Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84377Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 蔡豐羽(Feng-Yu Tsai) | |
| dc.contributor.author | Jen-Hsien Huang | en |
| dc.contributor.author | 黃任賢 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:09:48Z | - |
| dc.date.copyright | 2022-04-26 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-03-25 | |
| dc.identifier.citation | [1] Agency, I. E. World total energy supply by source. https://www.iea.org/reports/key-world-energy-statistics-2020. [2] Agency, I. E., 'Solar Energy Perspectives: Executive Summary'. 2011. [3] Nick Gromicko, C. Advantages of Solar Energy. https://www.nachi.org/advantages-solar-energy.htm. [4] Solar Photovoltaic Cell Basics. https://www.energy.gov/eere/solar/solar-photovoltaic-cell-basics. [5] Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html. [6] Masood, M. T., 'Solution-Processable Compact and Mesoporous Titanium Dioxide Thin Films as Electron-Selective Layers for Perovskite Solar Cells'. 2020. [7] Commision, i. E., 'Terrestrial photovoltaic (PV) modules - Design qualification and type approval - Part 1: Test requirements'. 2021. [8] Ava, T. T.; Al Mamun, A.; Marsillac, S.; Namkoong, G., 'A review: thermal stability of methylammonium lead halide based perovskite solar cells'. Applied Sciences 2019, 9 (1), 188. [9] Juarez-Perez, E. J.; Hawash, Z.; Raga, S. R.; Ono, L. K.; Qi, Y., 'Thermal degradation of CH 3 NH 3 PbI 3 perovskite into NH 3 and CH 3 I gases observed by coupled thermogravimetry–mass spectrometry analysis'. Energy & environmental science 2016, 9 (11), 3406-3410. [10] Mitzi, D.; Liang, K., 'Synthesis, resistivity, and thermal properties of the cubic perovskite NH2CH= NH2SnI3and related systems'. Journal of Solid State Chemistry 1997, 134 (2), 376-381. [11] Brinkmann, K.; Zhao, J.; Pourdavoud, N.; Becker, T.; Hu, T.; Olthof, S.; Meerholz, K.; Hoffmann, L.; Gahlmann, T.; Heiderhoff, R., 'Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells'. Nature communications 2017, 8 (1), 1-9. [12] Wei, J.; Wang, Q.; Huo, J.; Gao, F.; Gan, Z.; Zhao, Q.; Li, H., 'Mechanisms and suppression of photoinduced degradation in perovskite solar cells'. Advanced Energy Materials 2021, 11 (3), 2002326. [13] Bisquert, J.; Juarez-Perez, E. J., The causes of degradation of perovskite solar cells. ACS Publications: 2019; Vol. 10, pp 5889-5891. [14] Xiao, Z.; Dong, Q.; Bi, C.; Shao, Y.; Yuan, Y.; Huang, J., 'Solvent annealing of perovskite‐induced crystal growth for photovoltaic‐device efficiency enhancement'. Advanced Materials 2014, 26 (37), 6503-6509. [15] Zhang, H.; Chiappe, D.; Meersschaut, J.; Conard, T.; Franquet, A.; Nuytten, T.; Mannarino, M.; Radu, I.; Vandervorst, W.; Delabie, A., 'Nucleation and growth mechanisms of Al2O3 atomic layer deposition on synthetic polycrystalline MoS2'. The Journal of Chemical Physics 2017, 146 (5), 052810. [16] Bouriche, O.; Bouzerafa, B.; Kouadri, H.; Djaout, O., 'THE INFLUENCE OF TITANIUM DIOXIDE IN THE PVK MATRIX ON ANTI-BACTERIAL PROPERTIES, ELECTRICAL RESISTANCE AND RESISTANCE TO UV RADIATION'. 2019. [17] Chen, W.; Han, B.; Hu, Q.; Gu, M.; Zhu, Y.; Yang, W.; Zhou, Y.; Luo, D.; Liu, F.-Z.; Cheng, R., 'Interfacial stabilization for inverted perovskite solar cells with long-term stability'. Science Bulletin 2021, 66 (10), 991-1002. [18] Altinkaya, C.; Aydin, E.; Ugur, E.; Isikgor, F. H.; Subbiah, A. S.; De Bastiani, M.; Liu, J.; Babayigit, A.; Allen, T. G.; Laquai, F., 'Tin Oxide Electron‐Selective Layers for Efficient, Stable, and Scalable Perovskite Solar Cells'. Advanced Materials 2021, 33 (15), 2005504. [19] Young, M. J.; Musgrave, C. B.; George, S. M., 'Growth and characterization of Al2O3 atomic layer deposition films on sp2-graphitic carbon substrates using NO2/Trimethylaluminum pretreatment'. ACS Applied Materials & Interfaces 2015, 7 (22), 12030-12037. [20] Brinkmann, K. O.; Gahlmann, T.; Riedl, T., 'Atomic layer deposition of functional layers in planar perovskite solar cells'. Solar Rrl 2020, 4 (1), 1900332. [21] Hultqvist, A.; Jacobsson, T. J.; Svanström, S.; Edoff, M.; Cappel, U. B.; Rensmo, H.; Johansson, E. M.; Boschloo, G.; Törndahl, T., 'SnO x Atomic Layer Deposition on Bare Perovskite—An Investigation of Initial Growth Dynamics, Interface Chemistry, and Solar Cell Performance'. ACS applied energy materials 2021, 4 (1), 510-522. [22] Raiford, J. A.; Boyd, C. C.; Palmstrom, A. F.; Wolf, E. J.; Fearon, B. A.; Berry, J. J.; McGehee, M. D.; Bent, S. F., 'Enhanced nucleation of atomic layer deposited contacts improves operational stability of perovskite solar cells in air'. Advanced Energy Materials 2019, 9 (47), 1902353. [23] Palmstrom, A. F.; Raiford, J. A.; Prasanna, R.; Bush, K. A.; Sponseller, M.; Cheacharoen, R.; Minichetti, M. C.; Bergsman, D. S.; Leijtens, T.; Wang, H. P., 'Interfacial effects of tin oxide atomic layer deposition in metal halide perovskite photovoltaics'. Advanced Energy Materials 2018, 8 (23), 1800591. [24] Yu, X.; Yan, H.; Peng, Q., 'Improve the Stability of Hybrid Halide Perovskite via Atomic Layer Deposition on Activated Phenyl-C61 Butyric Acid Methyl Ester'. ACS applied materials & interfaces 2018, 10 (34), 28948-28954. [25] Lee, W. J.; Bera, S.; Wan, Z.; Dai, W.; Bae, J. S.; Hong, T. E.; Kim, K. H.; Ahn, J. H.; Kwon, S. H., 'Comparative study of the electrical characteristics of ALD‐ZnO thin films using H2O and H2O2 as the oxidants'. Journal of the American Ceramic Society 2019, 102 (10), 5881-5889. [26] Choi, M.-J.; Park, H.-H.; Jeong, D. S.; Kim, J. H.; Kim, J.-S.; Kim, S. K., 'Atomic layer deposition of HfO2 thin films using H2O2 as oxidant'. Applied surface science 2014, 301, 451-455. [27] Seo, S.; Nam, T.; Kim, H.; Shong, B., 'Molecular oxidation of surface–CH3 during atomic layer deposition of Al2O3 with H2O, H2O2, and O3: a theoretical study'. Applied Surface Science 2018, 457, 376-380. [28] Wang, Y.; Kang, K.-M.; Kim, M.; Park, H.-H., 'Oxygen vacancy-passivated ZnO thin film formed by atomic layer deposition using H2O2'. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2018, 36 (3), 031504. [29] Kaufman-Osborn, T.; Chagarov, E. A.; Park, S. W.; Sahu, B.; Siddiqui, S.; Kummel, A. C., 'Atomic imaging and modeling of passivation, functionalization, and atomic layer deposition nucleation of the SiGe (001) surface via H2O2 (g) and trimethylaluminum dosing'. Surface science 2014, 630, 273-279. [30] Ho, M.-Y., 'Atomic-layer-deposited tin oxide thin films as electron-injection and gas-barrier layer for organic-inorganic hybrid lead halide perovskite solar cells'. 2021. [31] Huang, Z.; Wei, M.; Proppe, A. H.; Chen, H.; Chen, B.; Hou, Y.; Ning, Z.; Sargent, E., 'Band Engineering via Gradient Molecular Dopants for CsFA Perovskite Solar Cells'. Advanced Functional Materials 2021, 31 (18), 2010572. [32] Bube, R. H., 'Trap density determination by space‐charge‐limited currents'. Journal of Applied Physics 1962, 33 (5), 1733-1737. [33] Puurunen, R. L., 'Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process'. Journal of applied physics 2005, 97 (12), 9. [34] Choi, D.-w.; Park, J.-S., 'Highly conductive SnO2 thin films deposited by atomic layer deposition using tetrakis-dimethyl-amine-tin precursor and ozone reactant'. Surface and Coatings Technology 2014, 259, 238-243. [35] Mullings, M. N.; Hägglund, C.; Bent, S. F., 'Tin oxide atomic layer deposition from tetrakis (dimethylamino) tin and water'. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2013, 31 (6), 061503. [36] McIntyre, N.; Stanchell, F., 'Preferential sputtering in oxides as metals and revealed by x‐ray photoelectron spectroscopy'. Journal of Vacuum Science and Technology 1979, 16 (2), 798-802. [37] Rein, M.; Hohmann, M.; Thøgersen, A.; Mayandi, J.; Holt, A. O.; Klein, A.; Monakhov, E. V., 'An in situ x-ray photoelectron spectroscopy study of the initial stages of rf magnetron sputter deposition of indium tin oxide on p-type Si substrate'. Applied Physics Letters 2013, 102 (2), 021606. [38] Elam, J. W.; Baker, D. A.; Hryn, A. J.; Martinson, A. B.; Pellin, M. J.; Hupp, J. T., 'Atomic layer deposition of tin oxide films using tetrakis (dimethylamino) tin'. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2008, 26 (2), 244-252. [39] Choi, D.-w.; Maeng, W.; Park, J.-S., 'The conducting tin oxide thin films deposited via atomic layer deposition using Tetrakis-dimethylamino tin and peroxide for transparent flexible electronics'. Applied surface science 2014, 313, 585-590. [40] Ansari, S. A.; Khan, M. M.; Kalathil, S.; Nisar, A.; Lee, J.; Cho, M. H., 'Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm'. Nanoscale 2013, 5 (19), 9238-9246. [41] Ciro, J.; Mesa, S.; Uribe, J. I.; Mejía-Escobar, M. A.; Ramirez, D.; Montoya, J. F.; Betancur, R.; Yoo, H.-S.; Park, N.-G.; Jaramillo, F., 'Optimization of the Ag/PCBM interface by a rhodamine interlayer to enhance the efficiency and stability of perovskite solar cells'. Nanoscale 2017, 9 (27), 9440-9446. [42] Yi, H.; Duan, L.; Haque, F.; Bing, J.; Zheng, J.; Yang, Y.; Mo, A. C.-h.; Zhang, Y.; Xu, C.; Conibeer, G., 'Thiocyanate assisted nucleation for high performance mix-cation perovskite solar cells with improved stability'. Journal of Power Sources 2020, 466, 228320. [43] Jiang, Q.; Rebollar, D.; Gong, J.; Piacentino, E. L.; Zheng, C.; Xu, T., 'Pseudohalide‐induced moisture tolerance in perovskite CH3NH3Pb (SCN) 2I thin films'. Angewandte Chemie 2015, 127 (26), 7727-7730. [44] Lee, S.; Kim, S.; Shin, S.; Jin, Z.; Min, Y.-S., 'Band structure of amorphous zinc tin oxide thin films deposited by atomic layer deposition'. Journal of industrial and engineering chemistry 2018, 58, 328-333. [45] Uda, M.; Nakamura, A.; Yamamoto, T.; Fujimoto, Y., 'Work function of polycrystalline Ag, Au and Al'. Journal of electron spectroscopy and related phenomena 1998, 88, 643-648. [46] Tseng, M.-H.; Su, D.-Y.; Chen, G.-L.; Tsai, F.-Y., 'Nano-Laminated Metal Oxides/Polyamide Stretchable Moisture-and Gas-Barrier Films by Integrated Atomic/Molecular Layer Deposition'. ACS Applied Materials & Interfaces 2021, 13 (23), 27392-27399. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84377 | - |
| dc.description.abstract | 有機無機混合鈣鈦礦太陽能電池具有高效率與易量產的優勢,因此為近年來蓬勃發展的太陽能技術,但其實用性仍受限於其不穩定性。本研究使用原子層沉積技術(ALD)以低溫製備氧化錫(SnOx)薄膜,做為鈣鈦礦太陽能電池之電子傳輸層(ETL)並同時提供鈍化效果,透過沉積溫度、氧化劑前驅物種類、與表面前處理方式的調控,以同時達到高效率與增加穩定性的目標。 在本研究分析之60與80°C兩種低沉積溫度中,80°C沉積的SnOx因為反應完成度較高,所以薄膜本身導電度較佳;但做為鈣鈦礦電池之ETL層時,因為低溫製程有利於SnOx在鈣鈦礦/PCBM緩衝層表面的ALD成核,故以60°C沉積SnOx ETL之元件效率較高,空間電荷限制電流(SCLC)測量結果也指出60°C製備的元件缺陷密度較少。在本研究分析之水與雙氧水兩種不同氧化劑中,雙氧水製備的SnOx 薄膜可達較高反應完成度,使得薄膜本身導電度較佳;但應用於鈣鈦礦電池時,水製程SnOx薄膜製備的元件效率可達15.4%、而雙氧水製程製備的元件效率卻僅達6.1%。經過不同薄膜疊層的交叉比對,我們推測雙氧水製程所沉積之SnOx薄膜可能產生與銀電極之能階不匹配的問題,導致元件效率低下。另外,我們開發了以原位雙氧水前處理、搭配水製程SnOx ETL的元件製備方法,利用雙氧水蒸氣先與鈣鈦礦/PCBM緩衝層表面上的C=O反應而形成-OH官能基,以利接續之水製程SnOx ETL於PCBM表面均勻快速成核,其最高元件效率可達16.4%。在鈍化效果上,此ALD SnOx ETL可顯著提升元件於大氣下之穩定度,將元件於大氣中的效率劣化速率減緩達8.8倍。 | zh_TW |
| dc.description.abstract | Organic-inorganic hybrid perovskite solar cells (PSCs) have the advantages of high efficiency and easy mass production, so they are a booming solar technology in recent years. However, commercialization of PSCs is still limited by their instability, necessitating development of effective passivation techniques. This work studies SnOx films fabricated by atomic layer deposition (ALD) at low processing temperatures as an electron transporting layer (ETL) with passivation function for PSCs, achieving high efficiency and improving the stability of PSCs through manipulating the ALD temperature, type of oxidant precursor, and surface pretreatment method. Of the two ALD temperatures tested, 60 °C and 80 °C, 80 °C resulted in SnOx films with higher electron conductivity due to more complete reaction; however, in terms of ETL performance in PSCs, 60 °C-deposited SnOx yielded higher efficiency, because its lower deposition temperature allowed more complete nucleation of the SnOx ETL on the perovskite/[6,6]-Phenyl C61 butyric acid methyl ester (PCBM) buffer layer. A space charge-limited current (SCLC) analyze also indicated that the PSCs with SnOx deposited at 80 °C have less defect density. Of the two ALD oxidant tested, H2O and H2O2, H2O2 resulted in SnOx films with higher electron conductivity due to more complete reaction; however, in terms of ETL efficiency in PSCs, H2O-deposited SnOx yielded 15.4%, while H2O2-deposited SnOx only yielded 6.1%. After cross-comparison of different film stacks, we found that the H2O2-deposied SnOx film may have a problem of mismatching the energy level of the silver electrode, resulting in low efficiency. Moreover, we developed a device preparation method using in-situ H2O2 pre-treatment and H2O-deposited SnOx ETL, whose highest PCE can reach 16.4%. The mechanism is that H2O2 vapor reacts with C=O on perovskite/PCBM and forms -OH functional groups, and then H2O- SnOx can evenly and quickly nucleate on the PCBM. In terms of passivation effect, the ALD SnOx ETL can significantly improve the stability of the PSCs in the atmosphere, and slow down the degradation rate of the PSCs in the atmosphere by 8.8 times. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:09:48Z (GMT). No. of bitstreams: 1 U0001-2203202211524900.pdf: 2819128 bytes, checksum: a617e5d1ac74792de1e1ee0265f1d30d (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書 i 誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES viii LIST OF TABLES ix Chapter 1 Introduction - 1 - 1.1 Overview of Perovskite Solar Cells - 1 - 1.2 Stability Issue of Perovskite Solar Cells - 5 - Thermally Induced Degradation - 5 - Photo-Induced Degradation - 5 - Moisture-Induced Degradation - 6 - Instability arising from ETL and cathode - 6 - 1.3 Literature Review of Electron Transporting Layer - 7 - 1.4 Atomic Layer Deposition SnOx for Perovskite - 9 - 1.4.1 Mechanism of Atomic Layer Deposition - 9 - 1.4.2 Literature Review of ALD SnOx as the PSC ETL - 13 - 1.5 Objective Statement and Research Methods - 17 - 1.5.1 Objective Statement - 17 - 1.5.2 Research Methods - 17 - Chapter 2 Experimental Details - 18 - 2.1 Materials - 18 - 2.2 Atomic Layer Deposition - 18 - 2.3 Fabrication of ALD SnOx Thin Film - 19 - 2.4 Fabrication of Perovskite Solar Cells - 19 - 2.4 Characteristic and Analysis - 22 - Chapter3 Results and Discussions - 24 - 3.1 Characteristic of SnOx - 24 - 3.2 Effects of ALD Temperatures and Precursors on Device Characteristics of PSCs - 29 - 3.3 Characteristics of PSC Devices with ALD SnOx ETL - 31 - 3.4 Improving ALD SnOx Nucleation with In-Situ H2O2 Vapor Pre-Treatment - 40 - 3.5 Stability of Devices with ALD SnOx - 44 - Chapter 4 Conclusions and Future Works - 45 - 4.1 Conclusions - 45 - 4.2 Future Works - 46 - Reference - 47 - | |
| dc.language.iso | zh-TW | |
| dc.subject | 表面處理 | zh_TW |
| dc.subject | 半導體薄膜 | zh_TW |
| dc.subject | 氧化錫 | zh_TW |
| dc.subject | 鈣鈦礦太陽能電池 | zh_TW |
| dc.subject | 原子層沉積技術 | zh_TW |
| dc.subject | semiconductor thin films | en |
| dc.subject | surface treatment | en |
| dc.subject | tin oxide | en |
| dc.subject | organic-inorganic hybrid perovskite solar cells (PSCs) | en |
| dc.subject | atomic layer deposition (ALD) | en |
| dc.title | 以原子層沉積法製備鈣鈦礦太陽能電池之氧化錫電子傳輸層 | zh_TW |
| dc.title | Atomic-layer-deposited SnOx films as electron-transporting and passivation layers for organic-inorganic hybrid perovskite solar cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳明忠(Ming-Chung Wu),黃裕清(Yu-Ching Huang) | |
| dc.subject.keyword | 原子層沉積技術,鈣鈦礦太陽能電池,氧化錫,半導體薄膜,表面處理, | zh_TW |
| dc.subject.keyword | atomic layer deposition (ALD),organic-inorganic hybrid perovskite solar cells (PSCs),tin oxide,semiconductor thin films,surface treatment, | en |
| dc.relation.page | 51 | |
| dc.identifier.doi | 10.6342/NTU202200649 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-03-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-04-26 | - |
| Appears in Collections: | 材料科學與工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-2203202211524900.pdf Access limited in NTU ip range | 2.75 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
