請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8463完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何傳愷(Chuan-Kai Ho) | |
| dc.contributor.author | Tzu-Hsien Yeh | en |
| dc.contributor.author | 葉子賢 | zh_TW |
| dc.date.accessioned | 2021-05-20T00:55:03Z | - |
| dc.date.available | 2020-07-21 | |
| dc.date.available | 2021-05-20T00:55:03Z | - |
| dc.date.copyright | 2020-07-21 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-10 | |
| dc.identifier.citation | Abouheif, E., Fairbairn, D. J. (1997). A Comparative Analysis of Allometry for Sexual Size Dimorphism: Assessing Rensch’s Rule. The American Naturalist, 149(3), 540–562. JSTOR.
Andersson, M. (1994). Sexual Selection. Princeton University Press. Arnett, A. E., Gotelli, N. J. (1999). Bergmann’s rule in the ant lion Myrmeleon immaculatus DeGeer (Neuroptera: Myrmeleontidae): geographic variation in body size and heterozygosity. Journal of Biogeography, 26(2), 275–283. https://doi.org/10.1046/j.1365-2699.1999.00271.x Arnold, S. J. (1992). Constraints on Phenotypic Evolution. The American Naturalist, 140, S85–S107. https://doi.org/10.1086/285398 Atkinson, D. F. (1994). Temperature and organism size-A biological law for ectotherms? Advances in Ecological Research 25: 1. https://doi.org/10.1016/S0065-2504(08)60212-3 Bergmann, C. (1848). Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Größe. Berns, C. M. (2013). The Evolution of Sexual Dimorphism: Understanding Mechanisms of Sexual Shape Differences. Sexual Dimorphism. https://doi.org/10.5772/55154 Blanckenhorn, W., Stillwell, R., Young, K., Fox, C., Ashton, K. (2006). When Rensch meets Bergmann: Does sexual size dimorphism change systematically with latitude? Evolution; International Journal of Organic Evolution, 60, 2004–2011. https://doi.org/10.1111/j.0014-3820.2006.tb01838.x Blanckenhorn, W. U. (2005). Behavioral Causes and Consequences of Sexual Size Dimorphism. Ethology, 111(11), 977–1016. https://doi.org/10.1111/j.1439-0310.2005.01147.x Cabana, G., Frewin, A., Peters, R. H., Randall, L. (1982). The Effect of Sexual Size Dimorphism on Variations in Reproductive Effort of Birds and Mammals. The American Naturalist, 120(1), 17–25. https://doi.org/10.1086/283966 Chen, I.-C., Hill, J. K., Shiu, H.-J., Holloway, J. D., Benedick, S., Chey, V. K., Barlow, H. S., Thomas, C. D. (2011). Asymmetric boundary shifts of tropical montane Lepidoptera over four decades of climate warming. Global Ecology and Biogeography, 20(1), 34–45. https://doi.org/10.1111/j.1466-8238.2010.00594.x Chen, I.-C., Shiu, H.-J., Benedick, S., Holloway, J. D., Chey, V. K., Barlow, H. S., Hill, J. K., Thomas, C. D. (2009). Elevation increases in moth assemblages over 42 years on a tropical mountain. Proceedings of the National Academy of Sciences, 106(5), 1479–1483. https://doi.org/10.1073/pnas.0809320106 Clutton-Brock, T. H., Harvey, P. H., Rudder, B. (1977). Sexual dimorphism, socionomic sex ratio and body weight in primates. Nature, 269(5631), 797–800. https://doi.org/10.1038/269797a0 Conner, J. K., Karoly, K., Stewart, C., Koelling, V. A., Sahli, H. F., Shaw, F. H. (2011). Rapid Independent Trait Evolution despite a Strong Pleiotropic Genetic Correlation. The American Naturalist, 178(4), 429–441. https://doi.org/10.1086/661907 Dale, J., Dunn, P. O., Figuerola, J., Lislevand, T., Székely, T., Whittingham, L. A. (2007). Sexual selection explains Rensch’s rule of allometry for sexual size dimorphism. Proceedings of the Royal Society B: Biological Sciences, 274(1628), 2971–2979. https://doi.org/10.1098/rspb.2007.1043 Ding, A., Blanckenhorn, W. U. (2002). The effect of sexual size dimorphism on mating behaviour in two dung flies with contrasting dimorphism. Evolutionary Ecology Research, 4, 259–273. https://doi.org/info:doi/10.5167/uzh-172721 Dunham, A. E., Maitner, B. S., Razafindratsima, O. H., Simmons, M. C., Roy, C. L. (2013). Body size and sexual size dimorphism in primates: Influence of climate and net primary productivity. Journal of Evolutionary Biology, 26(11), 2312–2320. https://doi.org/10.1111/jeb.12239 Fairbairn, D. J. (1997). Allometry for Sexual Size Dimorphism: Pattern and Process in the Coevolution of Body Size in Males and Females. Annual Review of Ecology and Systematics, 28(1), 659–687. https://doi.org/10.1146/annurev.ecolsys.28.1.659 Fairbairn, Daphne J. (2005). Allometry for Sexual Size Dimorphism: Testing Two Hypotheses for Rensch’s Rule in the Water Strider Aquarius remigis. The American Naturalist, 166(S4), S69–S84. https://doi.org/10.1086/444600 Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L., Heinsohn, R. (2011). Declining body size: A third universal response to warming? Trends in Ecology Evolution, 26(6), 285–291. https://doi.org/10.1016/j.tree.2011.03.005 Gaulin, S. J. C., Sailer, L. D. (1984). Sexual dimorphism in weight among the primates: The relative impact of allometry and sexual selection. International Journal of Primatology, 5(6), 515–535. https://doi.org/10.1007/BF02692284 Gowaty, P. A., Buschhaus, N. (1998). Ultimate Causation of Aggressive and Forced Copulation in Birds: Female Resistance, the CODE Hypothesis, and Social Monogamy. Integrative and Comparative Biology, 38(1), 207–225. https://doi.org/10.1093/icb/38.1.207 Hawkins, B., deVries, P. (1996). Altitudinal gradients in the body sizes of Costa Rican butterflies. https://www.academia.edu/28988947/Altitudinal_gradients_in_the_body_sizes_of_Costa_Rican_butterflies Head, G. (1995). Selection on Fecundity and Variation in the Degree of Sexual Size Dimorphism Among Spider Species (Class Araneae). Evolution, 49(4), 776–781. JSTOR. https://doi.org/10.2307/2410330 Holloway, J. D. (1970). The biogeographical analysis of a transect sample of the moth fauna of Mt. Kinabalu, Sabah, using numerical methods. Biological Journal of the Linnean Society, 2(4), 259–286. https://doi.org/10.1111/j.1095-8312.1970.tb01689.x Honěk, A. (1993). Intraspecific Variation in Body Size and Fecundity in Insects: A General Relationship. Oikos, 66(3), 483–492. JSTOR. https://doi.org/10.2307/3544943 James, F. C. (1970). Geographic Size Variation in Birds and Its Relationship to Climate. Ecology, 51(3), 365–390. JSTOR. https://doi.org/10.2307/1935374 Janzen, D. H., Ataroff, M., Fariñas, M., Reyes, S., Rincon, N., Soler, A., Soriano, P., Vera, M. (1976). Changes in the Arthropod Community along an Elevational Transect in the Venezuelan Andes. Biotropica, 8(3), 193–203. JSTOR. https://doi.org/10.2307/2989685 Kraushaar, U., Blanckenhorn, W. U. (2002). Population variation in sexual selection and its effect on size allometry in two dung fly species with contrasting sexual size dimorphism. Evolution, 56(2), 307–321. https://doi.org/10.1111/j.0014-3820.2002.tb01341.x LaMunyon, C. W., Eisner, T. (1993). Postcopulatory sexual selection in an arctiid moth (Utetheisa ornatrix). Proceedings of the National Academy of Sciences, 90(10), 4689–4692. https://doi.org/10.1073/pnas.90.10.4689 Leutenegger, W., Cheverud, J. (1982). Correlates of sexual dimorphism in primates: Ecological and size variables. International Journal of Primatology, 3(4), 387. https://doi.org/10.1007/BF02693740 Leutenegger, W., Larson, S. (1985). Sexual Dimorphism in the Postcranial Skeleton of New World Primates. Folia Primatologica, 44(2), 82–95. https://doi.org/10.1159/000156199 Loder, N., Gaston, K. J., Warren, P. H., Arnold, H. R. (1998). Body size and feeding specificity: Macrolepidoptera in Britain. Biological Journal of the Linnean Society, 63(1), 121–139. https://doi.org/10.1111/j.1095-8312.1998.tb01642.x Matsumoto, K., Suzuki, N. (1992). Effectiveness of the mating plug in Atrophaneura alcinous (Lepidoptera: Papilionidae). Behavioral Ecology and Sociobiology, 30(3), 157–163. https://doi.org/10.1007/BF00166698 Mitani, J. C., Gros-Louis, J., Richards, A. F. (1996). Sexual Dimorphism, the Operational Sex Ratio, and the Intensity of Male Competition in Polygynous Primates. The American Naturalist, 147(6), 966–980. https://doi.org/10.1086/285888 Mitchell‐Olds, T. (1996). Genetic Constraints on Life-History Evolution: Quantitative-Trait Loci Influencing Growth and Flowering in Arabidopsis Thaliana. Evolution, 50(1), 140–145. https://doi.org/10.1111/j.1558-5646.1996.tb04480.x Ohlberger, J. (2013). Climate warming and ectotherm body size – from individual physiology to community ecology. Functional Ecology, 27(4), 991–1001. https://doi.org/10.1111/1365-2435.12098 Olalla‐Tárraga, M. Á., Rodríguez, M. Á., Hawkins, B. A. (2006). Broad-scale patterns of body size in squamate reptiles of Europe and North America. Journal of Biogeography, 33(5), 781–793. https://doi.org/10.1111/j.1365-2699.2006.01435.x O’Neil, P., Schmitt, J. (1993). Genetic Constraints on the Independent Evolution of Male and Female Reproductive Characters in the Tristylous Plant Lythrum Salicaria. Evolution, 47(5), 1457–1471. https://doi.org/10.1111/j.1558-5646.1993.tb02168.x Payne, R. B. (1984). Sexual Selection, Lek and Arena Behavior, and Sexual Size Dimorphism in Birds. Ornithological Monographs, 33, iii–52. JSTOR. https://doi.org/10.2307/40166729 Phillips, P. C., Arnold, S. J. (1989). Visualizing Multivariate Selection. Evolution, 43(6), 1209–1222. https://doi.org/10.1111/j.1558-5646.1989.tb02569.x Piross, I. S., Harnos, A., Rózsa, L. (2019). Rensch’s rule in avian lice: Contradictory allometric trends for sexual size dimorphism. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-44370-5 Ralls, K. (1977). Sexual Dimorphism in Mammals: Avian Models and Unanswered Questions. The American Naturalist, 111(981), 917–938. https://doi.org/10.1086/283223 Rensch, B. (1959). Evolution above the species level. http://agris.fao.org/agris-search/search.do?recordID=US201300282894 Schulte, P. M. (2015). The effects of temperature on aerobic metabolism: Towards a mechanistic understanding of the responses of ectotherms to a changing environment. Journal of Experimental Biology, 218(12), 1856–1866. https://doi.org/10.1242/jeb.118851 Selander, R. K. (1972). Sexual selection and sexual dimorphism in birds. Sexual Selection of Descent of Man, 1871-1971. https://ci.nii.ac.jp/naid/10016064300/ Sheridan, J. A., Bickford, D. (2011). Shrinking body size as an ecological response to climate change. Nature Climate Change, 1(8), 401–406. https://doi.org/10.1038/nclimate1259 Shine, R. (1989). Ecological Causes for the Evolution of Sexual Dimorphism: A Review of the Evidence. The Quarterly Review of Biology, 64(4), 419–461. https://doi.org/10.1086/416458 Slatkin, M. (1984). Ecological Causes of Sexual Dimorphism. Evolution, 38(3), 622–630. JSTOR. https://doi.org/10.2307/2408711 Smith, J. M., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., Lande, R., Raup, D., Wolpert, L. (1985). Developmental Constraints and Evolution: A Perspective from the Mountain Lake Conference on Development and Evolution. The Quarterly Review of Biology, 60(3), 265–287. https://doi.org/10.1086/414425 Smith, R. J. (1999). Statistics of sexual size dimorphism. Journal of Human Evolution, 36(4), 423–458. https://doi.org/10.1006/jhev.1998.0281 Stalker, H. D., Carson, H. L. (1948). An Altitudinal Transect of Drosophila robusta Sturtevant. Evolution, 2(4), 295–305. JSTOR. https://doi.org/10.2307/2405520 Stillwell, R. C., Blanckenhorn, W. U., Teder, T., Davidowitz, G., Fox, C. W. (2010). Sex Differences in Phenotypic Plasticity Affect Variation in Sexual Size Dimorphism in Insects: From Physiology to Evolution. Annual Review of Entomology, 55(1), 227–245. https://doi.org/10.1146/annurev-ento-112408-085500 Stillwell, R. C., Morse, G. E., Fox, C. W., Gilchrist, A. E. G. W., Whitlock, E. M. C. (2007). Geographic Variation in Body Size and Sexual Size Dimorphism of a Seed‐Feeding Beetle. The American Naturalist, 170(3), 358–369. https://doi.org/10.1086/520118 Tammaru, T., Ruohomäki, K., Saikkonen, K. (1996). Components of male fitness in relation to body size in Epirrita autumnata (Lepidoptera, Geometridae). Ecological Entomology, 21(2), 185–192. https://doi.org/10.1111/j.1365-2311.1996.tb01186.x Teder, T., Tammaru, T. (2005). Sexual size dimorphism within species increases with body size in insects. Oikos, 108(2), 321–334. https://doi.org/10.1111/j.0030-1299.2005.13609.x Tilley, S. G. (1968). Size-Fecundity Relationships and Their Evolutionary Implications in Five Desmognathine Salamanders. Evolution, 22(4), 806–816. JSTOR. https://doi.org/10.2307/2406905 Timofeev, S. F. (2001). Bergmann’s Principle and Deep-Water Gigantism in Marine Crustaceans. Biology Bulletin of the Russian Academy of Sciences, 28(6), 646–650. https://doi.org/10.1023/A:1012336823275 Webb, T. J., Freckleton, R. P. (2007). Only Half Right: Species with Female-Biased Sexual Size Dimorphism Consistently Break Rensch’s Rule. PLOS ONE, 2(9), e897. https://doi.org/10.1371/journal.pone.0000897 Webster, M. S. (1992). SEXUAL DIMORPHISM, MATING SYSTEM AND BODY SIZE IN NEW WORLD BLACKBIRDS (ICTERINAE). Evolution; International Journal of Organic Evolution, 46(6), 1621–1641. https://doi.org/10.1111/j.1558-5646.1992.tb01158.x Wedell, N. (2005). Female receptivity in butterflies and moths. Journal of Experimental Biology, 208(18), 3433–3440. https://doi.org/10.1242/jeb.01774 Wood, B. A. (1976). The nature and basis of sexual dimorphism in the primate skeleton. Journal of Zoology, 180(1), 15–34. https://doi.org/10.1111/j.1469-7998.1976.tb04660.x Wu, C.-H., Holloway, J. D., Hill, J. K., Thomas, C. D., Chen, I.-C., Ho, C.-K. (2019). Reduced body sizes in climate-impacted Borneo moth assemblages are primarily explained by range shifts. Nature Communications, 10(1), 1–7. https://doi.org/10.1038/s41467-019-12655-y | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8463 | - |
| dc.description.abstract | 種內變異是物種因應環境變化產生演化反應的先決條件,而種內變異的分布也會受演化進程影響。雌雄體型二型性呈現種內的體型變異,由於雌雄體型差異會影響生殖策略,雌雄體型差異的變化可能造成生殖演化上的改變。本研究根據雌雄體型二型性形成原因的假說進行推論,探討不同平均體型之尺蛾群聚間雌雄體型二型性的變異。解釋雌雄二型性變化的假說包括:雌雄對同一擇汰壓力有不同反應的演化限制假說,以及強調雌雄承受不同擇汰壓力的繁殖力擇汰假說和性擇假說。演化限制假說認為性別差異 (如累加遺傳變異度) 會影響個體在相似擇汰壓力下的體型反應,造成體型二型性,本研究據此檢驗雌雄體型二型性之群聚其雌雄二性的體型變異度是否反應潛在的累加遺傳變異度。繁殖力擇汰假說和性擇假說強調特定性別承受較大的擇汰壓力,而性別間有高度但又不完全相等的遺傳關聯性。繁殖力擇汰假說解釋雌性較大的情況,背後機制為體型較大個體有較高的繁殖力,所以當族群主要受到雌性繁殖力擇汰時,雌性體型變異較大,而雄性體型會因遺傳關聯產生較雌性小的反應。性擇假說可解釋雄性較大的情況,如體型大的雄性在競爭配偶時有優勢,當族群主要受到雄性性擇壓力時,雄性體型變異較大,而雌性體型因遺傳關聯產生較小的反應。本研究利用氣候暖化和海拔提供的平均體型梯度來探討不同平均體型之尺蛾雌雄體型二型性的變異,分析在1965年和2007年於馬來西亞神山 (此期間估計升溫攝氏0.7度) 跨海拔調查收集來的尺蛾體型資料,並檢驗上述假說。演化限制假說預期尺蛾在暖化下體型變小的2007年,面臨相同的的環境篩選 (暖化) 壓力下,雌性較大的群聚會呈現較小的雌性體型變異度,而雄性較大的群聚雄性會有較小的體型變異度。而繁殖力擇汰假說認為雌性較大的群聚平均體型主要會隨著雌性體型所變動,而雄性的變動會小於雌性的變動,因此預期這些群聚在平均體型較小時 (如暖化後與低海拔族群),雌雄體型二型性的差異程度會減小。同樣的,性擇假說認為雄性較大的群聚平均體型主要會隨著雄性體型所變動,而雌性變動會小於雄性的變動,因此預期在平均體型較小時 (如暖化後與低海拔族群),雌雄體型二型性的差異程度會減小。結果顯示,兩性的體型變異度並未隨暖化或海拔有顯著差異,不支持演化限制假說。雄性較大群聚的雌雄體型二型性也未受暖化 (年份) 和海拔影響,不支持性擇假說。但是在雌性較大的群聚中,雌雄體型二型性隨暖化而變小,支持繁殖力擇汰假說,並且根據主成分分析結果,雌雄體型二型性的變化主要是雌性體型變化所造成。此結果顯示這些尺蛾群聚體型結構對環境的反應主要來自於雌性的變化,以及物種性狀的改變可能只是部分個體的反應,而其他個體因為遺傳的關聯性連帶產生反應,這樣的結果也暗示著種內變異對演化進程的影響。 | zh_TW |
| dc.description.abstract | Intraspecific variation is a determinant of species evolutionary response to environmental change. As a source of intraspecific variation, sexual size dimorphism (SSD), associated with reproductive strategy, may reveal the evolutionary process in play. In this study, I investigated the body size allometry for SSD for geometrid moth assemblages of different average body sizes based on three hypotheses for SSD: (i) evolutionary constraints, (ii) fecundity selection, and (iii) sexual selection. The evolutionary constraint hypothesis suggests sex-specific responses to similar selection pressures as a cause of SSD. On the other hand, the fecundity selection and sexual selection hypotheses suggest the contribution of sex-specific selections to SSD. The fecundity selection hypothesis suggests that in female-biased SSD (FBSSD), males show an evolutionary response that is correlated with but weaker than female response to fecundity selection, hence a more variable female body size. In contrast, the sexual selection hypothesis suggests that in male-biased SSD (MBSSD), sexual selection on males produces a weaker evolutionary change in females, hence a more variable male body size. The well-documented observations of body size response to climate warming and geographic gradients provide a natural variation for examining the body size allometry for SSD. In this study, geometrid moth body size data retrieved from altitudinal surveys on Mount Kinabalu in 1965 and 2007 (0.7°C warming during this period) were analyzed to test the hypotheses for SSD allometry. Given that the decades of warming generally reduced moth body size, the evolutionary constraints hypothesis would predict that the male in FBSSD and the female in MBSSD in 2007 should have a greater body size variation over the other sex. The sex-specific selection hypotheses predict a less pronounced SSD in both FBSSD and MBSSD for assemblages with smaller average body size, which were found at lower altitudes and after decades of warming. The results show no difference in the sex difference in body size variation or SSD in MBSSD across altitudes and decades of warming. However, the less pronounced FBSSD after decades of climate warming supports the prediction based on the natural selection hypothesis. Moreover, the SSD variation is mainly caused by female size change according to the result of principal component analysis. The results imply that the response of body size structure to environmental changes can be driven primarily by female responses to selection pressures. Overall, this study reveals that trait changes in a species could be attributed to the evolutionary response of some individuals (e.g., females) along with genetically-correlated others (e.g., males), which implicates the potential influences of intraspecific variation on evolutionary processes. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T00:55:03Z (GMT). No. of bitstreams: 1 U0001-0507202021333600.pdf: 2483486 bytes, checksum: 7e3cde0af1105a3d6d86cbd1369a53df (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | Contents 謝誌 ii 摘要 iii Abstract v Introduction 1 Intraspecific and intersexual variation 1 Sexual size dimorphism and body size allomery for SSD 2 Body size change along geographic gradients and over climate change 4 Hypotheses and predictions 5 Methods 7 Overview 7 Study system 7 Transect for specimen collection (Chen et al., 2009; Holloway, 1970; Wu et al., 2019) 9 Specimen measurement (Wu et al., 2019) 9 SSD calculation and data filtration 10 Statistics 11 Results 12 SSD descriptions 12 Coefficient of variation 13 Sex-specific selections 13 Correlations between response variables 14 Discussion 15 References 19 Appendix 51 | |
| dc.language.iso | en | |
| dc.title | 暖化與海拔梯度下雌雄體型二型性之變化 | zh_TW |
| dc.title | Body size allometry for sexual size dimorphism across altitudinal gradients and over decades of climate warming | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 吳書平(Shu-Ping Wu) | |
| dc.contributor.oralexamcommittee | 劉力瑜(Li-Yu Liu),陳一菁(I-Ching Chen) | |
| dc.subject.keyword | 種內變異,雌雄體型二型性,體型異速增長,海拔,氣候暖化, | zh_TW |
| dc.subject.keyword | Intraspecific variation,Sexual size dimorphism,Body size allometry,Altitude,Climate warming, | en |
| dc.relation.page | 54 | |
| dc.identifier.doi | 10.6342/NTU202001325 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2020-07-10 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
| 顯示於系所單位: | 生態學與演化生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0507202021333600.pdf | 2.43 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
