Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84609
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林招松(Chao - Sung Lin)
dc.contributor.authorYang Chenen
dc.contributor.author陳陽zh_TW
dc.date.accessioned2023-03-19T22:17:29Z-
dc.date.copyright2022-09-30
dc.date.issued2022
dc.date.submitted2022-09-28
dc.identifier.citation[1] M. Goede, M. Stehlin, L. Rafflenbeul, G. Kopp, and E. Beeh, 'Super Light Car—lightweight construction thanks to a multi-material design and function integration,' European Transport Research Review, vol. 1, no. 1, pp. 5-10, 2009. [2] R. Kuziak, R. Kawalla, and S. Waengler, 'Advanced high strength steels for automotive industry,' Archives of civil and mechanical engineering, vol. 8, no. 2, pp. 103-117, 2008. [3] C. C. Tasan et al., 'An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design,' Annual Review of Materials Research, vol. 45, pp. 391-431, 2015. [4] O. Bouaziz, H. Zurob, and M. Huang, 'Driving force and logic of development of advanced high strength steels for automotive applications,' Steel research international, vol. 84, no. 10, pp. 937-947, 2013. [5] D. W. Fan and B. C. De Cooman, 'State‐of‐the‐knowledge on coating systems for hot stamped parts,' Steel research international, vol. 83, no. 5, pp. 412-433, 2012. [6] C. Allely, L. Dosdat, O. Clauzeau, K. Ogle, and P. Volovitch, 'Anticorrosion mechanisms of aluminized steel for hot stamping,' Surface and Coatings Technology, vol. 238, pp. 188-196, 2014. [7] L. Cho et al., 'Hydrogen absorption and embrittlement of ultra-high strength aluminized press hardening steel,' Materials Science and Engineering: A, vol. 734, pp. 416-426, 2018. [8] E. Gracia-Escosa, I. García, J. J. de Damborenea, and A. Conde, 'Friction and wear behaviour of tool steels sliding against 22MnB5 steel,' Journal of Materials Research and Technology, vol. 6, no. 3, pp. 241-250, 2017. [9] L. Cho, H. Kang, C. Lee, and B. C. De Cooman, 'Microstructure of liquid metal embrittlement cracks on Zn-coated 22MnB5 press-hardened steel,' Scr. Mater., vol. 90, pp. 25-28, 2014. [10] P. Fernandes, R. Clegg, and D. Jones, 'Failure by liquid metal induced embrittlement,' Engineering Failure Analysis, vol. 1, no. 1, pp. 51-63, 1994. [11] P. Fernandes and D. Jones, 'Mechanisms of liquid metal induced embrittlement,' International materials reviews, vol. 42, no. 6, pp. 251-261, 1997. [12] H. Kang, L. Cho, C. Lee, and B. C. De Cooman, 'Zn penetration in liquid metal embrittled TWIP steel,' Metallurgical and Materials Transactions A, vol. 47, no. 6, pp. 2885-2905, 2016. [13] J. Kondratiuk, P. Kuhn, E. Labrenz, and C. Bischoff, 'Zinc coatings for hot sheet metal forming: Comparison of phase evolution and microstructure during heat treatment,' Surface and Coatings Technology, vol. 205, no. 17-18, pp. 4141-4153, 2011. [14] T. Kurz, G. Luckeneder, T. Manzenreiter, H. Schwinghammer, and A. Sommer, 'Zinc coated press-hardening steel-challenges and solutions,' SAE Technical Paper, pp. 01-0565, 2015. [15] C. W. Lee, D. W. Fan, I. R. Sohn, S.-J. Lee, and B. C. De Cooman, 'Liquid-metal-induced embrittlement of Zn-coated hot stamping steel,' Metallurgical and Materials Transactions A, vol. 43, no. 13, pp. 5122-5127, 2012. [16] J. Zhang, C. Sun, Z. Yu, J. Cheng, W. Li, and J. Duan, 'The performance of Zinc sacrificial anode in simulating marine fouling environment,' Int. J. Electrochem. Sci, vol. 9, no. 10, pp. 5712-5721, 2014. [17] X. G. Zhang, Corrosion and electrochemistry of zinc. Springer Science & Business Media, 1996. [18] S. Ghaziof, M. Golozar, and K. Raeissi, 'Characterization of as-deposited and annealed Cr–C alloy coatings produced from a trivalent chromium bath,' Journal of Alloys and Compounds, vol. 496, no. 1-2, pp. 164-168, 2010. [19] Z. Zeng, L. Wang, A. Liang, and J. Zhang, 'Tribological and electrochemical behavior of thick Cr–C alloy coatings electrodeposited in trivalent chromium bath as an alternative to conventional Cr coatings,' Electrochimica Acta, vol. 52, no. 3, pp. 1366-1373, 2006. [20] H. Karbasian and A. E. Tekkaya, 'A review on hot stamping,' Journal of Materials Processing Technology, vol. 210, no. 15, pp. 2103-2118, 2010. [21] C. Beal, X. Kleber, D. Fabregue, and M. Bouzekri, 'Embrittlement of a zinc coated high manganese TWIP steel,' Materials Science and Engineering: A, vol. 543, pp. 76-83, 2012. [22] C. Beal, X. Kleber, D. Fabregue, and M. Bouzekri, 'Liquid zinc embrittlement of twinning-induced plasticity steel,' Scripta Materialia, vol. 66, no. 12, pp. 1030-1033, 2012. [23] M. Razmpoosh et al., 'Liquid metal embrittlement in laser beam welding of Zn-coated 22MnB5 steel,' Materials & Design, vol. 155, pp. 375-383, 2018. [24] M. Abbasi, A. Saeed-Akbari, and M. Naderi, 'The effect of strain rate and deformation temperature on the characteristics of isothermally hot compressed boron-alloyed steel,' Materials Science and Engineering: A, vol. 538, pp. 356-363, 2012. [25] D. Fan, R. Park, Y. Cho, and B. De Cooman, 'Influence of isothermal deformation conditions on the mechanical properties of 22MnB5 HPF steel,' steel research international, vol. 81, no. 4, pp. 292-298, 2010. [26] N. Birks, G. H. Meier, and F. S. Pettit, Introduction to the high temperature oxidation of metals. Cambridge university press, 2006. [27] C. Xu and W. Gao, 'Pilling-Bedworth ratio for oxidation of alloys,' Material Research Innovations, vol. 3, no. 4, pp. 231-235, 2000. [28] E. McCafferty, Introduction to corrosion science. Springer Science & Business Media, 2010. [29] 張裕祺,「表面處理」二版,高立圖書,1990. [30] A. J. Bard, L. R. Faulkner, and H. S. White, Electrochemical methods: fundamentals and applications. John Wiley & Sons, 2022. [31] N. Kanani, Electroplating: basic principles, processes and practice. Elsevier, 2004. [32] N. Mandich, 'Chemistry & Theory of Chromium Deposition: Part 1--Chemistry,' Plating and surface finishing, vol. 84, no. 5, pp. 108-115, 1997. [33] N. Mandich, 'Chemistry & theory of chromium deposition: Part II-Theory of deposition,' Plating and surface finishing, vol. 84, pp. 97-101, 1997. [34] S. Kwon et al., 'Characterization of intermediate Cr-C layer fabricated by electrodeposition in hexavalent and trivalent chromium baths,' Surface and Coatings Technology, vol. 183, no. 2-3, pp. 151-156, 2004. [35] V. S. Protsenko, V. O. Gordiienko, and F. I. Danilov, 'Unusual' chemical' mechanism of carbon co-deposition in Cr-C alloy electrodeposition process from trivalent chromium bath,' Electrochemistry communications, vol. 17, pp. 85-87, 2012. [36] A. Baral and R. Engelken, 'Modeling, optimization, and comparative analysis of trivalent chromium electrodeposition from aqueous glycine and formic acid baths,' Journal of the electrochemical society, vol. 152, no. 7, p. C504, 2005. [37] Z. Zeng, Y. Sun, and J. Zhang, 'The electrochemical reduction mechanism of trivalent chromium in the presence of formic acid,' Electrochemistry Communications, vol. 11, no. 2, pp. 331-334, 2009. [38] J. Wijenberg, M. Steegh, M. Aarnts, K. Lammers, and J. Mol, 'Electrodeposition of mixed chromium metal-carbide-oxide coatings from a trivalent chromium-formate electrolyte without a buffering agent,' Electrochimica Acta, vol. 173, pp. 819-826, 2015. [39] Y. Song and D.-T. Chin, 'Current efficiency and polarization behavior of trivalent chromium electrodeposition process,' Electrochimica Acta, vol. 48, no. 4, pp. 349-356, 2002. [40] D. Lim et al., 'Pulse-reverse electroplating of chromium from Sargent baths: Influence of anodic time on physical and electrochemical properties of electroplated Cr,' International Journal of Refractory Metals and Hard Materials, vol. 89, p. 105213, 2020. [41] C. Lin, C. Lee, F. Chen, C. Chien, P. Lin, and W. Chung, 'Electrodeposition of nickel-phosphorus alloy from sulfamate baths with improved current efficiency,' Journal of The Electrochemical Society, vol. 153, no. 6, p. C387, 2006. [42] F. Chen, Y. Pan, C. Lee, and C. Lin, 'Internal stress control of nickel–phosphorus electrodeposits using pulse currents,' Journal of The Electrochemical Society, vol. 157, no. 3, p. D154, 2010. [43] R. Directive, 'Restriction of Hazardous Substances Directive,' ed: EU, 2002. [44] O. Gharbi, S. Thomas, C. Smith, and N. Birbilis, 'Chromate replacement: what does the future hold?,' npj Materials Degradation, vol. 2, no. 1, pp. 1-8, 2018. [45] V. Protsenko and F. Danilov, 'Chromium electroplating from trivalent chromium baths as an environmentally friendly alternative to hazardous hexavalent chromium baths: comparative study on advantages and disadvantages,' Clean Technologies and Environmental Policy, vol. 16, no. 6, pp. 1201-1206, 2014. [46] L. Xu et al., 'Electroplating of Thick Hard Chromium Coating from a Trivalent Chromium Bath Containing a Ternary Complexing Agent: A Methodological and Mechanistic Study,' ACS Sustainable Chemistry & Engineering, vol. 8, no. 41, pp. 15540-15549, 2020. [47] D. Smart, T. Such, and S. Wake, 'A novel trivalent chromium electroplating bath,' Transactions of the IMF, vol. 61, no. 1, pp. 105-110, 1983. [48] K. Adachi, A. Kitada, K. Fukami, and K. Murase, 'Crystalline chromium electroplating with high current efficiency using chloride hydrate melt-based trivalent chromium baths,' Electrochimica Acta, vol. 338, p. 135873, 2020. [49] X. He, C. Li, Q. Zhu, B. Hou, Y. Jiang, and L. Wu, 'Electrochemical mechanism of Cr (III) reduction for preparing crystalline chromium coatings based on 1-butyl-3-methylimidazolium hydrogen sulfate ionic liquid,' RSC Advances, vol. 4, no. 109, pp. 64174-64182, 2014. [50] A. Smith, A. Watson, and D. Vaughan, 'The role of oligomeric olated species in the deposition rate of chromium from a commercial chromium (III) electrolyte,' Transactions of the IMF, vol. 71, no. 3, pp. 106-112, 1993. [51] H. Khani and J. F. Brennecke, 'Hard chromium composite electroplating on high-strength stainless steel from a Cr (III)-ionic liquid solution,' Electrochemistry Communications, vol. 107, p. 106537, 2019. [52] J. A. Siegel and P. J. Saukko, Encyclopedia of forensic sciences. Academic Press, 2012. [53] X. Pang, K. Gao, H. Yang, L. Qiao, Y. Wang, and A. Volinsky, 'Interfacial microstructure of chromium oxide coatings,' Advanced Engineering Materials, vol. 9, no. 7, pp. 594-599, 2007. [54] V. Raghavan, 'Fe-Zn (iron-zinc),' Journal of phase equilibria, vol. 24, no. 6, pp. 544-545, 2003. [55] M. Pourbaix, 'Atlas of electrochemical equilibria in aqueous solution,' NACE, vol. 307, 1974.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84609-
dc.description.abstract先進高強度鋼通常使用熱沖壓製程來加工成型,熱浸鍍鋅層為一種工程上常用的保護鍍層系統,然而在沃斯田鐵化處理時,熱浸鍍鋅鋼板的鍍鋅層會發生高溫氧化及液態鋅脆化等問題,這些問題會大大影響鋼板的機械性質,進而限縮了應用範圍。 本實驗探討在熱浸鍍鋅鋼板上電鍍三價鉻膜層的抗高溫氧化能力。在三價鉻鍍浴中對熱浸鍍鋅鋼板進行了Cr-C膜層的電鍍,並研究了其在沃斯田鐵化過程中的抗高溫氧化能力。實驗總共使用4種不同電流密度電鍍,電鍍時間從1分鐘到8分鐘,並藉由使用掃描式電子顯微鏡(SEM)、X光射線能量散佈光譜儀(EDS)、X光射線繞射(XRD)分析了Cr-C膜層氧化前後的表面型態、組成成分分析和微結構,使用橫截面SEM比較了高溫熱處理前後膜層的微觀結構,並使用熱重量變化分析儀(TGA)評估膜層在升溫過程中的氧化增重行為。實驗結果顯示,在熱浸鍍鋅鋼板上電鍍Cr-C膜層時間需要至少4分鐘,若電鍍時間太短則會有大面積的裸露區不能被膜層覆蓋,如此會使抗高溫氧化效果低落。三價鉻電鍍膜層並不是膜層越厚抗高溫氧化效果越好,較厚的膜層因含有較多殘留應力,膜層表面會產生許多粗大裂紋,而粗大裂紋並不能有效抑制高溫氧化的進行。因此根據實驗結果,4分鐘的電鍍膜層具有足夠的膜層厚度,也能披覆大多數的面積,裂紋較細小,在高溫氧化實驗下具有最好的抗高溫氧化性能。zh_TW
dc.description.abstractThe hot-dip galvanized layer is a common protective coating system for advanced high-strength steels, which are usually formed and processed by hot stamping process. However, the galvanizing layer of hot-dip galvanized steel sheets is subject to high-temperature oxidation and liquid zinc embrittlement during the austenitization treatment, and these problems greatly affect the mechanical properties of the steel sheets, thus limiting the applications. This experiment investigates the resistance to high-temperature oxidation of trivalent chromium coating on hot-dip galvanized steel plates. The Cr-C coating of hot-dip galvanized steel plates was carried out in a trivalent chromium bath and the resistance to high-temperature oxidation was investigated during the austenitization treatment. The surface morphology, microstructure, and composition of the Cr-C layer before and after oxidation were analyzed by scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), X-ray ray diffraction (XRD), and cross-sectional SEM to compare the surface morphology, microstructure and composition of the layer before and after high-temperature heat treatment. The cross-sectional SEM was used to compare the microstructure of the film layers before and after the high-temperature heat treatment. The experimental results showed that a minimum of 4 minutes is required to electroplate the Cr-C layer on the hot-dip galvanized steel plate. If the electroplating time is too short, there will be large exposed areas that cannot be covered by the coating, which will reduce the effect of high-temperature oxidation resistance. The relation of thicker the layer, the better the anti-high temperature oxidation effect does not exist. The thicker layer contains more residual stress, and the surface of the coating will produce many coarse cracks, and the coarse cracks cannot effectively inhibit high-temperature oxidation. Therefore, according to the experimental results, the 4 minutes electroplated layer has sufficient film thickness, can cover most of the area with smaller cracks, and has the best resistance to high-temperature oxidation after high-temperature oxidation.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:17:29Z (GMT). No. of bitstreams: 1
U0001-2709202209143500.pdf: 10121899 bytes, checksum: f5af8339adf8c5d77eeece2c66110d77 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents目錄 摘要 i Abstract ii 目錄 iv 圖目錄 vii 表目錄 xi 第一章 前言 1 第二章 文獻回顧 2 2.1 熱沖壓製程 2 2.1.1 熱沖壓簡介 2 2.1.2 應用在熱沖壓製程的不同鍍層系統 3 2.1.3 鍍鋅鋼板在熱沖壓製程的問題 5 2.2 高溫氧化理論 6 2.2.1 金屬的氧化機制 6 2.2.2 Pilling-Bedworth ratio 9 2.3 電鍍理論 11 2.4 三價鉻電鍍系統 13 2.4.1 電鍍液 13 2.4.2 電流密度 15 2.4.3 溫度 16 2.4.4 攪拌 16 2.4.5 pH值 17 2.4.6 脈衝電鍍 17 2.4.7 鍍鉻層的性質 18 2.4.8 三價鉻電鍍的挑戰 19 第三章 實驗方法 21 3.1 實驗設計 21 3.2 樣品製備 22 3.2.1 電鍍液配置 22 3.2.2 熱浸鍍鋅鋼板 22 3.3 實驗分析方法 24 3.3.1 光學顯微鏡(Optical microscope,OM) 24 3.3.2 掃描式電子顯微鏡(Scanning electron microscopy,SEM) 24 3.3.3 X 光能量散佈光譜儀(Energy-dispersive X-ray spectroscopy, EDS) 25 3.3.4 X光繞射分析(X-ray diffraction,XRD) 26 3.3.5 熱重分析(Thermogravimetric analysis,TGA) 26 第四章 結果與討論 27 4.1 冷軋鋼板 27 4.1.1 微結構分析 27 4.2 熱浸鍍鋅鋼板 28 4.2.1 微結構分析 28 4.3 熱浸鍍鋅鋼板上電鍍三價鉻膜層 32 4.3.1 Cr-C膜層電鍍1分鐘試樣微結構分析 32 4.3.2 Cr-C膜層電鍍1分鐘高溫氧化後試樣微結構分析 35 4.3.3 Cr-C膜層電鍍2分鐘試樣微結構分析 39 4.3.4 Cr-C膜層電鍍2分鐘高溫氧化後試樣微結構分析 42 4.3.5 Cr-C膜層電鍍4分鐘試樣微結構分析 46 4.3.6 Cr-C膜層電鍍4分鐘高溫氧化後試樣微結構分析 53 4.3.7 Cr-C膜層電鍍8分鐘試樣微結構分析 62 4.3.8 Cr-C膜層電鍍8分鐘高溫氧化後試樣微結構分析 66 4.3.9 在鍍鋅層上電鍍的困難 69 4.3.10 熱重分析 70 第五章 結論 75 第六章 未來展望 76 參考文獻 77
dc.language.isozh-TW
dc.subject高溫氧化zh_TW
dc.subject三價鉻電鍍zh_TW
dc.subject微結構zh_TW
dc.subject熱浸鍍鋅zh_TW
dc.subject熱沖壓zh_TW
dc.subjectHigh temperature oxidationen
dc.subjectHot stamping steelen
dc.subjectGalvanized steelen
dc.subjectTrivalent chromium electroplatingen
dc.subjectMicrostructureen
dc.titleCr-C電鍍層在鍍鋅鋼板之抗高溫氧化研究zh_TW
dc.titleHigh-Temperature Oxidation Resistance of Electrodeposited Cr-C Coating on Galvanized Steelen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee金重勳(Tsung - Shune Chin),顏鴻威(Hung - Wei Yen),葛明德(Ming - Der Ger),李岳聯(Yueh - Lien Lee)
dc.subject.keyword熱沖壓,熱浸鍍鋅,三價鉻電鍍,微結構,高溫氧化,zh_TW
dc.subject.keywordHot stamping steel,Galvanized steel,Trivalent chromium electroplating,Microstructure,High temperature oxidation,en
dc.relation.page85
dc.identifier.doi10.6342/NTU202204141
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
dc.date.embargo-lift2022-09-30-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
U0001-2709202209143500.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
9.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved