–1358. [34] L.J. Zhang, M.D. Zhang, Z. Chen, J.T. Fan, P. Cui, P.F. Yu, Q. Jing, M.Z. Ma, P.K. Liaw, G. Li, R.P. Liu, Effects of rare-earth element, Y, additions on the microstructure and mechanical properties of CoCrFeNi high entropy alloy, Mater. Sci. Eng. A 725 (2018) 437–446. [35] X. Hong, C.H. Hsueh, Effects of yttrium addition on microstructures and mechanical properties of CoCrNi medium entropy alloy, Intermetallics 140 (2022) 107405. [36] S.N. Chan, C.H. Hsueh, Effects of La addition on the microstructure and mechanical properties of CoCrNi medium entropy alloy, J. Alloys Compd. 894 (2022) 162401. [37] C. Wang, T.H. Li, Y.C. Liao, C.L. Li, J.S.C. Jang, C.H. Hsueh, Hardness and strength enhancements of CoCrFeMnNi high-entropy alloy with Nd doping, Mater. Sci. Eng. A 764 (2019) 138192. [38] L.J. Zhang, P.F. Yu, M.D. Zhang, D.J. Liu, Z. Zhou, M.Z. Ma, P.K. Liaw, G. Li, R.P. Liu, Microstructure and mechanical behaviors of GdxCoCrCuFeNi high-entropy alloys, Mater. Sci. Eng. A 707 (2017) 708–716. [39] M.H. Abdelaziz, M. Paradis, A.M. Samuel, H.W. Doty, F.H. Samuel, Effect of aluminum addition on the microstructure, tensile properties, and fractography of cast Mg-based alloys, Adv. Mater. Sci. Eng. 2 (2017) 1–10. [40] A. Inoue, F. Kong, S. Zhu, C.T. Liu, F. Al-Marzouki, Development and applications of highly functional Al-based materials by use of metastable phases, Mater. Res. 18 (6) (2015) 1414–1425. [41] F. Liu, P.K. Liaw, Y. Zhang, Recent progress with BCC-structured high-entropy alloys, Metals 12 (3) (2022) 501–509. [42] B.E. MacDonald, Z. Fu, B. Zheng, W. Chen, Y. Lin, F. Chen, L. Zhang, J. Ivanisenko, Y. Zhou, H. Hahn, E.J. Lavernia, Recent progress in high entropy alloy research, Journal of Materials 69 (10) (2017) 2024–2031. [43] R.X. Li, J.W. Qiao, P.K. Liaw, Y. Zhang, Preternatural hexagonal high-entropy alloys: A review, Acta Metall. Sin. (Engl. Lett.) 33 (8) (2020) 1033–1045. [44] M.C. Gao, B. Zhang, S.M. Guo, J.W. Qiao, J.A. Hawk, High-entropy alloys in hexagonal close packed structure, Metall. Mater. Trans. A 47 (2016) 3322–3332 [45] N. Kumar, M. Fusco, M. Komarasamy, R.S. Mishra, M. Bourham, K.L. Murtya, Understanding effect of 3.5 wt.% NaCl on the corrosion of Al0.1CoCrFeNi high-entropy alloy, J. Nucl. Mater. 495 (2017) 154–163. [46] Y.Y. Chen, T. Duval, U.D. Hung, J.W. Yeh, H.C. Shih, Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel, Corros. Sci. 47 (9) (2005) 2257-2279. [47] Y.Y. Chen, U.T. Hong, H.C. Shih, J.W. Yeh, T. Duval, Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel, Corros. Sci. 47 (11) (2005) 2679–2699. [48] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Sci. 345 (2014) 1153–1158. [49] Y.D. Wu, Y.H. Cai, T. Wang, J.J. Si, J. Zhu, Y.D. Wang, X.D. Hui, A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties, Mater. Lett. 130 (2014) 277–280. [50] C.Y. Cheng, J.W. Yeh, High-entropy BNbTaTiZr thin film with excellent thermal stability of amorphous structure and its electrical properties, Mater. Lett. 185 (2016) 456–459. [51] M. Tokarewicz, M. Grądzka-Dahlke, Review of recent research on AlCoCrFeNi high-entropy alloy, Metals 11 (8) (2021) 1302–1313. [52] C.G. Michael, J.W. Yeh, P.K. Liaw, Y. Zhang, High-entropy alloys, Springer Nature, Switzerland, 2016. [53] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375-377 (2004) 213–218. [54] M.H. Tsai, J.W. Yeh, High-entropy alloys: a critical review, Mater. Res. Lett. 2 (3) (2014) 107–123. [55] A. Li, X. Zhang, Thermodynamic analysis of the simple microstructure of AlCrFeNiCu high-entropy alloy with multi-principal elements, Acta Metall. Sin. (Engl. Lett.) 22 (3) (2009) 219–224. [56] M.S. Lucas, G.B. Wilks, L. Mauger, J.A. Muñoz, O.N. Senkov, E. Michel, J. Horwath, S.L. Semiatin, M.B. Stone, D.L. Abernathy, E. Karapetrova, Absence of long-range chemical ordering in equimolar FeCoCrNi, Appl. Phys. Lett. 100 (25) (2012) 251907. [57] C.J. Tong, M.R. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, S.Y. Chang, Mechanical performance of the AlxCoCrCuFeNi, Metall. Mater. Trans. A 36 (2005) 1263–1271. [58] J.W. Yeh, Alloy design strategies and future trends in high-entropy alloys, JOM 65 (12) (2013) 1759–1771. [59] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Mater. 61 (13) (2013) 4887–4897. [60] M.H. Tsai, Physical properties of high entropy alloys, Entropy 15 (12) (2013) 5338–5345. [61] S. Ranganathan, Alloyed pleasures: multimetallic cocktails, Curr. Sci. 85 (10) (2003) 1404–1406. [62] Z. Wu, H. Bei, G.M. Pharr, E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Mater. 81 (2014) 428–441. [63] H.Kim, D. Lee, H. Kim, Y. Kim, M. Jang, D. Kwen, Y. Koo, E. Kim, H. Cho, M.P. Agustianingrum, N. Park, B. Straumal, The formation of B2-precipitate and its effect on grain growth behavior in aluminum-containing CoCrNi medium-entropy alloy, Mater. Lett. 303 (2021) 130481. [64] R. Chang, W. Fang, H. Yu, X. Bai, X. Zhang, B. Liu, F. Yin, Heterogeneous banded precipitation of (CoCrNi)93Mo7 medium entropy alloys towards strength–ductility synergy utilizing compositional inhomogeneity, Scr. Mater. 172 (2019) 144–148. [65] Y. Tong, H. Zhang, H. Huang, L. Yang, Y. Hu, X. Liang, M. Hua, J. Zhang, Strengthening mechanism of CoCrNiMox high entropy alloys by high-throughput nanoindentation mapping technique, Intermetallics 135 (2021) 107209. [66] Y. Shi, Y.D. Wang, S. Li, R. Li, Y. Wang, Mechanical behavior in boron-microalloyed CoCrNi medium-entropy alloy studied by in situ high-energy X-ray diffraction, Mater. Sci. Eng. A 788 (2020) 139600. [67] C. Varvenne, A. Luque, W.A. Curtin, Theory of strengthening in fcc high entropy alloys, Acta Mater. 118 (2016) 164–176. [68] C.R. LaRosa, M. Shih, C. Varvenne, M. Ghazisaeidi, Solid solution strengthening theories of high-entropy alloys, Mater. Charact. 151 (2019) 310–317. [69] S. Yoshida, T. Bhattacharjee, Y. Bai, N. Tsuji, Friction stress and Hall-Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing, Scr. Mater. 134 (2017) 33–36. [70] Z.C. Cordero, B.E. Knight, C.A. Schuh, Six decades of the Hall–Petch effect – a survey of grain-size strengthening studies on pure metals, Int. Mater. Rev. 61 (8) (2016) 495–512. [71] S.N. Naik, S.M. Walley, The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals, J. Mater. Sci. 55 (7) (2019) 2661–2681. [72] T.G. Nieh, J. Wadsworth, Hall-petch relation in nanocrystalline solids, Scr. Mater. 25 (1991) 955–958. [73] H. Chang, T.W. Zhang, S.G. Ma, D. Zhao, T.X. Bai, K. Wang, Z.Q. Li, Z.H. Wang, Strengthening and strain hardening mechanisms in precipitation-hardened CrCoNi medium entropy alloys, J. Alloys Compd. 896 (2022) 162962. [74] Z. Wang, I. Baker, W. Guo, J.D. Poplawsky, The effect of carbon on the microstructures, mechanical properties, and deformation mechanisms of thermo-mechanically treated Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys, Acta Mater. 126 (2017) 346–360. [75] F. Haftlang, H.S. Kim, A perspective on precipitation-hardening high-entropy alloys fabricated by additive manufacturing, Mater. Des. 211 (2021) 110161. [76] A. Takahashi, N. Ghoniem, A computational method for dislocation–precipitate interaction, J. Mech. Phys. Solids 56 (4) (2008) 1534–1553. [77] H.C. Liu, C.M.Kuo, P.K. Shen, C.Y. Huang, H.W. Yen, C.W. Tsai, Disordering of L12 phase in high‐entropy alloy deformed at cryogenic temperature, Adv. Eng. Mater. 23 (12) (2021) 2100564. [78] L. Wu, J. Zhi, J. Zhang, B. Zhao, Q. Liu, Effect of Cerium on the Microstructure and Inclusion Evolution of C-Mn Cryogenic Vessel Steels, Materials (Basel) 14 (18) (2021) 5262–5272. [79] L. Chen, X. Ma, L. Wang, X. Ye, Effect of rare earth element yttrium addition on microstructures and properties of a 21Cr–11Ni austenitic heat-resistant stainless steel, Mater. Des. 32 (4) (2011) 2206–2212. [80] F. Pan, J. Zhang, H.L. Chen, Y.H. Su, C.L. Kuo, Y.H. Su, S.H. Chen, K.J. Lin, P.H. Hsieh, W.S. Hwang, Effects of Rare Earth Metals on Steel Microstructures, Materials (Basel) 9 (6) (2016) 417–423. [81] S. Khan, Hydrophobicity of rare-earth oxide ceramics and their application in promoting sustained drop-wise condensation, Massachusetts Institute of Technology, Boston, 2016. [82] B.L.Mordike, T.E. bert, Magnesium Properties — applications — potential, Mater. Sci. Eng. A 302 (1) (2001) 37–45. [83] T. Koizumi, M. Egami, K. Yamashita, E. Abe, Platelet precipitate in an age-hardening Mg-Zn-Gd alloy, J. Alloys Compd. 752 (2018) 407–411. [84] H. Huang, G. Yuan, Z. Chu, W. Ding, Microstructure and mechanical properties of double continuously extruded Mg–Zn–Gd-based magnesium alloys, Mater. Sci. Eng. A 560 (2013) 241–248. [85] H.U. Rehman, K. Durst, S. Neumeier, A.B. Parsa, A. Kostka, G. Eggeler, M. Göken, Nanoindentation studies of the mechanical properties of the μ phase in a creep deformed Re containing nickel-based superalloy, Mater. Sci. Eng. A 634 (2015) 202–208. [86] G. Laplanche, P. Gadaud, C. Bärsch, K. Demtröder, C. Reinhart, J. Schreuer, E.P. George, Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy, J. Alloys Compd. 746 (2018) 244–255. [87] Q. Zhang, T.W. Fan, L. Fu, B.Y. Tang, L.M. Peng, W.J. Ding, Ab-initio study of the effect of rare-earth elements on the stacking faults of Mg solid solutions, Intermetallics 29 (2012) 21–26. [88] I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe, The effect of grain size and grain orientation on deformation twinning in a Fe–22wt.% Mn–0.6wt.% C TWIP steel, Mater. Sci. Eng. A 527 (15) (2010) 3552–3560. [89] Y. Zhao, J. Wang, Shu. Zhou, X. Wang, Effects of rare earth addition on microstructure and mechanical properties of a Fe–15Mn–1.5Al–0.6C TWIP steel, Mater. Sci. Eng. A 608 (2014) 106–113. [90] Y. Ma, J. Hao, J. Jie, Q. Wang, C. Dong, Coherent precipitation and strengthening in a dual-phase AlNi2Co2Fe1.5Cr1.5 high-entropy alloy, Mater. Sci. Eng. A 764 (2019) 138241. [91] M.P. Agustianingrum, S. Yoshida, N. Tsuji, N. Park, Effect of aluminum addition on solid solution strengthening in CoCrNi medium-entropy alloy, J. Alloys Compd. 781 (2019) 866–872. [92] Z. Zhang, Y. Wu, L. Bhatta, C. Li, B. Gan, C. Kong, Yu. Wang, H. Yu, Mechanical properties and microstructure evolution of a CrCoNi medium entropy alloy subjected to asymmetric cryorolling and subsequent annealing, Mater. Today Commun. 26 (2021) 101776. [93] P. Sathiyamoorthi, J.W. Bae, P. Asghari-Rad, J.M. Park, J.G. Kim, H.S. Kim, Effect of annealing on microstructure and tensile behavior of CoCrNi medium entropy alloy processed by high-pressure torsion, Entropy 20 (11) (2018) 849–854. [94] Y. Jin, B. Lin, M. Bernacki, G.S. Rohrer, A.D. Rollett, N. Bozzolo, Annealing twin development during recrystallization and grain growth in pure nickel, Mater. Sci. Eng. A 597 (2014) 295–303. [95] M. Annasamy, A.T. N. Haghdadi, P. Hodgson, D. Fabijanic, Dynamic recrystallization behaviour of AlxCoCrFeNi high entropy alloys during high-temperature plane strain compression, Mater. Sci. Eng. A 745 (2019) 90–106. [96] N. Haghdadi, P. Cizek, H. Beladi, P.D. Hodgson, Dynamic restoration processes in a 23Cr-6Ni-3Mo duplex stainless steel: effect of austenite morphology and interface characteristics, Metall. Mater. Trans. A 48 (10) (2017) 4803–4820. [97] L. Chen, L. Wang, X. Du, X. Liu, Hot deformation behavior of 2205 duplex stainless steel, Acta Metall. Sin. 2010 (1) (2010) 52–56. [98] A. Iza-Mendia, A. Piñol-Juez, J.J. Urcola, I. Gutiérrez, Microstructural and mechanical behavior of a duplex stainless steel under hot working conditions, Metall. Mater. Trans. A 29 (1998) 2975–2986. [99] H. Yi, Y. Zhang, R. Xie, M. Bi, D. Wei, High-temperature deformation behaviors of the C-doped and N-doped high entropy alloys, Metals 11 (10) (2021) 1517–1527. [100] M. Yamasaki, K. Hagihara, S. Inoue, J.P. Hadorn, Y. Kawamura, Crystallographic classification of kink bands in an extruded Mg–Zn–Y alloy using intragranular misorientation axis analysis, Acta Mater. 61 (6) (2013) 2065–2076. [101] C.E. Slone, J. Miao, E.P. George, M.J. Mills, Achieving ultra-high strength and ductility in equiatomic CrCoNi with partially recrystallized microstructures, Acta Mater. 165 (15) (2019) 496–507. [102] Y. Xin, L. Lv, H. Chen, C. He, H. Yu, Q. Liu, Effect of dislocation-twin boundary interaction on deformation by twin boundary migration, Mater. Sci. Eng. A 662 (2016) 95–99. [103] M. Schneider, E.P. George, T.J. Manescau, T. Záležák, J. Hunfeld, A. Dlouhý, G. Eggeler, G. Laplanche, Analysis of strengthening due to grain boundaries and annealing twin boundaries in the CrCoNi medium-entropy alloy, Int. J. Plast. 124 (2020) 155–169. [104] W. Zhang, Z. Ma, H. Zhao, L. Ren, Breakthrough the strength-ductility trade-off in a high-entropy alloy at room temperature via cold rolling and annealing, Mater. Sci. Eng. A 800 (2021) 140264. [105] C.S. Pande, M.A. Imam, B.B. Rath, Study of annealing twins in fcc metals and alloys, Metall. Mater. Trans. A 21 (1990) 2891–2896. [106] M. Schneider, F. Werner, D. Langenkämper, C. Reinhart, G. Laplanche, Effect of temperature and texture on Hall–Petch strengthening by grain and annealing twin boundaries in the MnFeNi medium-entropy alloy, Metals 9 (1) (2019) 84–90. [107] S.W. Wu, G. Wang, Q. Wang, Y.D. Jia, J. Yi, Q.J. Zhai, J.B. Liu, B.A. Sun, H.J. Chu, J. Shen, P.K. Liaw, C.T. Liu, T.Y. Zhang, Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure, Acta Mater. 165 (2019) 444–458. [108] S. Asgari, E. El-Danaf, S.R. Kalidindi, R.D. Doherty, Strain hardening regimes and microstructural evolution during large strain compression of low stacking fault energy fcc alloys that form deformation twins, Metallurgical and Materials Transactions A 28 (1997) 1781–1795. [109] M.C. Mataya, E.R. Nilsson, E.L. Brown, Hot working and recrystallization of As-Cast 316L, Metall. Mater. Trans. A 34 (2003) 1683–1703. [110] A. Belyakov, H.Miura, T. Sakai, Dynamic recrystallization in ultra fine-grained 304 stainless steel, Scr. Mater. 43 (1) (2000) 21–26. [111] T.L. Capeletti, L.A. Jackman, W.J. Childs, Recrystallization following hot-working of a high-strength low-alloy (HSLA) steel and a 304 stainless steel at the temperature of deformation, Metall. Mater. Trans. B 3 (1972) 789–796. [112] F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, Elsevier Kidlington, Oxford 1995. [113] D. Lin, L. Xu, H. Jing, Y. Han, L. Zhao, F. Minami, Effects of annealing on the structure and mechanical properties of FeCoCrNi high-entropy alloy fabricated via selective laser melting, Addit. Manuf. 32 (2020) 101058. [114] G.D. Sathiaraj, P.P. Bhattacharjee, Effect of cold-rolling strain on the evolution of annealing texture of equiatomic CoCrFeMnNi high entropy alloy, Mater. Charact. 109 (2015) 189–197. [115] S. Nikkhah, H. Mirzadeh, M. Zamani, Fine tuning the mechanical properties of dual phase steel via thermomechanical processing of cold rolling and intercritical annealing, Mater. Chem. Phys. 230 (2019) 1–8. [116] I. Shakhova, V. Dudko, A. Belyakov, K. Tsuzaki, R. Kaibyshev, Effect of large strain cold rolling and subsequent annealing on microstructure and mechanical properties of an austenitic stainless steel, Mater. Sci. Eng. A 545 (2012) 176–186. [117] J. Hou, Z. Wang, X. Shi, Z. Wang, J. Qiao, Y. Wu, Strengthening of an Al0.45CoCrFeNi high-entropy alloy via in situ fabricated duplex-structured composites, J. Mater. Sci. 55 (18) (2020) 7894–7909. [118] B. Bacroix, S. Queyreau, D. Chaubet, E. Siv, T. Chauveau, The influence of the cube component on the mechanical behaviour of copper polycrystalline samples in tension, Acta Mater. 160 (2018) 121–136. [119] X. Liu, M. Zhang, Y. Ma, W. Dong, R. Li, Y. Lu, Y. Zhang, P. Yu, Y. Gao, G. Li, Achieving ultrahigh strength in CoCrNi-based medium-entropy alloys with synergistic strengthening effect, Mater. Sci. Eng. A 776 (3) (2020) 139028. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84939 | - |
| dc.description.abstract | 通過電弧熔煉製造了一系列 (CoCrNi)100–xGdx (x = 0/0.1/0.3/0.5/1.0) 中熵合金 (MEA)。研究了稀土元素Gd添加劑對 CoCrNi MEA 微觀結構演變和力學性能的影響。使用XRD進行相鑑定,SEM和EPMA進行微觀結構觀察及元素。拉伸性能通過 MTS 測量,硬度透過維氏硬度和奈米壓痕測量。隨著 Gd 濃度的增加,發現從 FCC 轉變為FCC + HCP 的雙相結構。與降伏強度為 400 MPa、斷裂強度為 880 MPa 的單相 CoCrNi MEA 相比,CoCrNi99.5Gd0.5 MEA 的降伏強度為 751 MPa,極限抗拉強度為 1216 MPa,而延展性仍保持較高值約 55%。機械性質的提升主要來自固溶、析出、晶粒細化。 為了瞭解Gd添加對CoCrNi MEAs退火微結構的演變,(CoCrNi)100–xGdx (x = 0/0.3/0.5/1.0) MEAs在未進行退火處理及不同溫度700、800和900 ℃下進行退火做比較。XRD結果顯示在CoCrNi MEAs在不同溫度下皆呈現單一FCC相,此外在CoCrNi99Gd1 MEAs在不同溫度下皆呈現雙相FCC+HCP,有趣的是,在 700 ℃時,FCC 基材在CoCrNi99.5Gd0.5 中呈現出兩個不同的區域。一種是再結晶晶粒,另一種是富含大量差排的未再結晶晶粒。在相同退火溫度700 ℃下,隨著Gd含量的增加,未再結晶區域在0到0.3 at.%會先上升隨後0.3到1.0 at.%呈現下降的趨勢。在相同成分CoCrNi99Gd1下,隨著退火溫度上升,未再結晶區域減少。熱壓後造成具有部分再結晶結構可以有效提升機械性質CoCrNi99.5Gd0.5 MEAs在退火700 ℃後表現出超過1 GPa的降伏強度同時仍有25%的延性。綜觀上述實驗結果,可以藉由調控Gd元素添加量以及適當的退火溫度來提升CoCrNi MEAs的機械性質。 | zh_TW |
| dc.description.abstract | A series of (CoCrNi)100–xGdx (x = 0/0.1/0.3/0.5/1.0) medium entropy alloys (MEAs) was fabricated by arc melting. The effects of rare-earth element, Gd, additions on the evolution of microstructures and mechanical properties of CoCrNi MEAs were investigated. The phase and microstructure were examined using X-ray diffraction, scanning electron microscopy and electron probe microanalyzer. The tensile properties were measured by MTS and the hardness was measured by both Vickers indenter and nanoindentation. As the Gd concentration increased, it was found that the phase transformed from FCC to HCP precipitates in FCC matrix. Compared to the single phase CoCrNi MEA with yield strength of 400 MPa and fracture strength of 880 MPa, CoCrNi99.5Gd0.5 MEA exhibited a higher yield strength of 751 MPa and ultimate tensile strength of 1216 MPa, while the ductility still maintained a high value of ~55%. The enhanced mechanical properties were ascribed to solid solution, precipitation and grain refinement strengthening mechanisms. To investigate the hot-working process and annealing treatment, the series of (CoCrNi)100–xGdx (x = 0/0.3/0.5/1.0) MEAs was annealed at different temperature 700, 800, and 900 ℃. The XRD results displayed the single FCC in CoCrNi and FCC + HCP in CoCrNi99Gd1, respectively. The crystal structure of CoCrNi99Gd1 remained as a dual phase at different annealing temperatures. Interestingly, for annealing at 700 ℃, the FCC matrix showed two different regions in CoCrNi99.5Gd0.5. One was recrystallized grain, and the other was non-recrystallized grain which contained numerous dislocations. For annealing at 700 ºC, the non-recrystallized region increased from 0 to 0.3 at.% of Gd additions and then decreased from 0.3 to 1.0 at.% of Gd additions. For CoCrNi99Gd1, the non-recrystallized region decreased with the increasing annealing temperature. The partial-recrystallization structure was considered as an effective way for improving mechanical properties. CoCrNi99.5Gd0.5 MEAs annealed at 700 ℃ exhibited an ultrahigh yield strength which exceeded 1 GPa with 25% fracture elongation. Hence, appropriate amount of Gd additions and annealing temperatures could enhance the mechanical properties of CoCrNi MEAs effectively. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:33:50Z (GMT). No. of bitstreams: 1 U0001-0208202213385900.pdf: 4815612 bytes, checksum: a29380bdc63d8661b0b39fb7d11b171c (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 i 中文摘要 ii ABSTRACT iv CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xv Chapter 1 Introduction 1 Chapter 2 Literature Review 4 2.1 High Entropy Alloys 4 2.1.1 Definitions of HEAs 5 2.1.2 Four Core Effects 6 2.2 Mechanical Properties of HEAs and MEAs 9 2.3 CoCrNi MEAs 12 2.4. Enhanced Mechanical Properties of CoCrNi 16 2.4.1 Effects of Alloying Elements 17 2.5 Strengthening Mechanisms 24 2.5.1 Solid Solution Strengthening Mechanism 24 2.5.2 Grain Refinement Strengthening Mechanism 25 2.5.3 Precipitate Strengthening Mechanism 27 2.6 Gd Additions in Alloys 29 Chapter 3 Experimental Methods 31 3.1 Material and Preparation 31 3.2 X-Ray Diffraction (XRD) 32 3.3 Scanning Electron Microscopy (SEM) 33 3.4 Electron Probe X-Ray Microanalyzer (EPMA) 33 3.5 Transmission Electron Microscopy (TEM) 34 3.6 Tensile Test 34 3.7 Vickers Hardness 35 3.8 Nanoindentation 35 Chapter 4 Results and Discussion 37 4.1 Gd Doping 37 4.1.1 Crystal Structure 37 4.1.2 Microstructure 38 4.1.3 Chemical Composition 42 4.1.4 TEM Observation 46 4.1.5 Mechanical Properties 48 4.1.6 Fractography after Tensile Tests 53 4.2 Annealing Temperature 56 4.2.1 Crystal Structure 56 4.2.2 Microstructure 57 4.2.3 TEM Observation 68 4.2.4 Mechanical Properties 69 Chapter 5 Conclusions 75 5.1 Gd Doping in CoCrNi MEAs 75 5.2 Effects of Annealing Temperature on (CoCrNi)100-xGdx 76 Future Work 79 References 80 | |
| dc.language.iso | en | |
| dc.subject | 退火溫度 | zh_TW |
| dc.subject | 稀土元素 | zh_TW |
| dc.subject | 中熵合金 | zh_TW |
| dc.subject | 微結構 | zh_TW |
| dc.subject | 機械性質 | zh_TW |
| dc.subject | medium-entropy alloys | en |
| dc.subject | annealing temperature | en |
| dc.subject | rare earth element | en |
| dc.subject | mechanical properties | en |
| dc.subject | microstructure | en |
| dc.title | Gd及退火溫度對CoCrNi顯微結構及機械性質之影響 | zh_TW |
| dc.title | Effects of Gd Addition and Annealing Temperature on Microstructures and Mechanical Properties of CoCrNi | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊哲人(Jer-Ren Yang),郭俞麟(Yu-Lin Guo) | |
| dc.subject.keyword | 中熵合金,微結構,機械性質,稀土元素,退火溫度, | zh_TW |
| dc.subject.keyword | medium-entropy alloys,microstructure,mechanical properties,rare earth element,annealing temperature, | en |
| dc.relation.page | 98 | |
| dc.identifier.doi | 10.6342/NTU202201967 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-24 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-26 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0208202213385900.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
