請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8485完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈聖峰(Sheng-Feng Shen) | |
| dc.contributor.author | Ying-Yu Chen | en |
| dc.contributor.author | 陳映妤 | zh_TW |
| dc.date.accessioned | 2021-05-20T00:55:40Z | - |
| dc.date.available | 2020-07-17 | |
| dc.date.available | 2021-05-20T00:55:40Z | - |
| dc.date.copyright | 2020-07-17 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-06-24 | |
| dc.identifier.citation | Allison, S. D. (2005). Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecology Letters, 8(6), 626-635. doi:10.1111/j.1461-0248.2005.00756.x Anne, H. H., Rudy, B. (1997). Population limitation in Arctic ground squirrels: effects of food and predation. Journal of Animal Ecology, 66(4), 527-541. doi:10.2307/5947 Axelrod, R., Hamilton, W. D. (1981). The evolution of cooperation. Science, 211(4489), 1390-1396. doi:10.1126/science.7466396 Benjaminsen, T. A., Alinon, K., Buhaug, H., Buseth, J. T. (2012). Does climate change drive land-use conflicts in the Sahel? Journal of Peace Research, 49(1), 97-111. doi:10.1177/0022343311427343 Berryman, A. A. (2004). Limiting factors and population regulation. Oikos, 105(3), 667-670. doi:10.1111/j.0030-1299.2004.13381.x Boserup, E. (1965). The Conditions of Agricultural Growth. London: Allen and Unwin. Bottery, M. J., Wood, A. J., Brockhurst, M. A. (2016). Selective conditions for a multidrug resistance plasmid depend on the sociality of antibiotic resistance. Antimicrobial Agents and Chemotherapy, 60(4), 2524-2527. doi:10.1128/AAC.02441-15 Brown, H. (1954). The Challenge of Man's Future: An Inquiry Concerning the Condition of Man During the Years that Lie Ahead. New York, N. Y.: Viking Press. Cépède, M., Houtart, F., Grond, L. (1964). Population and Food. New York, N. Y.: Sheed Ward. Cohen, J. E. (1995). Population growth and earth's human carrying capacity. Science, 269(5222), 341-346. doi:10.1126/science.7618100 Darwin, C. (1859). On the Origin of Species by Means of Natural Selection or the Preservation of Favored Races in the Struggle for Life. London: Murray. de Vargas Roditi, L., Boyle, K. E., Xavier, J. B. (2013). Multilevel selection analysis of a microbial social trait. Molecular Systems Biology, 9(1), 684. doi:10.1038/msb.2013.42 Decker, C. S., Reuveny, R. (2005). Endogenous technological progress and the Malthusian trap: could Simon and Boserup have saved Easter Island? Human Ecology, 33(1), 119-140. Retrieved from www.jstor.org/stable/4603559 Demont, M., Jouve, P., Stessens, J., Tollens, E. (2007). Boserup versus Malthus revisited: Evolution of farming systems in northern Côte d’Ivoire. Agricultural Systems, 93(1), 215-228. doi:https://doi.org/10.1016/j.agsy.2006.05.006 Dillon, M. E., Woods, H. A., Wang, G., Fey, S. B., Vasseur, D. A., Telemeco, R. S., . . . Pincebourde, S. (2016). Life in the Frequency Domain: the Biological Impacts of Changes in Climate Variability at Multiple Time Scales. Integrative and Comparative Biology, 56(1), 14-30. doi:10.1093/icb/icw024 %J Integrative and Comparative Biology Ellis, E. C., Magliocca, N. R., Stevens, C. J., Fuller, D. Q. (2018). Evolving the Anthropocene: linking multi-level selection with long-term social–ecological change. Sustainability Science, 13(1), 119-128. doi:10.1007/s11625-017-0513-6 Epstein, J. M. (1998). Zones of cooperation in demographic prisoner's dilemma. Complexity, 4(2), 36-48. doi:10.1002/(sici)1099-0526(199811/12)4:2<36::Aid-cplx9>3.0.Co;2-z Firman, R. C., Rubenstein, D. R., Moran, J. M., Rowe, K. C., Buzatto, B. A. (2020). Extreme and Variable Climatic Conditions Drive the Evolution of Sociality in Australian Rodents. Current Biology, 30(4), 691-697.e693. doi:https://doi.org/10.1016/j.cub.2019.12.012 Frost, I., Smith, W. P. J., Mitri, S., Millan, A. S., Davit, Y., Osborne, J. M., . . . Foster, K. R. (2018). Cooperation, competition and antibiotic resistance in bacterial colonies. The ISME Journal, 12(6), 1582-1593. doi:10.1038/s41396-018-0090-4 Gleditsch, N. P. (2012). Whither the weather? Climate change and conflict. Journal of Peace Research, 49(1), 3-9. doi:10.1177/0022343311431288 Gore, J., Youk, H., van Oudenaarden, A. (2009). Snowdrift game dynamics and facultative cheating in yeast. Nature, 459(7244), 253-256. doi:10.1038/nature07921 Gotelli, N. J. (2008). A Primer of Ecology (4th ed.). Sunderland, M.A.: Sinauer Associates, Inc. Hamilton, M. J., Burger, O., DeLong, J. P., Walker, R. S., Moses, M. E., Brown, J. H. (2009). Population stability, cooperation, and the invasibility of the human species. Proceedings of the National Academy of Sciences, 106(30), 12255-12260. doi:10.1073/pnas.0905708106 Hauert, C., Holmes, M., Doebeli, M. (2006). Evolutionary games and population dynamics: maintenance of cooperation in public goods games. Proceedings of the Royal Society B: Biological Sciences, 273(1600), 2565-2571. doi:doi:10.1098/rspb.2006.3600 Hopfenberg, R. (2003). Human carrying capacity is determined by food availability. Population and environment, 25(2), 109-117. doi:10.1023/B:POEN.0000015560.69479.c1 Jetz, W., Rubenstein, D. R. (2011). Environmental Uncertainty and the Global Biogeography of Cooperative Breeding in Birds. Current Biology, 21(1), 72-78. doi:https://doi.org/10.1016/j.cub.2010.11.075 Kögel, T., Prskawetz, A. (2001). Agricultural productivity growth and escape from the Malthusian trap. Journal of Economic Growth, 6(4), 337-357. doi:10.1023/A:1012742531003 Leticia Avilés, Ingi Agnarsson, Patricio A. Salazar, Jessica Purcell, Gabriel Iturralde, Eric C. Yip, . . . Todd C. Bukowski. (2007). Altitudinal Patterns of Spider Sociality and the Biology of a New Midelevation Social Anelosimus Species in Ecuador. The American Naturalist, 170(5), 783-792. doi:10.1086/521965 Lin, Y.-H., Chan, S.-F., Rubenstein, D. R., Liu, M., Shen, S.-F. (2019). Resolving the Paradox of Environmental Quality and Sociality: The Ecological Causes and Consequences of Cooperative Breeding in Two Lineages of Birds. The American Naturalist, 194(2), 207-216. doi:10.1086/704090 Lipton, M. (1989). Responses to rural population growth: Malthus and the moderns. Population and Development Review, 15, 215-242. doi:10.2307/2807928 Lomnicki, A. (1988). Population Ecology of Individuals. Princeton, N. J.: Princeton University Press. Lukas, D., Clutton-Brock, T. (2017). Climate and the distribution of cooperative breeding in mammals. Royal Society Open Science, 4(1), 160897. doi:doi:10.1098/rsos.160897 Malthus, T. R. (1798). An Essay on the Principle of Population. Oxford: Oxford University Press (1993 printing). May, R., McLean, A. (2007). Theoretical Ecology: Principles and Applications (3rd ed.). Oxford: Oxford University Press. Melis, C., Jędrzejewska, B., Apollonio, M., Bartoń, K. A., Jędrzejewski, W., Linnell, J. D. C., . . . Zhyla, S. (2009). Predation has a greater impact in less productive environments: variation in roe deer, Capreolus capreolus, population density across Europe. Global Ecology and Biogeography, 18(6), 724-734. doi:10.1111/j.1466-8238.2009.00480.x Molles, M. C. (2016). Ecology: Concepts and Applications (7th ed.). New York, N. Y.: McGraw-Hill Education. Monod, J. (1949). The growth of bacterial cultures. Annual Review of Microbiology, 3, 371-394. Nordås, R., Gleditsch, N. P. (2007). Climate change and conflict. Political Geography, 26(6), 627-638. doi:10.1016/j.polgeo.2007.06.003 Ohtsuki, H., Hauert, C., Lieberman, E., Nowak, M. A. (2006). A simple rule for the evolution of cooperation on graphs and social networks. Nature, 441(7092), 502-505. doi:10.1038/nature04605 Rainey, P. B., Rainey, K. (2003). Evolution of cooperation and conflict in experimental bacterial populations. Nature, 425(6953), 72-74. doi:10.1038/nature01906 Raleigh, C., Kniveton, D. (2012). Come rain or shine: an analysis of conflict and climate variability in East Africa. Journal of Peace Research, 49(1), 51-64. doi:10.1177/0022343311427754 Richerson, P. J., Boyd, R. (1997). Homage to Malthus, Ricardo, and Boserup: toward a general theory of population, economic growth, environmental deterioration, wealth, and poverty. Human Ecology Review, 4(2), 85-90. Retrieved from www.jstor.org/stable/24707031 Rubenstein, D. R., Lovette, I. J. (2007). Temporal Environmental Variability Drives the Evolution of Cooperative Breeding in Birds. Current Biology, 17(16), 1414-1419. doi:https://doi.org/10.1016/j.cub.2007.07.032 Rutz, C., Bijlsma Rob, G. (2006). Food-limitation in a generalist predator. Proceedings of the Royal Society B: Biological Sciences, 273(1597), 2069-2076. doi:10.1098/rspb.2006.3507 Salinger, M. J. (2005). Climate Variability and Change: Past, Present and Future — an Overview. In J. Salinger, M. V. K. Sivakumar, R. P. Motha (Eds.), Increasing Climate Variability and Change: Reducing the Vulnerability of Agriculture and Forestry (pp. 9-29). Dordrecht: Springer Netherlands. Sanchez, A., Gore, J. (2013). Feedback between population and evolutionary dynamics determines the fate of social microbial populations. PLOS Biology, 11(4), e1001547. doi:10.1371/journal.pbio.1001547 Scheffran, J., Battaglini, A. (2011). Climate and conflicts: the security risks of global warming. Regional Environmental Change, 11(1), 27-39. doi:10.1007/s10113-010-0175-8 Schluter, D., Repasky, R. R. (1991). Worldwide limitation of finch densities by food and other factors. Ecology, 72(5), 1763-1774. doi:10.2307/1940975 Schär, C., Vidale, P. L., Lüthi, D., Frei, C., Häberli, C., Liniger, M. A., Appenzeller, C. (2004). The role of increasing temperature variability in European summer heatwaves. Nature, 427(6972), 332-336. doi:10.1038/nature02300 Shen, S.-F., Emlen, S. T., Koenig, W. D., Rubenstein, D. R. (2017). The ecology of cooperative breeding behaviour. Ecology Letters, 20(6), 708-720. doi:10.1111/ele.12774 Slatyer, R. A., Hirst, M., Sexton, J. P. (2013). Niche breadth predicts geographical range size: a general ecological pattern. Ecology Letters, 16(8), 1104-1114. doi:10.1111/ele.12140 Slettebak, R. T. (2012). Don’t blame the weather! Climate-related natural disasters and civil conflict. Journal of Peace Research, 49(1), 163-176. doi:10.1177/0022343311425693 Smaldino, P. E., Schank, J. C., McElreath, R. (2013). Increased Costs of Cooperation Help Cooperators in the Long Run. The American Naturalist, 181(4), 451-463. doi:10.1086/669615 Steinmann, G., Prskawetz, A., Feichtinger, G. (1998). A model on the escape from the Malthusian trap. Journal of Population Economics, 11(4), 535-550. doi:10.1007/s001480050083 Strogatz, S. (2001). Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering (Studies in Nonlinearity). New York, N. Y.: Westview Press. Sun, S.-J., Rubenstein, D. R., Chen, B.-F., Chan, S.-F., Liu, J.-N., Liu, M., . . . Shen, S.-F. (2014). Climate-mediated cooperation promotes niche expansion in burying beetles. eLife, 3(e02440). doi:10.7554/eLife.02440 Traulsen, A., Nowak, M. A. (2006). Evolution of cooperation by multilevel selection. Proceedings of the National Academy of Sciences, 103(29), 10952-10955. doi:10.1073/pnas.0602530103 Urdal, H. (2005). People vs. Malthus: population pressure, environmental degradation, and armed conflict revisited. Journal of Peace Research, 42(4), 417-434. doi:10.1177/0022343305054089 Walankiewicz, W. (2002). Nest predation as a limiting factor to the breeding population size of the collared flycatcher Ficedula albicollis in the Białowieża National Park (NE Poland). Acta Ornithologica, 37(2), 91-106. Retrieved from https://doi.org/10.3161/068.037.0205 Wang, Z., Goldenfeld, N. (2011). Theory of cooperation in a micro-organismal snowdrift game. Physical Review E, 84(2), 020902. doi:10.1103/PhysRevE.84.020902 Weitz, J. S., Eksin, C., Paarporn, K., Brown, S. P., Ratcliff, W. C. (2016). An oscillating tragedy of the commons in replicator dynamics with game-environment feedback. Proceedings of the National Academy of Sciences, 113(47), E7518-E7525. doi:10.1073/pnas.1604096113 Wilson, E. O. (1987). Causes of ecological success: the case of the ants. Journal of Animal Ecology, 56(1), 1-9. doi:10.2307/4795 Wilson, E. O. (2012). The Social Conquest of Earth. New York, N. Y.: W. W. Norton. Yurtsev, E. A., Chao, H. X., Datta, M. S., Artemova, T., Gore, J. (2013). Bacterial cheating drives the population dynamics of cooperative antibiotic resistance plasmids. Molecular Systems Biology, 9(1), 683. doi:10.1038/msb.2013.39 Zhang, F., Hui, C. (2011). Eco-evolutionary feedback and the invasion of cooperation in prisoner's dilemma games. PLOS ONE, 6(11), e27523. doi:10.1371/journal.pone.0027523 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8485 | - |
| dc.description.abstract | 生態學家早已知道,動物的族群動態是由上行力(bottom-up forces)(例如資源可利用性)和下行力(top-down forces)(例如捕食)所共同決定的。然而,一些經濟學家指出人口動態也受到合作的影響,這是生態學家很少考慮的概念。在這裡,我們透過建構將環境條件、合作和族群大小結合在一起的個體為本模式(individual-based model),來考慮「橫向力量」(例如作用於族群內的種間合作)對族群動態的作用。在證明環境質量同時影響合作和資源可利用性之後,我們發現由於資源可利用性對合作和族群大小的對比影響,在中等資源水平下社會性生物的族群大小會大於非社會性生物。最終,我們的結果顯示,社會性族群比非社會性族群對環境變化的適應力更強,這是因為合作的好處可能大於資源匱乏的影響。在氣候變化時代,了解環境如何影響包括我們自己在內的社會物種的族群動態至關重要。 | zh_TW |
| dc.description.abstract | Ecologists have long known that animal population dynamics are determined by a combination of bottom-up (resource availability) and top-down forces (predation). However, some economists have shown that human population dynamics are also influenced by cooperation, a concept seldom considered by ecologists. Here we consider the role of “lateral forces” on population dynamics by constructing an individual-based model linking environmental conditions, cooperation, and population size. After showing that environmental quality influences both cooperation and resource availability, we find that sizes of social populations will be greater than those of non-social populations under intermediate resources levels due to the contrasting effects that resource availability has on cooperation and population size. Ultimately, we show that social populations are more resilient to environmental change than non-social ones because the benefits of cooperation can outweigh the effects of low resource availability. Understanding how the environment influences population dynamics of social species, including our own, is critical in era of climate change. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T00:55:40Z (GMT). No. of bitstreams: 1 U0001-2306202013101100.pdf: 1925069 bytes, checksum: e7cc91f5d340f762b9c919a69895a2d8 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 ………………………………………………………………………………………………………………………………………………………………………………………………… i 摘要 ………………………………………………………………………………………………………………………………………………………………………………………………… iv Abstract ……………………………………………………………………………………………………………………………………………………………………………………… v Contents ……………………………………………………………………………………………………………………………………………………………………………………… vi List of tables ……………………………………………………………………………………………………………………………………………………………………… viii List of figures …………………………………………………………………………………………………………………………………………………………………… ix 1.Introduction ……………………………………………………………………………………………………………………………………………………………………… 1 1.1 Two contrasting views on the relationship between resource availability and population dynamics ………………………………………………………………………………………………………………………………………………………… 1 1.2 Intraspecific cooperation: an overlooked “lateral force” acting within populations ……………………………………………………………………………………………………………………………………………………………………………… 2 1.3 Brief review on the relevant theoretical studies ………………………………………………………………… 3 1.4 Research aims ……………………………………………………………………………………………………………………………………………………………… 4 2.The model ……………………………………………………………………………………………………………………………………………………………………………… 6 2.1 General description ……………………………………………………………………………………………………………………………………………… 6 2.2 Life cycles of individuals …………………………………………………………………………………………………………………………… 7 2.3 Populations in fluctuating environments ………………………………………………………………………………………… 9 3.Results …………………………………………………………………………………………………………………………………………………………………………………… 11 3.1 Environmental quality and the evolution of cooperation ………………………………………………… 11 3.2 Joint influence of environmental quality and cooperation on population dynamics ……………………………………………………………………………………………………………………………………………………………………………………… 12 3.3 Stability of population dynamics in a fluctuating environment ……………………………… 13 4.Discussion …………………………………………………………………………………………………………………………………………………………………………… 14 4.1 The significance of the research …………………………………………………………………………………………………………… 14 4.2 Complex relationships among environmental conditions, cooperation and population dynamics ……………………………………………………………………………………………………………………………………………………………………………………… 14 4.3 Cooperation can facilitate social species to expand their niche width ………… 17 4.4 Social species have greater population resilience to environmental fluctuation ……………………………………………………………………………………………………………………………………………………………………………………………………………… 18 4.5 Model limitations …………………………………………………………………………………………………………………………………………………… 19 4.5 Concluding remarks ………………………………………………………………………………………………………………………………………………… 20 5.Reference ……………………………………………………………………………………………………………………………………………………………………………… 22 6.Table ………………………………………………………………………………………………………………………………………………………………………………………… 32 7.Figures …………………………………………………………………………………………………………………………………………………………………………………… 33 | |
| dc.language.iso | en | |
| dc.title | 種內合作如何與資源共同影響族群動態 | zh_TW |
| dc.title | Cooperation and lateral forces: moving beyond bottom-up and top-down drivers of animal population dynamics | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝志豪(Chih-Hao Hsieh),王慧瑜(Hui-Yu Wang),李壽先(Shou-Hsien Li) | |
| dc.subject.keyword | 合作,族群動態,恢復力, | zh_TW |
| dc.subject.keyword | cooperation,population dynamics,resilience, | en |
| dc.relation.page | 42 | |
| dc.identifier.doi | 10.6342/NTU202001116 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2020-06-29 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
| 顯示於系所單位: | 生態學與演化生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2306202013101100.pdf | 1.88 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
