請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84775完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘敏雄(MIN-HSIUNG PAN) | |
| dc.contributor.author | Jie-Yu Ruan | en |
| dc.contributor.author | 阮潔妤 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:25:03Z | - |
| dc.date.copyright | 2022-09-06 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-02 | |
| dc.identifier.citation | Afshin, A., Forouzanfar, M., Reitsma, M., Sur, P., Estep, K., Lee, A., Marczak, L., Mokdad, A., Moradi-Lakeh, M., Naghavi, M. (2017). Health effects of overweight and obesity in 195 countries over 25 years: The GBD 2015 obesity collaborators. N Engl J Med, 377, 13-27. Ahmed, M. H., Noor, S. K., Bushara, S. O., Husain, N. E., Elmadhoun, W. M., Ginawi, I. A., Osman, M. M., Mahmoud, A. O., Almobarak, A. O. (2017). Non-alcoholic fatty liver disease in Africa and Middle East: an attempt to predict the present and future implications on the healthcare system. Gastroenterology Res., 10, 271. Akingbemi, B. T. (2013). Adiponectin receptors in energy homeostasis and obesity pathogenesis. Prog Mol Biol Transl Sci., 114, 317-342. Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., Lightfoot, D. A. (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6, 42. Ameer, F., Scandiuzzi, L., Hasnain, S., Kalbacher, H., Zaidi, N. (2014). De novo lipogenesis in health and disease. Metabolism, 63, 895-902. Anderson, E. K., Gutierrez, D. A., Hasty, A. H. (2010). Adipose tissue recruitment of leukocytes. Curr Opin Lipidol., 21, 172. Aronne, L. J., Nelinson, D. S., Lillo, J. L. (2009). Obesity as a disease state: a new paradigm for diagnosis and treatment. Clin Cornerstone, 9, 9-29. Arterburn, D., Wellman, R., Emiliano, A., Smith, S. R., Odegaard, A. O., Murali, S., Williams, N., Coleman, K. J., Courcoulas, A., Coley, R. Y. (2018). Comparative effectiveness and safety of bariatric procedures for weight loss: a PCORnet cohort study. Ann Intern Med., 169, 741-750. Birbrair, A., Zhang, T., Wang, Z.-M., Messi, M. L., Enikolopov, G. N., Mintz, A., Delbono, O. (2013). Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev., 22, 2298-2314. Blumenthal, J. A., Babyak, M. A., Hinderliter, A., Watkins, L. L., Craighead, L., Lin, P.-H., Caccia, C., Johnson, J., Waugh, R., Sherwood, A. (2010). Effects of the DASH diet alone and in combination with exercise and weight loss on blood pressure and cardiovascular biomarkers in men and women with high blood pressure: the ENCORE study. Arch Intern Med., 170, 126-135. Brichory, F. M., Misek, D. E., Yim, A.-M., Krause, M. C., Giordano, T. J., Beer, D. G., Hanash, S. M. (2001). An immune response manifested by the common occurrence of annexins I and II autoantibodies and high circulating levels of IL-6 in lung cancer. Proc Natl Acad Sci USA., 98, 9824-9829. Brownsey, R., Boone, A., Elliott, J., Kulpa, J., Lee, W. (2006). Regulation of acetyl-CoA carboxylase. Biochem Soc Trans., 34, 223-227. Buzzetti, E., Pinzani, M., Tsochatzis, E. A. (2016). The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism, 65, 1038-1048. Caballero, B. (2019). Humans against obesity: who will win? Adv Nutr., 10, S4-S9. Carrera-Quintanar, L., Lopez Roa, R. I., Quintero-Fabián, S., Sánchez-Sánchez, M. A., Vizmanos, B., Ortuño-Sahagún, D. (2018). Phytochemicals that influence gut microbiota as prophylactics and for the treatment of obesity and inflammatory diseases. Mediat. Inflamm., 2018. Celebi, G., Cicek, A., Gurel, H., Genc, H., Kirik, A., Ercin, C., Dogru, T. (2020). Microvesicular steatosis: a missed item in the management of nonalcoholic fatty liver disease? Acta Gastroenterol Belg, 565-570. Chacko, K. R., Reinus, J. (2016). Extrahepatic complications of nonalcoholic fatty liver disease. Clin Liver Dis., 20, 387-401. Chhimwal, J., Patial, V., Padwad, Y. (2021). Beverages and non-alcoholic fatty liver disease (NAFLD): Think before you drink. Clin Nutr., 40, 2508-2519. Choe, S. S., Huh, J. Y., Hwang, I. J., Kim, J. I., Kim, J. B. (2016). Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front. Endocrinol., 7, 30. Choi, S.-S., Park, J., Choi, J. H. (2014). Revisiting PPARγ as a target for the treatment of metabolic disorders. BMB reports, 47, 599. Cobbina, E., Akhlaghi, F. (2017). Non-alcoholic fatty liver disease (NAFLD)-pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab. Rev., 49, 197-211. Cohen, J. C., Horton, J. D., Hobbs, H. H. (2011). Human fatty liver disease: Old questions and new insights. Science, 332, 1519-1523. Deshmane, S. L., Kremlev, S., Amini, S., Sawaya, B. E. (2009). Monocyte chemoattractant protein-1 (MCP-1): an overview. J. Interferon Cytokine Res., 29, 313-326. Després, J. P. (2006). Is visceral obesity the cause of the metabolic syndrome? Ann. Med., 38, 52-63. Dey, P., Sasaki, G. Y., Wei, P., Li, J., Wang, L., Zhu, J., McTigue, D., Yu, Z., Bruno, R. S. (2019). Green tea extract prevents obesity in male mice by alleviating gut dysbiosis in association with improved intestinal barrier function that limits endotoxin translocation and adipose inflammation. J Nutr Biochem., 67, 78-89. Dinarello, C. A. (1991). Interleukin-1 and interleukin-1 antagonism. Blood., 77, 1627-1652. Domitrović, R., Potočnjak, I. (2016). A comprehensive overview of hepatoprotective natural compounds: mechanism of action and clinical perspectives. Arch Toxicol., 90, 39-79. Ellulu, M. S., Patimah, I., Khaza’ai, H., Rahmat, A., Abed, Y. (2017). Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci., 13, 851. English, W. J., Williams, D. B. (2018). Metabolic and bariatric surgery: an effective treatment option for obesity and cardiovascular disease. Prog Cardiovasc Dis., 61, 253-269. Fain, J. N., Madan, A. K., Hiler, M. L., Cheema, P., Bahouth, S. W. (2004). Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology, 145, 2273-2282. Farmer, S. R. (2006). Transcriptional control of adipocyte formation. Cell Metab., 4, 263-273. Fernández-Real, J. M., Ricart, W. (2003). Insulin resistance and chronic cardiovascular inflammatory syndrome. Endocr. Rev., 24, 278-301. Ferramosca, A., Zara, V. (2014). Modulation of hepatic steatosis by dietary fatty acids. World J Gastroenterol., 20, 1746. Fontana, L., Eagon, J. C., Trujillo, M. E., Scherer, P. E., Klein, S. (2007). Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes, 56, 1010-1013. Frigolet, M. E., Gutiérrez-Aguilar, R. (2020). The colors of adipose tissue. Gac Med Mex., 156, 142-149. Gauthier, M.-S., O’Brien, E. L., Bigornia, S., Mott, M., Cacicedo, J. M., Xu, X. J., Gokce, N., Apovian, C., Ruderman, N. (2011). Decreased AMP-activated protein kinase activity is associated with increased inflammation in visceral adipose tissue and with whole-body insulin resistance in morbidly obese humans. Biochem Biophys Res Commun., 404, 382-387. Ge, Q., Chen, L., Tang, M., Zhang, S., Liu, L., Gao, L., Ma, S., Kong, M., Yao, Q., Feng, F. (2018). Analysis of mulberry leaf components in the treatment of diabetes using network pharmacology. Eur J Pharmacol., 833, 50-62. Gerhardt, C., Romero, I. A., Cancello, R., Camoin, L., Strosberg, A. (2001). Chemokines control fat accumulation and leptin secretion by cultured human adipocytes. Mol Cell Endocrinol., 175, 81-92. Ghaben, A. L., Scherer, P. E. (2019). Adipogenesis and metabolic health. Nat Rev Mol Cell Biol., 20, 242-258. Gotoh, K., Fujiwara, K., Anai, M., Okamoto, M., Masaki, T., Kakuma, T., Shibata, H. (2017). Role of spleen-derived IL-10 in prevention of systemic low-grade inflammation by obesity. Endocr J., 64, 375-378 Gustafson, B., Hedjazifar, S., Gogg, S., Hammarstedt, A., Smith, U. (2015). Insulin resistance and impaired adipogenesis. Trends Endocrinol. Metab., 26, 193-200. Hansson, G. K. (2005). Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med., 352, 1685-1695. Harmancey, R., Wilson, C. R., Taegtmeyer, H. (2008). Adaptation and maladaptation of the heart in obesity. Hypertension, 52, 181-187. Hauner, H. (2005). Secretory factors from human adipose tissue and their functional role. Proc. Nutr. Soc., 64, 163-169. Hube, F., Hauner, H. (1999). The role of TNF-α in human adipose tissue: prevention of weight gain at the expense of insulin resistance? Horm Metab Res., 31, 626-631. Huber, J., Kiefer, F. W., Zeyda, M., Ludvik, B., Silberhumer, G. R., Prager, G., Zlabinger, G. J., Stulnig, T. M. (2008). CC chemokine and CC chemokine receptor profiles in visceral and subcutaneous adipose tissue are altered in human obesity. J Clin Endocrinol Metab., 93, 3215-3221. Ibrahim, M. M. (2010). Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev., 11, 11-18. Jager, J., Grémeaux, T., Cormont, M., Le Marchand-Brustel, Y., Tanti, J.-F. (2007). Interleukin-1β-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology, 148, 241-251. Jakicic, J. M. (2009). The effect of physical activity on body weight. Obesity, 17, S34-S38. Jeon, S.-M. (2016). Regulation and function of AMPK in physiology and diseases. Exp. Mol. Med., 48, e245-e245. Jiao, X., Wang, Y., Lin, Y., Lang, Y., Li, E., Zhang, X., Zhang, Q., Feng, Y., Meng, X., Li, B. (2019). Blueberry polyphenols extract as a potential prebiotic with anti-obesity effects on C57BL/6J mice by modulating the gut microbiota. J Nutr Biochem., 64, 88-100. Jung, U. J., Choi, M.-S. (2014). Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci., 15, 6184-6223. Kershaw, E. E., Flier, J. S. (2004). Adipose tissue as an endocrine organ. J Clin Endocrinol Metab., 89, 2548-2556. Kim, J., Eisenberg, D., Azagury, D., Rogers, A., Campos, G. M. (2016). American society for metabolic and bariatric surgery position statement on long-term survival benefit after metabolic and bariatric surgery. Surg Obes Relat Dis., 12, 453-459. Kim, S. Y., Gao, J. J., Lee, W.-C., Ryu, K. S., Lee, K. R., Kim, Y. C. (1999). Antioxidative flavonoids from the leaves of Morus alba. Arch Pharm Res., 22, 81-85. Ko, H. J., Zhang, Z., Jung, D. Y., Jun, J. Y., Ma, Z., Jones, K. E., Chan, S. Y., Kim, J. K. (2009). Nutrient stress activates inflammation and reduces glucose metabolism by suppressing AMP-activated protein kinase in the heart. Diabetes, 58, 2536-2546. Kovesdy, C. P., Furth, S., Zoccali, C. (2017). Obesity and kidney disease hidden consequences of the epidemic. J Nephrol., 39, 1-10. Lan, F., Cacicedo, J. M., Ruderman, N., Ido, Y. (2008). SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1: possible role in AMP-activated protein kinase activation. J Biol Chem., 283, 27628-27635. Lee, Y.-H., Thacker, R., Hall, B., Kong, R., Granneman, J. G. (2014). Exploring the activated adipogenic niche: interactions of macrophages and adipocyte progenitors. Cell Cycle, 13, 184-190. Lewis, S. M., Williams, A., Eisenbarth, S. C. (2019). Structure and function of the immune system in the spleen. Sci Immunol., 4. Li, M., Cheung, B. M. (2009). Pharmacotherapy for obesity. Br J Clin Pharmacol., 68, 804-810. Liao, S., Long, X., Zou, Y., Liu, F., & Li, Q. (2021). Mulberry leaf phenolics and fiber exert anti-obesity through the gut microbiota - host metabolism pathway. J Food Sci., 86, 1432-1447. Lim, H. H., Lee, S. O., Kim, S. Y., Yang, S. J., Lim, Y. (2013). Anti-inflammatory and antiobesity effects of mulberry leaf and fruit extract on high fat diet-induced obesity. Exp. Biol. Med., 238, 1160-1169. Liu, M., Qin, J., Cong, J., Yang, Y. (2021). Chlorogenic Acids Inhibit Adipogenesis: Implications of Wnt/β-Catenin Signaling Pathway. Int J Endocrinol., 2021. Liu, M., Yun, P., Hu, Y., Yang, J., Khadka, R. B., Peng, X. (2020). Effects of grape seed proanthocyanidin extract on obesity. Obes Facts., 2, 279-291. Liu, Q., Pan, R., Ding, L., Zhang, F., Hu, L., Ding, B., Zhu, L., Xia, Y., Dou, X. (2017). Rutin exhibits hepatoprotective effects in a mouse model of non-alcoholic fatty liver disease by reducing hepatic lipid levels and mitigating lipid-induced oxidative injuries. Int Immunopharmacol., 49, 132-141. Liu, R. H. (2004). Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr., 134, 3479S-3485S. Longo, M., Zatterale, F., Naderi, J., Parrillo, L., Formisano, P., Raciti, G. A., Beguinot, F., Miele, C. (2019). Adipose tissue dysfunction as determinant of obesity- associated metabolic complications. Int J Mol Sci., 20, 2358. Masarone, M., Rosato, V., Dallio, M., Gravina, A. G., Aglitti, A., Loguercio, C., Federico, A., Persico, M. (2018). Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid Med Cell Longev., 2018. Matsuki, T., Horai, R., Sudo, K., Iwakura, Y. (2003). IL-1 plays an important role in lipid metabolism by regulating insulin levels under physiological conditions. J Exp Med., 198, 877-888. Meng, Q., Qi, X., Fu, Y., Chen, Q., Cheng, P., Yu, X., Sun, X., Wu, J., Li, W., Zhang, Q. (2020). Flavonoids extracted from mulberry (Morus alba L.) leaf improve skeletal muscle mitochondrial function by activating AMPK in type 2 diabetes. J Ethnopharmacol., 248, 112326. Miller, R. A., Birnbaum, M. J. (2010). An energetic tale of AMPK-independent effects of metformin. J Clin Invest., 120, 2267-2270. Mohamed, G. A., Ibrahim, S. R., Elkhayat, E. S., El Dine, R. S. (2014). Natural anti-obesity agents. Bulletin of Faculty of Pharmacy, Cairo University, 52, 269-284. Mohammed, M. S., Sendra, S., Lloret, J., Bosch, I. (2018). Systems and WBANs for controlling obesity. J. Healthc. Eng., 2018. Muir, L. A., Neeley, C. K., Meyer, K. A., Baker, N. A., Brosius, A. M., Washabaugh, A. R., Varban, O. A., Finks, J. F., Zamarron, B. F., Flesher, C. G. (2016). Adipose tissue fibrosis, hypertrophy, and hyperplasia: Correlations with diabetes in human obesity. Obesity, 24, 597-605. Murawska-Ciałowicz, E. (2017). Adipose tissue-morphological and biochemical characteristic of different depots. Postepy Hig Med Dosw (Online)., 71, 466-484. Musso, G., Gambino, R., Cassader, M. (2013). Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis. Prog Lipid Res., 52, 175-191. Niidome, T., Takahashi, K., Goto, Y., Goh, S., Tanaka, N., Kamei, K., Ichida, M., Hara, S., Akaike, A., Kihara, T. (2007). Mulberry leaf extract prevents amyloid beta-peptide fibril formation and neurotoxicity. Neuroreport, 18, 813-816. Nomiyama, T., Perez-Tilve, D., Ogawa, D., Gizard, F., Zhao, Y., Heywood, E. B., Jones, K. L., Kawamori, R., Cassis, L. A., Tschöp, M. H. (2007). Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice. J Clin Invest., 117, 2877-2888. Okada-Iwabu, M., Yamauchi, T., Iwabu, M., Honma, T., Hamagami, K.-i., Matsuda, K., Yamaguchi, M., Tanabe, H., Kimura-Someya, T., Shirouzu, M. (2013). A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature, 503, 493-499. Park, S., Kim, D., Kwon, D., Yang, H. (2011). Long-term central infusion of adiponectin improves energy and glucose homeostasis by decreasing fat storage and suppressing hepatic gluconeogenesis without changing food intake. J Neuroendocrinol., 23, 687-698. Parlee, S. D., Lentz, S. I., Mori, H., MacDougald, O. A. (2014). Quantifying size and number of adipocytes in adipose tissue. Methods Enzymol., 537, 93-122. Peng, C.-H., Lin, H.-T., Chung, D.-J., Huang, C.-N., Wang, C.-J. (2018). Mulberry leaf extracts prevent obesity-induced NAFLD with regulating adipocytokines, inflammation and oxidative stress. J Food Drug Anal., 26, 778-787. Rahman, S. U., Huang, Y., Zhu, L., Chu, X., Junejo, S. A., Zhang, Y., Khan, I. M., Li, Y., Feng, S., Wu, J., Wang, X. (2020). Tea polyphenols attenuate liver inflammation by modulating obesity-related genes and down-regulating COX-2 and iNOS expression in high fat-fed dogs. BMC Vet Res., 16, 1-12. Ricci, R., Bevilacqua, F. (2012). The potential role of leptin and adiponectin in obesity: a comparative review. Vet J., 191, 292-298. Rosen, E. D., MacDougald, O. A. (2006). Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol., 7, 885-896. Ruan, H., Miles, P. D., Ladd, C. M., Ross, K., Golub, T. R., Olefsky, J. M., Lodish, H. F. (2002). Profiling gene transcription in vivo reveals adipose tissue as an immediate target of tumor necrosis factor-α: implications for insulin resistance. Diabetes, 51, 3176-3188. Sacks, F. M., Bray, G. A., Carey, V. J., Smith, S. R., Ryan, D. H., Anton, S. D., McManus, K., Champagne, C. M., Bishop, L. M., Laranjo, N. (2009). Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N. Engl. J. Med., 360, 859-873. Sacks, F. M., Svetkey, L. P., Vollmer, W. M., Appel, L. J., Bray, G. A., Harsha, D., Obarzanek, E., Conlin, P. R., Miller, E. R., Simons-Morton, D. G. (2001). Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. N. Engl. J. Med., 344, 3-10. Sarjeant, K., Stephens, J. M. (2012). Adipogenesis. Cold Spring Harb Perspect Biol., 4, a008417. Sartipy, P., Loskutoff, D. J. (2003). Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci USA., 100, 7265-7270. Sato, S., Mukai, Y. (2020). Modulation of chronic inflammation by quercetin: The beneficial effects on obesity. J Inflamm Res., 13, 421. Sellers, R. S., Mortan, D., Michael, B., Roome, N., Johnson, J. K., Yano, B. L., Perry, R., Schafer, K. (2007). Society of Toxicol Pathol. position paper: organ weight recommendations for toxicology studies. Toxicol Pathol., 35, 751-755. Severin, R., Sabbahi, A., Mahmoud, A. M., Arena, R., Phillips, S. A. (2019). Precision medicine in weight loss and healthy living. Prog Cardiovasc Dis., 62, 15-20. Sheng, Y., Liu, J., Zheng, S., Liang, F., Luo, Y., Huang, K., Xu, W., He, X. (2019). Mulberry leaves ameliorate obesity through enhancing brown adipose tissue activity and modulating gut microbiota. Food Funct., 10(8), 4771-4781. Singhal, V., de Lourdes Eguiguren, M., Eisenbach, L., Clarke, H., Slattery, M., Eddy, K., Ackerman, K. E., Misra, M. (2014). Body composition, hemodynamic, and biochemical parameters of young female normal-weight oligo-amenorrheic and eumenorrheic athletes and nonathletes. Ann Nutr Metab., 65, 264-271. Skurk, T., Alberti-Huber, C., Herder, C., Hauner, H. (2007). Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab., 92, 1023-1033. Smith, B. K., Marcinko, K., Desjardins, E. M., Lally, J. S., Ford, R. J., Steinberg, G. R. (2016). Treatment of nonalcoholic fatty liver disease: role of AMPK. Am J Physiol Endocrinol Metab., 311, E730-E740. Softic, S., Cohen, D. E., Kahn, C. R. (2016). Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig Dis Sci., 61, 1282-1293. Steinberg, G. R., Michell, B. J., van Denderen, B. J., Watt, M. J., Carey, A. L., Fam, B. C., Andrikopoulos, S., Proietto, J., Görgün, C. Z., Carling, D. (2006). Tumor necrosis factor α-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling. Cell Metab., 4, 465-474. Stenlöf, K., Wernstedt, I., Fjällman, T., Wallenius, V., Wallenius, K., Jansson, J.-O. (2003). Interleukin-6 levels in the central nervous system are negatively correlated with fat mass in overweight/obese subjects. J Clin Endocrinol Metab., 88, 4379-4383. Tandra, S., Yeh, M. M., Brunt, E. M., Vuppalanchi, R., Cummings, O. W., Ünalp-Arida, A., Wilson, L. A., Chalasani, N. (2011). Presence and significance of microvesicular steatosis in nonalcoholic fatty liver disease. J Hepatol., 55, 654-659. Thomas, E. L., Saeed, N., Hajnal, J. V., Brynes, A., Goldstone, A. P., Frost, G., Bell, J. D. (1998). Magnetic resonance imaging of total body fat. J. Appl. Physiol., 85, 1778-1785. Trayhurn, P., Beattie, J. H. (2001). Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc. Nutr. Soc., 60, 329-339. Trefts, E., Gannon, M., & Wasserman, D. H. (2017). The liver. Curr Biol, 27, R1147-R1151. Tu, J., Shi, D., Wen, L., Jiang, Y., Zhao, Y., Yang, J., Liu, H., Liu, G., Yang, B. (2019). Identification of moracin N in mulberry leaf and evaluation of antioxidant activity. Food Chem Toxicol., 132, 110730. Tung, Y. T., Zeng, J. L., Ho, S. T., Xu, J. W., Li, S., Wu, J. H. (2021). Anti-NAFLD effect of Djulis hull and its major compound, rutin, in mice with high-fat diet (HFD)-induced obesity. Antioxidants, 10, 1694. Turer, A., Scherer, P. (2012). Adiponectin: mechanistic insights and clinical implications. Diabetologia, 55, 2319-2326. Tzanavari, T., Giannogonas, P., Karalis, K. P. (2010). TNF-α and obesity. Pathophysiology, 11, 145-156. Van Gaal, L., Dirinck, E. (2016). Pharmacological approaches in the treatment and maintenance of weight loss. Diabetes Care, 39, S260-S267. Van Herck, M. A., Weyler, J., Kwanten, W. J., Dirinck, E. L., De Winter, B. Y., Francque, S. M., Vonghia, L. (2019). The differential roles of T cells in non-alcoholic fatty liver disease and obesity. Front Immunol., 10, 82. Volcko, K. L., Carroll, Q. E., Brakey, D. J., Daniels, D. (2020). High-fat diet alters fluid intake without reducing sensitivity to glucagon-like peptide-1 receptor agonist effects. Physiol Behav., 221, 112910. Wallace, M. A. (1998). Anatomy and physiology of the kidney. AORN J., 68, 799-820. Wang, G., Dong, J. (2022). Network pharmacology approach to evaluate the therapeutic effects of mulberry leaf components for obesity. Exp Ther Med., 23, 1-10. Weight, H. (2011). Assessing your weight. About Child & Teen BMI. [updated May 15, 2015. Available from: https://www.cdc.gov/healthyweight/assessing/bmi/ childrens_bmi/about_childrens_bmi. html. World Health Organization (2020). UNICEF/WHO/The World Bank Group joint child malnutrition estimates: levels and trends in child malnutrition: key findings of the 2020 edition. Wright, S. M., Aronne, L. J. (2012). Causes of obesity. Abdom. Radiol., 37, 730-732. Wueest, S., Rapold, R., Rytka, J., Schoenle, E., Konrad, D. (2009). Basal lipolysis, not the degree of insulin resistance, differentiates large from small isolated adipocytes in high-fat fed mice. Diabetologia, 52, 541-546. Xiao, B., Heath, R., Saiu, P., Leiper, F. C., Leone, P., Jing, C., Walker, P. A., Haire, L., Eccleston, J. F., Davis, C. T. (2007). Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature, 449, 496-500. Yamashita, Y., Wang, L., Wang, L., Tanaka, Y., Zhang, T., Ashida, H. (2014). Oolong, black and pu-erh tea suppresses adiposity in mice via activation of AMP-activated protein kinase. Food Funct., 5, 2420-2429. Yamauchi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kita, S., Sugiyama, T., Miyagishi, M., Hara, K., Tsunoda, M. (2003). Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature, 423, 762-769. Yamauchi, T., Kamon, J., Minokoshi, Y. a., Ito, Y., Waki, H., Uchida, S., Yamashita, S., Noda, M., Kita, S., Ueki, K. (2002). Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med., 8, 1288-1295. Yang, Z., Kahn, B. B., Shi, H., Xue, B.-z. (2010). Macrophage α1 AMP-activated protein kinase (α1AMPK) antagonizes fatty acid-induced inflammation through SIRT1. J Biol Chem., 285, 19051-19059. Yanovski, S. Z., Yanovski, J. A. (2014). Long-term drug treatment for obesity: a systematic and clinical review. Jama, 311(1), 74-86. Ye, J., Zhao, Y., Chen, X., Zhou, H., Yang, Y., Zhang, X., Huang, Y., Zhang, N., Lui, E., Xiao, M. (2021). Pu-erh tea ameliorates obesity and modulates gut microbiota in high fat diet fed mice. Food Res Int., 144, 110360. Yoshioka, N., Ishigami, M., Watanabe, Y., Sumi, H., Doisaki, M., Yamaguchi, T., Ito, T., Ishizu, Y., Kuzuya, T., Honda, T. (2020). Effect of weight change and lifestyle modifications on the development or remission of nonalcoholic fatty liver disease: sex-specific analysis. Sci Rep., 10, 1-10. Zhang, M., Hu, T., Zhang, S., Zhou, L. (2015). Associations of different adipose tissue depots with insulin resistance: a systematic review and meta-analysis of observational studies. Sci Rep., 5, 1-6. Zhang, X., Mosser, D. (2008). Macrophage activation by endogenous danger signals. J Pathol., 214, 161-178. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84775 | - |
| dc.description.abstract | 由於人們生活水平的提高及飲食結構的變化,肥胖的人口逐漸增加。肥胖會增加二型糖尿病、高血脂、心血管疾病、高血壓等疾病患病的風險,對人體的健康造成影響。肝臟是人體代謝碳水化合物、蛋白質和脂質的重要器官,在維持血糖與能量平衡上起著關鍵作用。非酒精性脂肪肝是漸進性的肝臟疾病,是由於非酒精因素導致的肝臟內脂肪積聚而引起,它與代謝綜合征候群 (肥胖、胰島素阻抗與血脂異常等) 密切相關,且嚴重時會導致肝炎、肝纖維化及肝癌的發生,嚴重影響身體健康。本實驗的樣品為桑葉,桑葉中含有豐富的黃酮類成分,具有抗氧化、清除自由基等功能,且已經有文章指出在飲食中混入桑葉粉末或是桑葉萃取物具有預防肥胖及非酒精性脂肪肝之作用,但並沒有以模擬人體攝入茶水的方式進行研究。實驗使用動物模式,選擇 4 週齡 C57BL/6J 小鼠分為四個組別,分別為普通飲食、高脂飲食以及高脂飲食搭配兩種不同濃度 1.5 g/150 mL 及 3.0 g/150 mL 的桑葉茶 (MAL) 進行餵養,探討 MAL 是否具有延緩肥胖及抑制肝臟脂質蓄積之功效。實驗結果證實,MAL 預防了由高脂飲食所導致的血清中天門冬胺酸轉胺酶及三酸甘油酯含量的升高,且在肝臟及脂肪切片中證明了 MAL 可以抑制肝臟脂肪的蓄積以及脂肪細胞的肥大。進一步探討體內分子機制,發現 MAL 可以增加脂肪細胞中 PPARγ、C/EBPα 的蛋白表現量,同時增加脂聯素的表達,從而使脂肪變大的方式由脂肪細胞體積變大向數目增多轉化。此外,MAL 使肝臟中脂聯素的含量上升,進一步促進 AMPK 的磷酸化,從而減少了肝臟脂肪的蓄積。此外,MAL 可以抑制肝臟及脂肪中發炎相關因子 TNF-α,MCP-1,IL-6 及 IL-1β 的生成,達到減少肝臟損傷及發炎反應的功效。綜上所述,桑葉茶可以通過 AMPK 的活化及促進脂肪細胞新生作用對肝臟脂質蓄積及抗發炎方面有一定的改善作用。 | zh_TW |
| dc.description.abstract | Obesity has become a worldwide health issue that rapidly progresses due to changes in lifestyle and diet structure/westernization. It is known obesity as a risk factor, contributes to variety of comorbidities, such as type II diabetes, lipidaemia and cardiovascular diseases. Liver is one of the most important organ for carbohydrate, protein and lipid metabolism, and also a key regulator for blood glucose level via gluconeogenesis pathway. Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease that is highly associated to metabolic syndrome, which is also being introduced its occurrence in the setting of insulin resistance and increased adiposity. Excessive fatty acids accumulation in liver is the major characteristic of NAFLD, and the famous “multiple-hit” pathogenic model has suggested the progression of NAFLD into non-alcoholic steatohepatitis (NASH), liver cirrhosis and finally liver cancer. It has been reported that therapy aiming NAFLD can be a potential strategy for improvement of obesity. The sample in this experiment is Morus alba L. (a.k.a white mulberry), which has exhibited antioxidant and free radical scavenging capability because its richness in flavonoid contents. Previous studies have pointed out that mixing mulberry leaf powder or mulberry leaf extract in the diet have the effect of preventing obesity and NAFLD. However, it has not been studied in the way of drinking tea like to person. Animal model was used in the experiment and 4-week-old C57BL/6J mice were selected to be divided into four groups: normal diet, high-fat diet and high-fat diet with two different concentrations of mulberry leaf tea (MAL) of 1.5 g and 3.0 g/150 mL to explore whether MAL has the effects of delaying obesity and inhibiting liver lipid accumulation. The results showed that MAL prevented the increase in serum AST and TG caused by high-fat diet. H&E staining shows that MAL has the ability to inhibit liver fat accumulation and adipocyte enlargement. Further exploring the molecular mechanism in vivo, it was found that MAL can increase the protein expression of PPARγ and C/EBPα in adipocytes, and then increase the expression of adiponectin. It proves that the increase in fat is in the form of hyperplasia rather than hypertrophy. On the other hand, MAL increases the expression of adiponectin in liver and further promotes the phosphorylation of AMPK, which leads to a reduction in the accumulation of liver fat. In addition, MAL can inhibit the content of inflammation factors TNF-α, MCP-1, IL-6 and IL-1β in liver and fat to reduce liver damage and inflammation. In summary, MAL has an improvement effect on liver lipid accumulation and anti-inflammatory by activating AMPK and promoting the regeneration of adipocytes. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:25:03Z (GMT). No. of bitstreams: 1 U0001-2508202221141200.pdf: 3548294 bytes, checksum: 1268fcc688c943495345ad382a63db79 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 中文摘要 I Abstract II 目錄 IV 附圖目錄 VII 附表目錄 VIII 圖目錄 IX 表目錄 X 縮寫表 XI 第一章、 文獻回顧 1 第一節、肥胖 (Obesity) 1 (一) 簡介 1 (二) 定義 1 (三) 成因及危害 2 (四) 預防與治療 3 第二節、非酒精性脂肪肝 4 (一) 定義與簡介 4 (二) 進展過程 4 (三) 肝臟脂質新生 (de novo lipogenesis; DNL) 6 (四) AMPK 路徑 7 第三節、脂肪組織 (Adipose tissue) 9 (一) 定義與簡介 9 (二) 發炎反應 10 (三) 細胞激素 11 (四) 脂肪細胞新生 (adipogenesis) 路徑 13 第四節、桑葉 15 (一) 植化素 15 (二) 桑葉 16 第二章、 實驗目的與架構 17 第一節、實驗目的 17 第二節、實驗架構 18 第三章、 材料與方法 19 第一節、實驗材料 19 (一) 儀器設備 19 (二) 藥品試劑 20 第二節、樣品製備方法 21 (一) 樣品來源 21 (二) 樣品萃取與製備 21 第三節、有效成分鑑定 22 (一) 總酚含量測定 22 (二) 類黃酮含量測定 (Rutin) 23 第四節、動物實驗方法 24 (一) 動物品系與飼養環境 24 (二) 組別設計 24 (三) 飼料及桑葉茶水配製 25 (四) 動物犧牲 26 (五) H&E染色 26 (六) 組織均質與蛋白質萃取 29 (七) 蛋白質定量 30 (八) 西方墨點法 (western blot) 31 (九) 細胞激素及趨化因子含量測定 34 (十) 統計分析 35 第四章、 結果與討論 36 第一節、樣品萃取 36 第二節、樣品成分分析 36 第三節、動物實驗結果 36 (一) MAL 對高脂飲食誘導肥胖之 C57BL/6L 小鼠體重之影響 36 (二) MAL 對高脂飲食誘導肥胖之 C57BL/6L 小鼠攝食量之影響 37 (三) MAL 對高脂飲食誘導肥胖之 C57BL/6L 小鼠飲水量之影響 37 (四) MAL 對高脂飲食誘導肥胖之 C57BL/6L 小鼠臟器外觀及重量之影響 38 (五) MAL 對高脂飲食誘導肥胖之 C57BL/6L 小鼠肝臟組織之影響 39 (六) MAL 對高脂飲食誘導肥胖之 C57BL/6L 小鼠脂肪外觀及重量之影響 40 (七) MAL 對高脂飲食誘導肥胖之 C57BL/6L 小鼠脂肪細胞大小之影響 41 (八) MAL 對高脂飲食誘導肥胖之 C57BL/6L 小鼠血清生化數值之影響 42 (九) MAL 對高脂飲食誘導肥胖之 C57BL/6L 小鼠 AMPK 路徑之影響 43 (十) MAL 對高脂飲食誘導肥胖之 C57BL/6L 小鼠脂肪細胞新生之影響 44 (十一) MAL 對高脂飲食誘導肥胖之 C57BL/6L 小鼠發炎之影響 45 第五章、 結論 47 第六章、 圖表 48 第七章、參考文獻 61 | |
| dc.language.iso | zh-TW | |
| dc.subject | 肥胖 | zh_TW |
| dc.subject | 非酒精性脂肪肝 | zh_TW |
| dc.subject | 茶 | zh_TW |
| dc.subject | 桑葉 | zh_TW |
| dc.subject | Morus alba L. | en |
| dc.subject | Obesity | en |
| dc.subject | Non-alcoholic fatty liver disease (NAFLD) | en |
| dc.subject | Tea | en |
| dc.title | 桑葉茶對於高脂飲食誘導小鼠之肥胖及肝臟脂質代謝的影響 | zh_TW |
| dc.title | The Effect of Mulberry Leaf Tea on Obesity and Hepatic Lipid Metabolism in High Fat Diet-induced Mice | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝淑貞(SHU-CHEN HSIEH),何元順(Yuan-Soon Ho),郭靜娟(Ching-Chuan Kuo),黃步敏(Bu-Miin Huang) | |
| dc.subject.keyword | 肥胖,非酒精性脂肪肝,桑葉,茶, | zh_TW |
| dc.subject.keyword | Obesity,Non-alcoholic fatty liver disease (NAFLD),Morus alba L.,Tea, | en |
| dc.relation.page | 74 | |
| dc.identifier.doi | 10.6342/NTU202202828 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-09-02 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| dc.date.embargo-lift | 2022-09-06 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2508202221141200.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
