請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84835完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周呈霙(Cheng-Ying Chou) | |
| dc.contributor.author | Wei-Cheng Kuo | en |
| dc.contributor.author | 郭唯崢 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:28:07Z | - |
| dc.date.copyright | 2022-08-31 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-30 | |
| dc.identifier.citation | [1] Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract., 120(4):c179–84, 2012. [2] Bellomo R, Kellum JA, and Ronco C. Acute kidney injury. Lancet, 380(9843):756–66, 2012. [3] John Kellum, Paola Romagnani, Gloria Ashuntantang, Claudio Ronco, Alexander Zarbock, and Hans-Joachim Anders. Acute kidney injury. Nature Reviews Disease Primers, 7:52, 2021. [4] J.A. Kellum, N. Lameire, and for the KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (part 1). Crit Care, 17(1):204, 2013. [5] Rinaldo Bellomo and Emily See. Novel renal biomarkers of acute kidney injury and their implications. Internal Medicine Journal, 51:316–318, 2021. [6] Haase M, Bellomo R, and Haase-Fielitz A. Neutrophil gelatinase-associated lipocalin. Curr Opin Crit Care, 16(6):526–32, 2010. [7] Mahrukh S Rizvi and Kianoush B Kashani. Biomarkers for Early Detection of Acute Kidney Injury. The Journal of Applied Laboratory Medicine, 2(3):386–399, 2017. [8] Michael Haase, Rinaldo Bellomo, Prasad Devarajan, Peter Schlattmann, and Anja Haase-Fielitz. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: A systematic review and metaanalysis. American Journal of Kidney Diseases, 54(6):1012–1024, 2009. [9] Sollip Kim, Hyun-Jung Kim, Hyeong-Sik Ahn, Ji Song, Tae-Hyun Um, Chong-Rae Cho, Hoon Jung, Hyeon-Kyoung Koo, Joo Park, Sung-Soon Lee, and Hye Park. Is plasma neutrophil gelatinase-associated lipocalin a predictive biomarker for acute kidney injury in sepsis patients? a systematic review and meta-analysis. Journal of Critical Care, 33, 2016. [10] Peasad Devarajan. Neutrophil gelatinase‐ associated lipocalin (NGAL): A new marker of kidney disease. Scandinavian Journal of Clinical and Laboratory Investigation, 68(sup241):89–94, 2008. [11] Takaharu Ichimura, Joseph V. Bonventre, Véronique Bailly, Henry Wei, Catherine A. Hession, Richard L. Cate, and Michele Sanicola. Kidney injury molecule-1 (KIM1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. Journal of Biological Chemistry, 273(7):4135–4142, 1998. [12] Vishal S. Vaidya, Michael A. Ferguson, and Joseph V. Bonventre. Biomarkers of acute kidney injury. Annual Review of Pharmacology and Toxicology, 48(1):463–493, 2008. PMID: 17937594. [13] Denise Hasson, Shina Menon, and Katja M. Gist. Improving acute kidney injury diagnostic precision using biomarkers. Practical Laboratory Medicine, 30:e00272, 2022. [14] Yu Wang, JunPeng Bao, Jianqiang Du, and YongFeng Li. Precisely predicting acute kidney injury with convolutional neural network based on electronic health record data. arXiv:2005.13171, 2020. [15] Sidney Le, Angier Allen, Jacob Calvert, Paul M. Palevsky, Gregory Braden, Sharad Patel, Emily Pellegrini, Abigail Green-Saxena, Jana Hoffman, and Ritankar Das. Convolutional neural network model for intensive care unit acute kidney injury prediction. Kidney International Reports, 6(5):1289–1298, 2021. [16] Fuxing Deng, Milin Peng, Jing Li, Yana Chen, Buyao Zhang, and Shuangping Zhao. Nomogram to predict the risk of septic acute kidney injury in the first 24 h of admission: an analysis of intensive care unit data. Renal Failure, 42(1):428–436, 2020. PMID: 32401139. [17] Yuan Wang, Yake Wei, Hao Yang, Jingwei Li, Yubo Zhou, and Qin Wu. Utilizing imbalanced electronic health records to predict acute kidney injury by ensemble learning and time series model. BMC Medical Informatics and Decision Making, 20:238, 2020. [18] A. Johnson, T. Pollard, and R. Mark. MIMIC-III clinical database (version 1.4). PhysioNet, 2016. [19] A. E. W. Johnson, T. J. Pollard, L. Shen, L. H. Lehman, M. Feng, M. Ghassemi, B. Moody, P. Szolovits, L. A. Celi, and R. G. Mark. MIMIC-III, a freely accessible critical care database. Scientific Data, 3, 2016. [20] A. Johnson, L. Bulgarelli, T. Pollard, S. Horng, L. A. Celi, and R. Mark. MIMIC IV (version 0.4). PhysioNet, 2020. [21] A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P. C. Ivanov, R. Mark, ..., and H. E. Stanley. Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals. Circulation [Online], 101(23):e215–220, 2000. [22] Xing Song, Alan Yu, John Kellum, Lemuel Waitman, Michael Matheny, Steven Simpson, Yong Hu, and Mei Liu. Cross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction. Nature Communications, 11, 2020. [23] Ke Lin, Yonghua Hu, and Guilan Kong. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model. InternationalJournal of Medical Informatics, 125, 2019. [24] Trevor Hastie, Rahul Mazumder, Jason D. Lee, and Reza Zadeh. Matrix completion and low-rank SVD via fast alternating least squares. Journal of Machine Learning Research, 16(1):3367–3402, 2015. [25] Ade R.R and Deshmukh R. Methods for incremental learning: A survey. International Journal of Data Mining Knowledge Management Process, 3:119–125, 2013. [26] J.A. Hanley and Barbara Mcneil. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143:29–36, 1982 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84835 | - |
| dc.description.abstract | 背景:急性腎衰竭是一種可能導致預後不良的疾病,並且與加護病房患者的發病率和死亡率風險增加有關。它的發展非常迅速,通常在幾天內。因此,早期診斷和治療是一項重大挑戰。 目的:由於高發病率和死亡率,建立急性腎衰竭的預測模型至關重要。此研究的目標是要開發一個更全面的預測模型,能夠更早、更準確且更廣泛地預測急性腎衰竭。 方法:此研究的預測模型是用MIMIC-IV數據庫建立的,並使用MIMIC-III 數據庫評估模型的通用性。我使用了特徵重要性和t檢定來選擇具有預測力和通用性的特徵。在建構模型方面,我使用XGBoost和隨機森林模型以及增量式學習的技巧。AUROC為評估模型的指標。 結果:在提前 24、48和72小時預測急性腎衰竭的表現上,XGBoost模型的AUROC分別可以達到0.9489、0.9479和0.9466。當使用的選擇特徵對不同的數據集進行測試時,採取增量式學習後的模型可以提前24、48和72小時預測急性腎衰竭,其AUROC分別為0.7988、0.8074和0.7957。這表示我的模型和選擇的特徵具有良好的預測能力和通用性。本研究中選擇的變數可以廣泛應用於不同的數據。此外,本研究中建立的模型也有助於在不同的患者中早期預測急性腎衰竭。 | zh_TW |
| dc.description.abstract | Background: Acute kidney injury, also known as AKI, is a condition that can result in a poor prognosis and is linked to an increased risk of morbidity and mortality in intensive care unit (ICU) patients. It develops very quickly, typically within a few days. Therefore, early diagnosis and treatment pose a significant challenge. Objective: Creating a prediction model for acute kidney injury is essential due to the high morbidity and mortality rates associated with the condition. My objective was to develop a more comprehensive prediction model that is capable of predicting AKI earlier and more accurately. Methods: My prediction models were constructed with the Medical Information Mart for Intensive Care (MIMIC) IV database, and the generalizability of the models was evaluated using the MIMIC-III database. I employed feature importance and two sample t-tests in order to select features that were predictive and general. The construction of prediction models was handled by XGBoost and random forest models, both of which are tree-based algorithms. Also, I implemented the incremental learning technique when constucting the models. The area under the receiver operating characteristic (AUROC) served as the metric by which I evaluated our models. Results: The AUROCs of our XGBoost models can reach 0.9399, 0.9372, and 0.9373 when predicting AKI 24 hours, 48 hours, and 72 hours before onset, respectively. When testing on a different dataset using the selected features, the models after implementing incremental learning can predict AKI 24 hours, 48 hours, and 72 hours before onset with an AUROC of 0.8418, 0.7649, and 0.7479, respectively. This indicates that my models and selected features have good predictive ability and generalizability. The variables selected in this study can be widely applied to different data. Also, the models developed in this study have the potential to aid in the early prediction of AKI in a wide range of patients. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:28:07Z (GMT). No. of bitstreams: 1 U0001-1507202214451500.pdf: 629386 bytes, checksum: 477444575f54d3f8f29cc2822cf3c7e5 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i 摘要 ii Abstract iii Contents v List of Figures vii List of Tables viii Chapter 1 Introduction 1 Chapter 2 Literature Review 4 2.1 Clinical diagnosis methods 4 2.2 Biomarkers of AKI 4 2.3 Prediction models 5 2.4 Summary 6 Chapter 3 Methodology 7 3.1 Dataset 9 3.2 Data preprocessing 10 3.3 Feature selection 11 3.4 Data imputation 14 3.5 Prediction models 15 3.6 Model generalization 16 3.7 Evaluation metrics 18 Chapter 4 Results 20 4.1 Selected features 20 4.2 Data imputation 22 4.3 Model performance 24 4.4 Model generalizability 24 Chapter 5 Discussions 34 5.1 Model performances 34 5.2 Model generalizability 35 5.3 Limitations 36 Chapter 6 Conclusions 37 References 38 | |
| dc.language.iso | en | |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 急性腎衰竭 | zh_TW |
| dc.subject | 變數篩選 | zh_TW |
| dc.subject | Feature selection | en |
| dc.subject | Machine learning | en |
| dc.subject | Acute kidney injury | en |
| dc.subject | XGBoost | en |
| dc.title | 利用機器學習方法和MIMIC資料庫早期預測加護病房中的急性腎衰竭 | zh_TW |
| dc.title | Early prediction of Acute Kidney Injury in the Intensive Care Unit Using Machine Learning Models on MIMIC Database | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王偉仲(Wei-Chung Wang),陳定立(Ting-Li Chen) | |
| dc.subject.keyword | 急性腎衰竭,機器學習,變數篩選, | zh_TW |
| dc.subject.keyword | Acute kidney injury,Machine learning,Feature selection,XGBoost, | en |
| dc.relation.page | 41 | |
| dc.identifier.doi | 10.6342/NTU202201480 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-30 | |
| dc.contributor.author-college | 共同教育中心 | zh_TW |
| dc.contributor.author-dept | 統計碩士學位學程 | zh_TW |
| dc.date.embargo-lift | 2022-08-31 | - |
| 顯示於系所單位: | 統計碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1507202214451500.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 614.63 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
