Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84618
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡豐羽(Feng-Yu Tsai)
dc.contributor.authorHsin-Ning Hungen
dc.contributor.author洪心寧zh_TW
dc.date.accessioned2023-03-19T22:17:49Z-
dc.date.copyright2022-09-19
dc.date.issued2022
dc.date.submitted2022-09-16
dc.identifier.citation(1) Hosono, H.; Yasukawa, M.; Kawazoe, H. Novel oxide amorphous semiconductors: Transparent conducting amorphous oxides. Journal of non-crystalline solids 1996, 203, 334-344. (2) Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. nature 2004, 432 (7016), 488-492. (3) Nathan, A.; Lee, S.; Jeon, S.; Robertson, J. Amorphous oxide semiconductor TFTs for displays and imaging. Journal of Display Technology 2013, 10 (11), 917-927. (4) Chiang, H. Q.; Wager, J. F.; Hoffman, R. L.; Jeong, J.; Keszler, D. A. High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer. Applied Physics Letters 2005, 86 (1). DOI: 10.1063/1.1843286. (5) Allemang, C. R.; Cho, T. H.; Trejo, O.; Ravan, S.; Rodríguez, R. E.; Dasgupta, N. P.; Peterson, R. L. High‐Performance Zinc Tin Oxide TFTs with Active Layers Deposited by Atomic Layer Deposition. Advanced Electronic Materials 2020, 6 (7). DOI: 10.1002/aelm.202000195. (6) Kim, J. S.; Jang, Y.; Kang, S.; Lee, Y.; Kim, K.; Kim, W.; Lee, W.; Hwang, C. S. Substrate-Dependent Growth Behavior of Atomic-Layer-Deposited Zinc Oxide and Zinc Tin Oxide Thin Films for Thin-Film Transistor Applications. The Journal of Physical Chemistry C 2020, 124 (49), 26780-26792. DOI: 10.1021/acs.jpcc.0c07800. (7) Haseman, M.; Saadatkia, P.; Warfield, J.; Lawrence, J.; Hernandez, A.; Jellison, G.; Boatner, L. A.; Selim, F. Optical and electrical properties of sn-doped zinc oxide single crystals. Journal of Electronic Materials 2018, 47 (2), 1497-1504. (8) Hendri, Y. N.; Purbayanto, M. A. K.; Pratama, S. N.; Zuhairah, N.; Darma, Y. The Effect of Sn Dopant on the Electrical and Optical Properties of ZnO Thin Films. In Journal of Physics: Conference Series, 2021; IOP Publishing: Vol. 1772, p 012013. (9) Martín-González, M.; Caballero-Calero, O.; Díaz-Chao, P. Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field. Renewable and Sustainable Energy Reviews 2013, 24, 288-305. (10) Bulman, G.; Barletta, P.; Lewis, J.; Baldasaro, N.; Manno, M.; Bar-Cohen, A.; Yang, B. Superlattice-based thin-film thermoelectric modules with high cooling fluxes. Nature communications 2016, 7 (1), 1-7. (11) Harman, T.; Taylor, P.; Walsh, M.; LaForge, B. Quantum dot superlattice thermoelectric materials and devices. science 2002, 297 (5590), 2229-2232. (12) Kim, L. H.; Kim, K.; Park, S.; Jeong, Y. J.; Kim, H.; Chung, D. S.; Kim, S. H.; Park, C. E. Al2O3/TiO2 nanolaminate thin film encapsulation for organic thin film transistors via plasma-enhanced atomic layer deposition. ACS applied materials & interfaces 2014, 6 (9), 6731-6738. (13) Park, H.; Choi, H.; Lee, N.; Jung, C.; Choi, Y.; Song, S.; Choi, Y.; Kim, K.; Kim, J.; Lee, J. Effect of single Al2O3 cycle insertion with various positions in SnO2 thin films using atomic layer deposition. Ceramics International 2020, 46 (8), 12782-12787. (14) Son, Y.; Frost, B.; Zhao, Y.; Peterson, R. L. Monolithic integration of high-voltage thin-film electronics on low-voltage integrated circuits using a solution process. Nature Electronics 2019, 2 (11), 540-548. DOI: 10.1038/s41928-019-0316-0. (15) Han, D.; Zhang, Y.; Cong, Y.; Yu, W.; Zhang, X.; Wang, Y. Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate. Sci Rep 2016, 6, 38984. DOI: 10.1038/srep38984 From NLM PubMed-not-MEDLINE. (16) Cho, W.-J.; Ahn, M.-J.; Jo, K.-W. Performance Enhancement of Solution-Derived Zinc-Tin-Oxide Thin Film Transistors by Low-Temperature Microwave Irradiation. physica status solidi (a) 2017, 214 (12). DOI: 10.1002/pssa.201700350. (17) Fernandes, C.; Santa, A.; Santos, Â.; Bahubalindruni, P.; Deuermeier, J.; Martins, R.; Fortunato, E.; Barquinha, P. A Sustainable Approach to Flexible Electronics with Zinc-Tin Oxide Thin-Film Transistors. Advanced Electronic Materials 2018, 4 (7). DOI: 10.1002/aelm.201800032. (18) Chen, X.; Zhou, Z.; Lin, Y.-H.; Nan, C. Thermoelectric thin films: Promising strategies and related mechanism on boosting energy conversion performance. Journal of Materiomics 2020, 6 (3), 494-512. (19) Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. In Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, World Scientific, 2011; pp 101-110. (20) Shih, B.-W.; Hsieh, W.-P.; Shyue, J.-J.; Tsai, F.-Y. Enhanced thermoelectric properties of atomic-layer-deposited Hf: Zn16O/18O superlattice films by interface-engineering. Ceramics international 2020, 46 (6), 7122-7130. (21) Liao, H.-T.; Shih, B.-W.; Hsieh, W.-P.; Su, D.-Y.; Tsai, F.-Y. Enhanced thermoelectric properties of atomic-layer-deposited ZnO-Based superlattice thin films by tuning the composition and structure of interlayers. Ceramics International 2022, 48 (7), 10202-10208. (22) Lee, S.-H.; Lee, J.-H.; Choi, S.-J.; Park, J.-S. Studies of thermoelectric transport properties of atomic layer deposited gallium-doped ZnO. Ceramics International 2017, 43 (10), 7784-7788. (23) Felizco, J.; Juntunen, T.; Uenuma, M.; Etula, J.; Tossi, C.; Ishikawa, Y.; Tittonen, I.; Uraoka, Y. Enhanced thermoelectric transport and stability in atomic layer deposited-HfO2/ZnO and TiO2/ZnO-sandwiched multilayer thin films. ACS Applied Materials & Interfaces 2020, 12 (43), 49210-49218. (24) Kim, S.; Kim, D.; Byeon, J.; Lim, J.; Song, J.; Park, S.; Park, C.; Song, P. Transparent amorphous oxide semiconductor as excellent thermoelectric materials. Coatings 2018, 8 (12), 462. (25) Roy, A.; Cheng, Y.-T.; Falk, M. L. Amorphous ZnO-Based Compounds as Thermoelectrics. The Journal of Physical Chemistry C 2016, 120 (5), 2529-2535. DOI: 10.1021/acs.jpcc.5b11618. (26) Guziewicz, E.; Godlewski, M.; Wachnicki, L.; Krajewski, T. A.; Luka, G.; Gieraltowska, S.; Jakiela, R.; Stonert, A.; Lisowski, W.; Krawczyk, M. ALD grown zinc oxide with controllable electrical properties. Semiconductor Science and Technology 2012, 27 (7), 074011. (27) Park, J.; Jung, T.-H.; Lee, J.-H.; Kim, H.-S.; Park, J.-S. The growth behavior and properties of atomic layer deposited zinc oxide films using hydrogen peroxide (H2O2) and ozone (O3) oxidants. Ceramics International 2015, 41 (1), 1839-1845. DOI: 10.1016/j.ceramint.2014.09.133. (28) Choi, D.-w.; Maeng, W.; Park, J.-S. The conducting tin oxide thin films deposited via atomic layer deposition using Tetrakis-dimethylamino tin and peroxide for transparent flexible electronics. Applied surface science 2014, 313, 585-590. (29) Mullings, M. N.; Hägglund, C.; Tanskanen, J. T.; Yee, Y.; Geyer, S.; Bent, S. F. Thin film characterization of zinc tin oxide deposited by thermal atomic layer deposition. Thin Solid Films 2014, 556, 186-194. (30) Tanskanen, J. T.; Hägglund, C.; Bent, S. F. Correlating Growth Characteristics in Atomic Layer Deposition with Precursor Molecular Structure: The Case of Zinc Tin Oxide. Chemistry of Materials 2014, 26 (9), 2795-2802. DOI: 10.1021/cm403913r. (31) Mackus, A. J.; MacIsaac, C.; Kim, W. H.; Bent, S. F. Incomplete elimination of precursor ligands during atomic layer deposition of zinc-oxide, tin-oxide, and zinc-tin-oxide. J Chem Phys 2017, 146 (5), 052802. DOI: 10.1063/1.4961459 From NLM PubMed-not-MEDLINE. (32) Ahn, B. D.; Choi, D.-w.; Choi, C.; Park, J.-S. The effect of the annealing temperature on the transition from conductor to semiconductor behavior in zinc tin oxide deposited atomic layer deposition. Applied Physics Letters 2014, 105 (9). DOI: 10.1063/1.4895102. (33) Heo, J.; Bok Kim, S.; Gordon, R. G. Atomic layer deposited zinc tin oxide channel for amorphous oxide thin film transistors. Applied Physics Letters 2012, 101 (11). DOI: 10.1063/1.4752727. (34) Hsieh, W.-P. Testing theories for thermal transport using high pressure; University of Illinois at Urbana-Champaign, 2011. (35) Hägglund, C.; Grehl, T.; Tanskanen, J. T.; Yee, Y. S.; Mullings, M. N.; Mackus, A. J.; MacIsaac, C.; Clemens, B. M.; Brongersma, H. H.; Bent, S. F. Growth, intermixing, and surface phase formation for zinc tin oxide nanolaminates produced by atomic layer deposition. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2016, 34 (2), 021516. (36) Gu, Y.; Tao, J.-J.; Wang, T.; Liu, Y.-H.; Peng, B.-F.; Zhu, L.-Y.; Lu, H.-L. Nonlinear growth of zinc tin oxide thin films prepared by atomic layer deposition. Ceramics International 2021, 47 (16), 22760-22767. (37) Elam, J. W.; Baker, D. A.; Hryn, A. J.; Martinson, A. B.; Pellin, M. J.; Hupp, J. T. Atomic layer deposition of tin oxide films using tetrakis (dimethylamino) tin. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2008, 26 (2), 244-252. (38) Farva, U.; Kim, J. Growth temperature-dependent morphological, optical, and electrical study of SnO2 thin film by atomic layer deposition. Materials Chemistry and Physics 2021, 267, 124584. (39) Murray, C.; Elliott, S. D. Density functional theory predictions of the composition of atomic layer deposition-grown ternary oxides. ACS applied materials & interfaces 2013, 5 (9), 3704-3715. (40) Garcia-Martinez, O.; Rojas, R.; Vila, E.; De Vidales, J. M. Microstructural characterization of nanocrystals of ZnO and CuO obtained from basic salts. Solid State Ionics 1993, 63, 442-449. (41) Weng, S.; Chen, R.; Zhong, W.; Deng, S.; Li, G.; Yeung, F. S. Y.; Lan, L.; Chen, Z.; Kwok, H.-S. High-Performance Amorphous Zinc–Tin–Oxide Thin-Film Transistors With Low Tin Concentration. IEEE Journal of the Electron Devices Society 2019, 7, 632-637. (42) Lin, C.; Smith, F.; Ichikawa, N.; Baba, T.; Itow, M. Decomposition of hydrogen peroxide in aqueous solutions at elevated temperatures. International Journal of Chemical Kinetics 1991, 23 (11), 971-987. (43) Wang, R.; Beling, C.; Fung, S.; Djurišić, A.; Ling, C.; Li, S. Influence of gaseous annealing environment on the properties of indium-tin-oxide thin films. Journal of applied physics 2005, 97 (3), 033504. (44) Ahn, C. H.; Yun, M. G.; Lee, S. Y.; Cho, H. K. Enhancement of electrical stability in oxide thin-film transistors using multilayer channels grown by atomic layer deposition. IEEE Transactions on Electron Devices 2013, 61 (1), 73-78. (45) Geng, Y.; Xie, Z.-Y.; Yang, W.; Xu, S.-S.; Sun, Q.-Q.; Ding, S.-J.; Lu, H.-L.; Zhang, D. W. Structural, optical, and electrical properties of Hf-doped ZnO films deposited by atomic layer deposition. Surface and Coatings Technology 2013, 232, 41-45. (46) Yuan, H.; Luo, B.; Yu, D.; Cheng, A.-j.; Campbell, S. A.; Gladfelter, W. L. Atomic layer deposition of Al-doped ZnO films using ozone as the oxygen source: a comparison of two methods to deliver aluminum. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2012, 30 (1), 01A138. (47) Chou, C. T.; Yu, P. W.; Tseng, M. H.; Hsu, C. C.; Shyue, J. J.; Wang, C. C.; Tsai, F. Y. Transparent Conductive Gas‐Permeation Barriers on Plastics by Atomic Layer Deposition. Advanced Materials 2013, 25 (12), 1750-1754. (48) Lin, Y.-Y.; Hsu, C.-C.; Tseng, M.-H.; Shyue, J.-J.; Tsai, F.-Y. Stable and high-performance flexible ZnO thin-film transistors by atomic layer deposition. ACS applied materials & interfaces 2015, 7 (40), 22610-22617. (49) Nguyen, T. T. T.; Aventurier, B.; Terlier, T.; Barnes, J.-P.; Templier, F. Impact of passivation conditions on characteristics of bottom-gate IGZO thin-film transistors. Journal of Display Technology 2015, 11 (6), 554-558. (50) Görrn, P.; Riedl, T.; Kowalsky, W. Encapsulation of zinc tin oxide based thin film transistors. The Journal of Physical Chemistry C 2009, 113 (25), 11126-11130. (51) Luo, Y.-R. Handbook of bond dissociation energies in organic compounds; CRC press, 2002. (52) Lee, S.; Ghaffarzadeh, K.; Nathan, A.; Robertson, J.; Jeon, S.; Kim, C.; Song, I.-H.; Chung, U.-I. Trap-limited and percolation conduction mechanisms in amorphous oxide semiconductor thin film transistors. Applied Physics Letters 2011, 98 (20), 203508. (53) Nomura, K.; Kamiya, T.; Ohta, H.; Ueda, K.; Hirano, M.; Hosono, H. Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3 (ZnO)5 films. Applied Physics Letters 2004, 85 (11), 1993-1995.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84618-
dc.description.abstract本文研究了原子沉積技術(ALD)沉積的氧化鋅錫奈米疊層薄膜的沉積溫度、氧化劑種類、前驅物供給方式、層狀堆疊結構、場效電子遷移率以及表面鈍化對熱電性質的影響,關於在ALD氧化鋅錫沉積過程中在異質介面會發生的成長速率減少問題我們可以利用石英晶體監測器及時的觀測發現這個問題源自於兩個機制: (1) 氧化鋅的前驅物二乙基鋅化學吸附在氧化錫的表面上時,二乙基鋅的乙基官能基的反應性會明顯下降、(2)當氧化錫的前驅物四(二甲氨基)錫化學吸附在氧化鋅的表面上時,四(二甲氨基)錫傾向於以錫氧鍵的方式沉積,兩者皆使表面的氫氧官能基密度的減少,造成下一個循環的前驅物沉積量顯著下降。兩個機制在使用比起水更強的氧化劑雙氧水時可以被抑制,而且成長減少的問題可以在多次噴灑雙氧水或是暴露噴灑雙氧水的製程下被完全解決,另外,在雙氧水的使用下,沉積溫度對於成長問題的影響是比較小的。使用最佳化後的參數,也就是鋅錫比例為7:3或是氧化鋅氧化錫循環比例為1:1的非晶質的氧化鋅錫奈米疊層薄膜被作為薄膜電晶體的主動層,並且達成了21.5厘米/伏·秒的高場效遷移率,因為高品質的氧化鋅和氧化錫介面,所有的製程都不需要高溫的後退火。接著關於熱電性質,一奈米的氧化鉿、氧化鋯、氧化鈦、氧化鋁被發現可以大量提升氧化鋅錫薄膜的導電度,這是因為大量氧空缺的引入,其中一奈米的氧化鉿提升熱電功率因數高達六倍,再加上因為非晶質結構以及大量在介面散射的聲子而造成的低熱導率,在室溫下的ZT值可以達到0.025,皆高於氧化鋅與氧化錫的表現。zh_TW
dc.description.abstractThis study investigated the effects of deposition temperature, type of oxidant precursor, precursor-feeding method, layer-stacking architecture, and surface passivation on the field-effect electron mobility and thermoelectric properties of ZnO-SnO2 (ZTO) nano-laminated thin films prepared by atomic layer deposition (ALD). The growth-reduction issue occurring during the hetero-surface deposition events constituting the fabrication of ALD ZTO nano-laminates was determined through in-situ quartz crystal monitor (QCM) analysis to originate from two mechanisms: (1) reduced reactivity of the ethyl ligands of diethylzinc (DEZn)—a precursor for the ALD ZnO process—upon DEZn’s chemisorption on a SnO2 surface; (2) high tendency of tetrakis(dimethylamido)tin (TDMASn)—a precursor for the ALD SnO2 process—to form -Sn-O-Sn- bridges upon TDMASn’s chemisorption on a ZnO surface. Both mechanism results in lowering of surface -OH density which made the number of precursor molecules deposited on the surface in the next cycle decrease. Both mechanisms were found to lessen with the use of a stronger oxidant precursor, H2O2 as opposed to H2O, whose dosage could be optimized through a discrete feeding and an exposure-feeding method, enabling complete resolution of the growth-reduction issue; the deposition temperature showed little effects on growth reduction when H2O2 was used. Using the optimized process settings, amorphous ZTO nano-laminated thin films with a 7:3 Zn:Sn ratio were fabricated with a 1:1 ZnO:SnO2 cycle ratio, which yielded a high field effect mobility of up to 21.5 cm2V-1s-1 as a channel layer in a thin film transistor (TFT) device without needing a high-temperature annealing process step, thanks to the high ZnO-SnO2 interface quality of the ZTO nano-laminates obtained through the elimination of the growth-reduction phenomenon. In terms of thermoelectric properties, an in-situ ALD passivation method involving capping the ZTO nano-laminates with a ~1 nm-thick layer of various oxides including HfO2, ZrO2, TiO2, Al2O3 was discovered to significantly increase the ZTO films’ electrical conductivity through the passivation layer’s induction of oxygen vacancies in the ZTO films. Specifically, a 1 nm HfO2 passivation layer increased the power factor of the ZTO nano-laminates by six-folds, which coupled with the ZTO nano-laminates’ low thermal conductivity owing to their amorphous nature and abundant phonon-scattering interfaces resulted in a room-temperature ZT value of 0.025, a substantial improvement over those of ZnO and SnO2 films.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:17:49Z (GMT). No. of bitstreams: 1
U0001-1609202216142700.pdf: 5226205 bytes, checksum: 6692467a741572b3845e97ca76a72aa9 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書 i 原創性分析聲明書 ii 致謝 iv 中文摘要 v Abstract vii Contents ix List of Figures xi List of Tables xvii Chapter 1. Introduction 1 1.1 ZTO as high-performance MOS 1 1.2 Application of ZTO in TFT 6 1.2.1 Fundamentals of TFT 6 1.2.2 Importance of low temperature processing for TFTs 10 1.2.3 Low-temperature-processed ZTO-TFTs 13 1.3 ZTO as oxide thermoelectric materials 15 1.3.1 Fundamentals of thermoelectric effect 15 1.3.2 The development of ZnO-based thin film for thermoelectric materials 20 1.4 ZTO deposited by Atomic layer deposition (ALD) 22 1.4.1 Fundamentals principles of ALD 22 1.4.2 Challenges of ALD ZTO thin films 27 1.4.3 Review of ALD-ZTO-TFTs 30 1.5 Motivation and Objective statement 32 Chapter 2. Experimental methods 33 2.1 ALD experimental details 33 2.1.1 ALD equipment system and ALD process introduction 33 2.1.2 ALD process of ZTO and HfO2 for TFT 36 2.1.3 ALD process of ZTO for thermoelectric measurement 39 2.2 TFT fabrication and measurement 42 2.2.1 TFT fabrication process 42 2.2.2 Measurement of TFT transfer or family curve 42 2.3 Thin film characteristic analysis 43 2.3.1 Measurement of Electrical conductivity 43 2.3.2 Measurement of Seebeck coefficient 43 2.3.3 Measurement of thermal conductivity by time domain thermoreflectance method (TDTR) 45 2.3.4 Quartz crystal microbalance (QCM) and analysis 48 2.3.5 The spectral analysis 52 Chapter 3. Results and Discussions 54 3.1 ALD ZTO growth and mechanism 54 3.1.1 GPC reduction characteristic of ALD ZTO nano-laminates 54 3.1.2 Minimizing the Growth delay of ALD ZTO 67 3.1.3 The TDMASn growth mechanism (supplementary) 74 3.2 ALD-ZTO TFT performance 80 3.2.1 ZTO thin film analysis before post-annealing 80 3.2.2 ZTO TFT performance after post-annealing 86 3.2.3 The ZTO TFT performance before post-annealing (supplementary) 94 3.3 ALD-ZTO thermoelectric properties analysis 97 3.3.1 Crystalline ZTO with conventional and mixed process 97 3.3.2 Amorphous ZTO with HfO2 passivation 103 3.3.3 Amorphous ZTO with HfO2 insertion 114 Chapter 4. Conclusions 116 Reference 118
dc.language.isoen
dc.title原子層沉積之氧化鋅/氧化錫奈米疊層薄膜之薄膜電晶體與熱電特性研究zh_TW
dc.titleAtomic layer deposited zinc oxide/tin oxide nanolaminates and its applications in thin film transistors and thermoelectric materials.en
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭錦龍(Chin-Lung Kuo),陳奕君(I-Chun Cheng)
dc.subject.keyword非晶質金屬氧化物半導體薄膜,氧化鋅錫奈米疊層、,原子層沉積技術,薄膜電晶體,薄膜熱電材料,zh_TW
dc.subject.keywordamorphous metal oxide semiconductor, zinc tin oxide,nano-laminates,atomic layer deposition,thin film transistor,thin film thermoelectric,en
dc.relation.page122
dc.identifier.doi10.6342/NTU202203478
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
dc.date.embargo-lift2022-09-19-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
U0001-1609202216142700.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.1 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved