Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84684
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅翊禎(Yi-Chen Lo)
dc.contributor.authorTzu-Yi Wangen
dc.contributor.author王姿羿zh_TW
dc.date.accessioned2023-03-19T22:20:28Z-
dc.date.copyright2022-09-14
dc.date.issued2022
dc.date.submitted2022-09-08
dc.identifier.citation林家羽. 探討真菌中β-葡萄糖苷酶於人參皂苷之受質特異性. 國立臺灣大學食 品科技研究所學位論文. 臺北, 臺灣. 2021. 賴宜姍. 探討酵母菌中β-葡萄糖苷酶之特性及受質水解特異性. 國立臺灣大學食品科技研究所學位論文. 臺北, 臺灣. 2020. Ali, M. Y.; Zaib, S.; Jannat, S.; Khan, I., Inhibition of Angiotensin-I Converting Enzyme by Ginsenosides: Structure-Activity Relationships and Inhibitory Mechanism. J Agric Food Chem 2021, 69 (21), 6073-6086. An, D. S.; Cui, C. H.; Sung, B. H.; Yang, H. C.; Kim, S. C.; Lee, S. T.; Im, W. T.; Kim, S. G., Characterization of a novel ginsenoside-hydrolyzing alpha-L-arabinofuranosidase, AbfA, from Rhodanobacter ginsenosidimutans Gsoil 3054T. Appl Microbiol Biotechnol 2012, 94 (3), 673-682. Antelmann, H.; Tjalsma, H.; Voigt, B.; Ohlmeier, S.; Bron, S.; van Dijl, J. M.; Hecker, M., A proteomic view on genome-based signal peptide predictions. Genome Res 2001, 11 (9), 1484-1502. Bae, E. A.; Han, M. J.; Kim, E. J.; Kim, D. H., Transformation of ginseng saponins to ginsenoside Rh2 by acids and human intestinal bacteria and biological activities of their transformants. Arch Pharm Res 2004, 27 (1), 61-67. Chen, R. J.; Chung, T. Y.; Li, F. Y.; Lin, N. H.; Tzen, J. T., Effect of sugar positions in ginsenosides and their inhibitory potency on Na+/K+-ATPase activity. Acta Pharmacol Sin 2009, 30 (1), 61-69. Choi, S. Y.; Cho, C. W.; Lee, Y.; Kim, S. S.; Lee, S. H.; Kim, K. T., Comparison of Ginsenoside and Phenolic Ingredient Contents in Hydroponically-cultivated Ginseng Leaves, Fruits, and Roots. J Ginseng Res 2012, 36 (4), 425-429. Chung, I. M.; Lim, J. J.; Ahn, M. S.; Jeong, H. N.; An, T. J.; Kim, S. H., Comparative phenolic compound profiles and antioxidative activity of the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) according to cultivation years. J Ginseng Res 2016, 40 (1), 68-75. Fujita, K.; Kitahara, K.; Suganuma, T., Functional Analysis of Degradative Enzymes for Hydroxyproline-linked beta-L-Arabinofuranosides in Bifidobacterium longum. Trends in Glycoscience and Glycotechnology 2012, 24 (139), 215-224. Fujita, K.; Sakaguchi, T.; Sakamoto, A.; Shimokawa, M.; Kitahara, K., Bifidobacterium longum subsp. longum Exo-beta-1,3-Galactanase, an enzyme for the degradation of type II arabinogalactan. Appl Environ Microbiol 2014, 80 (15), 4577-4584. Fujita, K.; Sakamoto, A.; Kaneko, S.; Kotake, T.; Tsumuraya, Y.; Kitahara, K., Degradative enzymes for type II arabinogalactan side chains in Bifidobacterium longum subsp. longum. Appl Microbiol Biotechnol 2019, 103 (3), 1299-1310. Fujita, K.; Takashi, Y.; Obuchi, E.; Kitahara, K.; Suganuma, T., Characterization of a Novel β-l-Arabinofuranosidase in Bifidobacterium longum: FUNCTIONAL ELUCIDATION OF A DUF1680 PROTEIN FAMILY MEMBER*. Journal of Biological Chemistry 2014, 289 (8), 5240-5249. Fukuda, S.; Toh, H.; Hase, K.; Oshima, K.; Nakanishi, Y.; Yoshimura, K.; Tobe, T.; Clarke, J. M.; Topping, D. L.; Suzuki, T.; Taylor, T. D.; Itoh, K.; Kikuchi, J.; Morita, H.; Hattori, M.; Ohno, H., Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011, 469 (7331), 543-547. He, Y.; Hu, Z.; Li, A.; Zhu, Z.; Yang, N.; Ying, Z.; He, J.; Wang, C.; Yin, S.; Cheng, S., Recent Advances in Biotransformation of Saponins. Molecules 2019, 24 (13). Jiao, X. L.; Bi, W.; Li, M.; Luo, Y.; Gao, W. W., Dynamic response of ginsenosides in American ginseng to root fungal pathogens. Plant and Soil 2010, 339 (1-2), 317-327. Jin, S.; Jeon, J. H.; Lee, S.; Kang, W. Y.; Seong, S. J.; Yoon, Y. R.; Choi, M. K.; Song, I. S., Detection of 13 Ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg3, Rh2, F1, Compound K, 20(S)-Protopanaxadiol, and 20(S)-Protopanaxatriol) in Human Plasma and Application of the Analytical Method to Human Pharmacokinetic Studies Following Two Week-Repeated Administration of Red Ginseng Extract. Molecules 2019, 24 (14). Jin, X.; Zhu, L. Y.; Shen, H.; Xu, J.; Li, S. L.; Jia, X. B.; Cai, H.; Cai, B. C.; Yan, R., Influence of sulphur-fumigation on the quality of white ginseng: a quantitative evaluation of major ginsenosides by high performance liquid chromatography. Food Chem 2012, 135 (3), 1141-1147. Kim, J. H.; Oh, J. M.; Chun, S.; Park, H. Y.; Im, W. T., Enzymatic Biotransformation of Ginsenoside Rb2 into Rd by Recombinant alpha-L-Arabinopyranosidase from Blastococcus saxobsidens. J Microbiol Biotechnol 2020, 30 (3), 391-397. Kim, M.; Ko, S.; Choi, K.; Kim, S., Distribution of saponin in various sections of Panax ginseng root and changes of its contents according to root age. Korean J Ginseng Sci 1987, 11 (1), 10-16. Kiviharju, K.; Leisola, M.; Eerikäinen, T., Optimization of a Bifidobacterium longum production process. Journal of Biotechnology 2005, 117 (3), 299-308. Komeno, M.; Hayamizu, H.; Fujita, K.; Ashida, H., Two Novel alpha-l-Arabinofuranosidases from Bifidobacterium longum subsp. longum Belonging to Glycoside Hydrolase Family 43 Cooperatively Degrade Arabinan. Appl Environ Microbiol 2019, 85 (6). Komeno, M.; Yoshihara, Y.; Kawasaki, J.; Nabeshima, W.; Maeda, K.; Sasaki, Y.; Fujita, K.; Ashida, H., Two alpha-L-arabinofuranosidases from Bifidobacterium longum subsp. longum are involved in arabinoxylan utilization. Appl Microbiol Biotechnol 2022, 106 (5-6), 1957-1965. Lee, S. M.; Bae, B. S.; Park, H. W.; Ahn, N. G.; Cho, B. G.; Cho, Y. L.; Kwak, Y. S., Characterization of Korean Red Ginseng (Panax ginseng Meyer): History, preparation method, and chemical composition. J Ginseng Res 2015, 39 (4), 384-391. Li, W.; Liu, Y.; Zhang, J. W.; Ai, C. Z.; Xiang, N.; Liu, H. X.; Yang, L., Anti-androgen-independent prostate cancer effects of ginsenoside metabolites in vitro: mechanism and possible structure-activity relationship investigation. Arch Pharm Res 2009, 32 (1), 49-57. Lin, Q.; Wang, S.; Wang, M.; Cao, R.; Zhang, R.; Zhan, R.; Wang, K., A novel glycoside hydrolase family 42 enzyme with bifunctional beta-galactosidase and alpha-L-arabinopyranosidase activities and its synergistic effects with cognate glycoside hydrolases in plant polysaccharides degradation. Int J Biol Macromol 2019, 140, 129-139. Liu, C. Y.; Zhou, R. X.; Sun, C. K.; Jin, Y. H.; Yu, H. S.; Zhang, T. Y.; Xu, L. Q.; Jin, F. X., Preparation of minor ginsenosides C-Mc, C-Y, F2, and C-K from American ginseng PPD-ginsenoside using special ginsenosidase type-I from Aspergillus niger g.848. J Ginseng Res 2015, 39 (3), 221-229. Liu, L.; Xu, F. R.; Wang, Y. Z., Traditional uses, chemical diversity and biological activities of Panax L. (Araliaceae): A review. J Ethnopharmacol 2020, 263, 112792. Liu, Q. M.; Jung, H. M.; Cui, C. H.; Sung, B. H.; Kim, J. K.; Kim, S. G.; Lee, S. T.; Kim, S. C.; Im, W. T., Bioconversion of ginsenoside Rc into Rd by a novel alpha-L-arabinofuranosidase, Abf22-3 from Leuconostoc sp. 22-3: cloning, expression, and enzyme characterization. Antonie Van Leeuwenhoek 2013, 103 (4), 747-754. Liu, X. Y.; Xiao, Y. K.; Hwang, E.; Haeng, J. J.; Yi, T. H., Antiphotoaging and Antimelanogenesis Properties of Ginsenoside C-Y, a Ginsenoside Rb2 Metabolite from American Ginseng PDD-ginsenoside. Photochem Photobiol 2019, 95 (6), 1412-1423. Liu, Y.; Vanderhaeghen, S.; Feiler, W.; Angelov, A.; Baudrexl, M.; Zverlov, V.; Liebl, W., Characterization of Two alpha-l-Arabinofuranosidases from Acetivibrio mesophilus and Their Synergistic Effect in Degradation of Arabinose-Containing Substrates. Microorganisms 2021, 9 (7). Makioka, Y.; Tsukahara, T.; Ijichi, T.; Inoue, R., Oral supplementation of Bifidobacterium longum strain BR-108 alters cecal microbiota by stimulating gut immune system in mice irrespectively of viability. Biosci Biotechnol Biochem 2018, 82 (7), 1180-1187. Michlmayr, H.; Nauer, S.; Brandes, W.; Schümann, C.; Kulbe, K. D.; del Hierro, A. M.; Eder, R., Release of wine monoterpenes from natural precursors by glycosidases from Oenococcus oeni. Food Chemistry 2012, 135 (1), 80-87. Michlmayr, H.; Schumann, C.; Kulbe, K. D.; del Hierro, A. M., Heterologously expressed family 51 alpha-L-arabinofuranosidases from Oenococcus oeni and Lactobacillus brevis. Appl Environ Microbiol 2011, 77 (4), 1528-1531. Nag, S. A.; Qin, J. J.; Wang, W.; Wang, M. H.; Wang, H.; Zhang, R., Ginsenosides as Anticancer Agents: In vitro and in vivo Activities, Structure-Activity Relationships, and Molecular Mechanisms of Action. Front Pharmacol 2012, 3, 25. Park, S.-E.; Na, C.-S.; Yoo, S.-A.; Seo, S.-H.; Son, H.-S., Biotransformation of major ginsenosides in ginsenoside model culture by lactic acid bacteria. Journal of Ginseng Research 2017, 41 (1), 36-42. Peirotén, Á.; Álvarez, I.; Landete, J. M., Production of flavonoid and lignan aglycones from flaxseed and soy extracts by Bifidobacterium strains. International Journal of Food Science & Technology 2019, 55 (5), 2122-2131. Poria, V.; Saini, J. K.; Singh, S.; Nain, L.; Kuhad, R. C., Arabinofuranosidases: Characteristics, microbial production, and potential in waste valorization and industrial applications. Bioresour Technol 2020, 304, 123019. Quan, K.; Liu, Q.; Wan, J.-Y.; Zhao, Y.-J.; Guo, R.-Z.; Alolga, R. N.; Li, P.; Qi, L.-W. J. S. R., Rapid preparation of rare ginsenosides by acid transformation and their structure-activity relationships against cancer cells. 2015, 5 (1), 1-7. Rémond, C.; Boukari, I.; Chambat, G.; O’Donohue, M., Action of a GH 51 α-l-arabinofuranosidase on wheat-derived arabinoxylans and arabino-xylooligosaccharides. Carbohydrate Polymers 2008, 72 (3), 424-430. Rahimi, S.; Mohanan, P.; Zhang, D.; Jung, K.-H.; Yang, D.-C.; Mijakovic, I.; Kim, Y.-J., Metabolic Dynamics and Ginsenoside Biosynthesis. In The Ginseng Genome, Xu, J.; Yang, T.-J.; Hu, H.-y., Eds. Springer International Publishing: Cham, 2021; pp 121-141. Roh, E.; Hwang, H. J.; Kim, J. W.; Hong, S. H.; Kim, J. A.; Lee, Y. B.; Choi, K. M.; Baik, S. H.; Yoo, H. J., Ginsenoside Mc1 improves liver steatosis and insulin resistance by attenuating ER stress. J Ethnopharmacol 2020, 259, 112927. Rohman, A.; Dijkstra, B. W.; Puspaningsih, N. N. T., beta-Xylosidases: Structural Diversity, Catalytic Mechanism, and Inhibition by Monosaccharides. Int J Mol Sci 2019, 20 (22). Sasaki, Y.; Komeno, M.; Ishiwata, A.; Horigome, A.; Odamaki, T.; Xiao, J.-Z.; Tanaka, K.; Ito, Y.; Kitahara, K.; Ashida, H.; Fujita, K.; Atomi, H., Mechanism of Cooperative Degradation of Gum Arabic Arabinogalactan Protein by Bifidobacterium longum Surface Enzymes. Appl Environ Microbiol 2022, 88 (6), e02187-02121. Shin, B. K.; Kwon, S. W.; Park, J. H., Chemical diversity of ginseng saponins from Panax ginseng. J Ginseng Res 2015, 39 (4), 287-298. Shin, K. C.; Lee, G. W.; Oh, D. K., Production of ginsenoside Rd from ginsenoside Rc by alpha-L-arabinofuranosidase from Caldicellulosiruptor saccharolyticus. J Microbiol Biotechnol 2013, 23 (4), 483-488. Shu, G.; Yang, H.; Tao, Q.; He, C., Effect of Ascorbic Acid and Cysteine Hydrochloride on Growth of Bifidobacterium bifidum. Advance Journal of Food Science and Technology 2013, 5 (6), 678-681. Song, A. X.; Li, L. Q.; Yin, J. Y.; Chiou, J. C.; Wu, J. Y., Mechanistic insights into the structure-dependant and strain-specific utilization of wheat arabinoxylan by Bifidobacterium longum. Carbohydr Polym 2020, 249, 116886. Sultana, N.; Saify, Z. S., Enzymatic biotransformation of terpenes as bioactive agents. J Enzyme Inhib Med Chem 2013, 28 (6), 1113-1128. Suzuki, Y.; Tanaka, K.; Amano, T.; Asakura, T.; Muramatsu, N. J. J. o. t. J. S. f. H. S., Utilization by intestinal bacteria and digestibility of arabino-oligosaccharides in vitro. 2004, 73 (6), 574-579. Viborg, A. H.; Katayama, T.; Arakawa, T.; Abou Hachem, M.; Lo Leggio, L.; Kitaoka, M.; Svensson, B.; Fushinobu, S., Discovery of alpha-l-arabinopyranosidases from human gut microbiome expands the diversity within glycoside hydrolase family 42. J Biol Chem 2017, 292 (51), 21092-21101. Wan, J. Y.; Wang, C. Z.; Liu, Z.; Zhang, Q. H.; Musch, M. W.; Bissonnette, M.; Chang, E. B.; Li, P.; Qi, L. W.; Yuan, C. S., Determination of American ginseng saponins and their metabolites in human plasma, urine and feces samples by liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016, 1015-1016, 62-73. Wu, S. H.; Li, H. B.; Li, G. L.; Qi, Y. J.; Zhang, J.; Wang, B. Y., Panax ginseng root, not leaf, can enhance thermogenic capacity and mitochondrial function in mice. Pharm Biol 2020, 58 (1), 374-384. Wu, W.; Qin, Q.; Guo, Y.; Sun, J.; Liu, S., Studies on the chemical transformation of 20(S)-protopanaxatriol (PPT)-type ginsenosides Re, Rg2, and Rf using rapid resolution liquid chromatography coupled with quadruple-time-of-flight mass spectrometry (RRLC-Q-TOF-MS). J Agric Food Chem 2012, 60 (40), 10007-10014. Xie, J.; Zhao, D.; Zhao, L.; Pei, J.; Xiao, W.; Ding, G.; Wang, Z.; Xu, J., Characterization of a novel arabinose-tolerant alpha-L-arabinofuranosidase with high ginsenoside Rc to ginsenoside Rd bioconversion productivity. J Appl Microbiol 2016, 120 (3), 647-660. Yao, F.; Li, X.; Sun, J.; Cao, X.; Liu, M.; Li, Y.; Liu, Y., Thermal transformation of polar into less-polar ginsenosides through demalonylation and deglycosylation in extracts from ginseng pulp. Sci Rep 2021, 11 (1), 1513. Yoshida, E.; Hidaka, M.; Fushinobu, S.; Koyanagi, T.; Minami, H.; Tamaki, H.; Kitaoka, M.; Katayama, T.; Kumagai, H., Role of a PA14 domain in determining substrate specificity of a glycoside hydrolase family 3 beta-glucosidase from Kluyveromyces marxianus. Biochem J 2010, 431 (1), 39-49. Zhang, R.; Tan, S. Q.; Zhang, B. L.; Guo, Z. Y.; Tian, L. Y.; Weng, P.; Luo, Z. Y., Two Key Amino Acids Variant of alpha-l-arabinofuranosidase from Bacillus subtilis Str. 168 with Altered Activity for Selective Conversion Ginsenoside Rc to Rd. Molecules 2021, 26 (6). Zhang, X. J.; Wang, L.; Wang, S.; Chen, Z. L.; Li, Y. H., Contributions and characteristics of two bifunctional GH43 beta-xylosidase /alpha-L-arabinofuranosidases with different structures on the xylan degradation of Paenibacillus physcomitrellae strain XB. Microbiol Res 2021, 253, 126886. Zhao, J.; Cheung, P. C. J. J. o. a.; chemistry, f., Fermentation of β-glucans derived from different sources by bifidobacteria: evaluation of their bifidogenic effect. 2011, 59 (11), 5986-5992. Zheng, M. M.; Xu, F. X.; Li, Y. J.; Xi, X. Z.; Cui, X. W.; Han, C. C.; Zhang, X. L., Study on Transformation of Ginsenosides in Different Methods. Biomed Res Int 2017, 2017, 8601027. Zuo, F.; Chen, S.; Marcotte, H., Engineer probiotic bifidobacteria for food and biomedical applications - Current status and future prospective. Biotechnology Advances 2020, 45, 107654. Zuo, S. S.; Wang, Y. C.; Zhu, L.; Zhao, J. Y.; Li, M. G.; Han, X. L.; Wen, M. L., Cloning and Characterization of a Ginsenoside-Hydrolyzing alpha-L-Arabinofuranosidase, CaAraf51, From Cellulosimicrobium aquatile Lyp51. Curr Microbiol 2020, 77 (10), 2783-2791.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84684-
dc.description.abstract人參皂苷為人參裡的主要活性成分,水解其上醣基能增加生理功效,透過具專一性且作用條件溫和的生物方法能轉換出特定的人參皂苷。過去文獻指出Bifidobacterium longum具有豐富的醣苷水解酵素且於發酵過程中似乎能轉換帶有不同種醣基的人參皂苷,因此本實驗欲探討其中參與的酵素。首先製備B. longum的粗萃酵素並測定活性,結果發現菌株本身 (whole cell fraction) 能水解簡單受質 (p-nitrophenyl glycoside) 上的葡萄糖、阿拉伯吡喃糖及阿拉伯呋喃糖,然而於人參皂苷的轉換上,僅能水解Rb1上20號碳以β-1,6鍵結的外側葡萄糖以及人參皂苷Rc的阿拉伯呋喃糖。欲進一步探討B. longum裡多個阿拉伯呋喃糖基水解酶是否會轉換人參皂苷,後續利用cloning技術及Escherichia coli系統製備重組酵素並純化以得到單一酵素,結果發現,測試的六個阿拉伯呋喃糖基水解酶中,只有一個 (Araf0101) 能有效將人參皂苷Rc轉換成Rd,其餘則利於水解含阿拉伯糖之多醣。Araf0101不僅能成功地被大量表現並純化,也能搭配先前實驗室發現來自酵母菌Kluyveromyces marxianus的葡萄糖基水解酶 (KmBgl1),應用於提高人參裡的活性皂苷compound K之含量。於反應2小時後,單一KmBgl1可產出13.29±3.87 μmole/g compound K,而同時添加Araf0101和KmBgl1,則能將含量提升至20.91±3.74 μmole/g。zh_TW
dc.description.abstractBiological conversion is a useful way to transform the major ginsenosides to minor deglycosylated ginsenoside with more pharmacologic activity. Bifidobacterium longum has the abundant glycosyl hydrolases and seems to transform some ginsenosides with various glycosides during fermentation. The purpose of this research is to explore the possible enzymes from B. longum for transforming the ginsenosides. The results demonstrated the whole cell of B. longum showed glucoside-releasing, arabinofuranose-releasing and arabinopyranose-releasing activity using p-nitrophenyl glycosides as the substrate. However, it had limited ability to hydrolyze the C-20 outer glucoside on Rb1 and arabinofuranoside on Rc. By comparison of candidate enzymes, we discovered that the one of α-L-arabinofuranosidase (Araf0101) can perform the effective biotransformation of ginsenoside Rc to Rd though it had mild activities on hydrolyzing arabinose-containing polysaccharides. Araf0101 was not only overexpressed and purified successfully but also applied to combine with glucosidase from Kluyveromyces marxianus to enhance the concentration of bioactive ginsenoside compound K in ginseng. After incubation for 2 hr, KmBgl1 produced 13.29±3.87 μmole/g compound K while Araf0101 and KmBgl1 added simultaneously could rise the yield to 20.91±3.74 μmole/g.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:20:28Z (GMT). No. of bitstreams: 1
U0001-0709202222270600.pdf: 7924536 bytes, checksum: e17de93009eab2a48c3229e4c9c68851 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents謝誌 i 摘要 ii Abstract iii Graphical abstract iv 目錄 v 圖目錄 vii 表目錄 ix 附錄目錄 x 第一章、前言 1 第二章、文獻回顧 2 第一節、人參 2 第二節、人參皂苷 3 第三節、人參皂苷轉換 8 第四節、龍根菌 10 第五節、醣基水解酶 12 第三章、研究目的與實驗架構 15 第四章、材料與方法 17 第一節、實驗材料 17 一、人參樣品 17 二、菌株 17 三、質體 17 四、引子 17 五、藥品與試劑 21 第二節、儀器設備 23 一、實驗耗材 23 二、一般儀器設備 24 三、套裝軟體 25 第三節、實驗方法 25 一、探討B. longum之酵素特性 25 二、作用酵素探討 31 三、結合純化酵素 35 第五章、結果與討論 37 第一節、探討B. longum之酵素特性 37 一、生長曲線 37 二、粗萃酵素對硝基苯酚化合物之活性 39 三、粗萃酵素轉換人參皂苷 41 第二節、以E. coli系統大量表現α-L-arabinofuranosidase (Araf) 46 一、製備重組酵素 46 二、純化蛋白之活性與特性 48 第三節、結合純化蛋白應用於人參皂苷轉換 70 一、單一酵素轉換人參皂苷 70 二、混合酵素轉換人參皂苷 71 第六章、結論與展望 91 第七章、參考文獻 92
dc.language.isozh-TW
dc.title利用乳酸菌及酵母菌之酵素轉換人參皂苷zh_TW
dc.titleBiotransformation of ginsenosides using enzymes from lactic acid bacteria and yeasten
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邱群惠(Chun-Hui Chiu),陳勁初(Chin-Chu Chen),潘敏雄(Min-Hsiung Pan),呂廷璋(Ting-Jang Lu)
dc.subject.keyword人參皂苷,Bifidobacterium longum,α-L-arabinofuranosidase,Kluyveromyces marxianus,β-D-glucosidase,zh_TW
dc.subject.keywordGinsenoside,Bifidobacterium longum,α-L-arabinofuranosidase,Kluyveromyces marxianus,β-D-glucosidase,en
dc.relation.page120
dc.identifier.doi10.6342/NTU202203238
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-12
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
dc.date.embargo-lift2022-09-14-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
U0001-0709202222270600.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
7.74 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved