Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 共同教育中心
  3. 統計碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84835
標題: 利用機器學習方法和MIMIC資料庫早期預測加護病房中的急性腎衰竭
Early prediction of Acute Kidney Injury in the Intensive Care Unit Using Machine Learning Models on MIMIC Database
作者: Wei-Cheng Kuo
郭唯崢
指導教授: 周呈霙(Cheng-Ying Chou)
關鍵字: 急性腎衰竭,機器學習,變數篩選,
Acute kidney injury,Machine learning,Feature selection,XGBoost,
出版年 : 2022
學位: 碩士
摘要: 背景:急性腎衰竭是一種可能導致預後不良的疾病,並且與加護病房患者的發病率和死亡率風險增加有關。它的發展非常迅速,通常在幾天內。因此,早期診斷和治療是一項重大挑戰。 目的:由於高發病率和死亡率,建立急性腎衰竭的預測模型至關重要。此研究的目標是要開發一個更全面的預測模型,能夠更早、更準確且更廣泛地預測急性腎衰竭。 方法:此研究的預測模型是用MIMIC-IV數據庫建立的,並使用MIMIC-III 數據庫評估模型的通用性。我使用了特徵重要性和t檢定來選擇具有預測力和通用性的特徵。在建構模型方面,我使用XGBoost和隨機森林模型以及增量式學習的技巧。AUROC為評估模型的指標。 結果:在提前 24、48和72小時預測急性腎衰竭的表現上,XGBoost模型的AUROC分別可以達到0.9489、0.9479和0.9466。當使用的選擇特徵對不同的數據集進行測試時,採取增量式學習後的模型可以提前24、48和72小時預測急性腎衰竭,其AUROC分別為0.7988、0.8074和0.7957。這表示我的模型和選擇的特徵具有良好的預測能力和通用性。本研究中選擇的變數可以廣泛應用於不同的數據。此外,本研究中建立的模型也有助於在不同的患者中早期預測急性腎衰竭。
Background: Acute kidney injury, also known as AKI, is a condition that can result in a poor prognosis and is linked to an increased risk of morbidity and mortality in intensive care unit (ICU) patients. It develops very quickly, typically within a few days. Therefore, early diagnosis and treatment pose a significant challenge. Objective: Creating a prediction model for acute kidney injury is essential due to the high morbidity and mortality rates associated with the condition. My objective was to develop a more comprehensive prediction model that is capable of predicting AKI earlier and more accurately. Methods: My prediction models were constructed with the Medical Information Mart for Intensive Care (MIMIC) IV database, and the generalizability of the models was evaluated using the MIMIC-III database. I employed feature importance and two sample t-tests in order to select features that were predictive and general. The construction of prediction models was handled by XGBoost and random forest models, both of which are tree-based algorithms. Also, I implemented the incremental learning technique when constucting the models. The area under the receiver operating characteristic (AUROC) served as the metric by which I evaluated our models. Results: The AUROCs of our XGBoost models can reach 0.9399, 0.9372, and 0.9373 when predicting AKI 24 hours, 48 hours, and 72 hours before onset, respectively. When testing on a different dataset using the selected features, the models after implementing incremental learning can predict AKI 24 hours, 48 hours, and 72 hours before onset with an AUROC of 0.8418, 0.7649, and 0.7479, respectively. This indicates that my models and selected features have good predictive ability and generalizability. The variables selected in this study can be widely applied to different data. Also, the models developed in this study have the potential to aid in the early prediction of AKI in a wide range of patients.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84835
DOI: 10.6342/NTU202201480
全文授權: 同意授權(限校園內公開)
電子全文公開日期: 2022-08-31
顯示於系所單位:統計碩士學位學程

文件中的檔案:
檔案 大小格式 
U0001-1507202214451500.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
614.63 kBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved