請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84352完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡豐羽(Feng-Yu Tsai) | |
| dc.contributor.author | CHEN-WEI LI | en |
| dc.contributor.author | 李晨維 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:09:13Z | - |
| dc.date.copyright | 2022-07-05 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-05-18 | |
| dc.identifier.citation | [1] K. Zhang et al., 'The Preparations and Water Vapor Barrier Properties of Polyimide Films Containing Amide Moieties,' Polymers (Basel), vol. 9, no. 12, Dec 5 2017, doi: 10.3390/polym9120677. [2] Y. Cui, S. I. Kundalwal, and S. Kumar, 'Gas barrier performance of graphene/polymer nanocomposites,' Carbon, vol. 98, pp. 313-333, 2016, doi: 10.1016/j.carbon.2015.11.018. [3] J. Lewis, 'Material challenge for flexible organic devices,' Materials Today, vol. 9, no. 4, pp. 38-45, 2006, doi: 10.1016/s1369-7021(06)71446-8. [4] P. Qin, L. Wu, B. Li, N. Li, X. Pan, and J. Dai, 'Superior Gas Barrier Properties of Biodegradable PBST vs. PBAT Copolyesters: A Comparative Study,' Polymers (Basel), vol. 13, no. 19, Oct 8 2021, doi: 10.3390/polym13193449. [5] V. P. Swapna, V. S. Abhisha, and R. Stephen, 'Polymer/polyhedral oligomeric silsesquioxane nanocomposite membranes for pervaporation,' in Polymer Nanocomposite Membranes for Pervaporation, 2020, pp. 201-229. [6] P. K. Sandhya, R. Lakshmipriya, and M. S. Sreekala, 'Gas Permeability Through Thermosets,' in Transport Properties of Polymeric Membranes, 2018, pp. 475-516. [7] F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, 'A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies,' Journal of Materials Chemistry, vol. 19, no. 30, 2009, doi: 10.1039/b823001c. [8] '<Degradation Patterns in Water and Oxygen of an Inverted.pdf>.' [9] M. Schaer, F. Nüesch, D. Berner, W. Leo, and L. Zuppiroli, 'Water Vapor and Oxygen Degradation Mechanisms in Organic Light Emitting Diodes,' Advanced Functional Materials, https://doi.org/10.1002/1616-3028(200104)11:2<116::AID-ADFM116>3.0.CO;2-B vol. 11, no. 2, pp. 116-121, 2001/04/01 2001. [10] K. Norrman, M. V. Madsen, S. A. Gevorgyan, and F. C. Krebs, 'Degradation Patterns in Water and Oxygen of an Inverted Polymer Solar Cell,' Journal of the American Chemical Society, vol. 132, no. 47, pp. 16883-16892, 2010/12/01 2010, doi: 10.1021/ja106299g. [11] G. Choudalakis and A. D. Gotsis, 'Permeability of polymer/clay nanocomposites: A review,' European Polymer Journal, vol. 45, no. 4, pp. 967-984, 2009, doi: 10.1016/j.eurpolymj.2009.01.027. [12] L. E. Nielsen, 'Models for the Permeability of Filled Polymer Systems,' Journal of Macromolecular Science: Part A - Chemistry, vol. 1, no. 5, pp. 929-942, 1967, doi: 10.1080/10601326708053745. [13] E. L. Cussler, S. E. Hughes, W. J. Ward, and R. Aris, 'Barrier membranes,' Journal of Membrane Science, vol. 38, no. 2, pp. 161-174, 1988/08/01/ 1988. [14] B. Tan and N. L. Thomas, 'A review of the water barrier properties of polymer/clay and polymer/graphene nanocomposites,' Journal of Membrane Science, vol. 514, pp. 595-612, 2016, doi: 10.1016/j.memsci.2016.05.026. [15] T. T. Zhu, C. H. Zhou, F. B. Kabwe, Q. Q. Wu, C. S. Li, and J. R. Zhang, 'Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites,' Applied Clay Science, vol. 169, pp. 48-66, 2019, doi: 10.1016/j.clay.2018.12.006. [16] W.-S. Jang, I. Rawson, and J. C. Grunlan, 'Layer-by-layer assembly of thin film oxygen barrier,' Thin Solid Films, vol. 516, no. 15, pp. 4819-4825, 2008, doi: 10.1016/j.tsf.2007.08.141. [17] A. García, S. Eceolaza, M. Iriarte, C. Uriarte, and A. Etxeberria, 'Barrier character improvement of an amorphous polyamide (Trogamid) by the addition of a nanoclay,' Journal of Membrane Science, vol. 301, no. 1-2, pp. 190-199, 2007, doi: 10.1016/j.memsci.2007.06.018. [18] W. Yu, L. Sisi, Y. Haiyan, and L. Jie, 'Progress in the functional modification of graphene/graphene oxide: a review,' RSC Advances, vol. 10, no. 26, pp. 15328-15345, 2020, doi: 10.1039/d0ra01068e. [19] K. S. Andrikopoulos, G. Bounos, D. Tasis, L. Sygellou, V. Drakopoulos, and G. A. Voyiatzis, 'The Effect of Thermal Reduction on the Water Vapor Permeation in Graphene Oxide Membranes,' Advanced Materials Interfaces, vol. 1, no. 8, 2014, doi: 10.1002/admi.201400250. [20] R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, 'Unimpeded Permeation of Water Through Helium-Leak–Tight Graphene-Based Membranes,' Science, vol. 335, no. 6067, pp. 442-444, 2012, doi: doi:10.1126/science.1211694. [21] H. Kim, Y. Miura, and C. W. Macosko, 'Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity,' Chemistry of Materials, vol. 22, no. 11, pp. 3441-3450, 2010, doi: 10.1021/cm100477v. [22] J. Cho, I. Jeon, S. Y. Kim, S. Lim, and J. Y. Jho, 'Improving Dispersion and Barrier Properties of Polyketone/Graphene Nanoplatelet Composites via Noncovalent Functionalization Using Aminopyrene,' ACS Appl Mater Interfaces, vol. 9, no. 33, pp. 27984-27994, Aug 23 2017, doi: 10.1021/acsami.7b10474. [23] W. Chen, H. Weimin, D. Li, S. Chen, and Z. Dai, 'A critical review on the development and performance of polymer/graphene nanocomposites,' Science and Engineering of Composite Materials, vol. 25, no. 6, pp. 1059-1073, 2018, doi: 10.1515/secm-2017-0199. [24] A. T. Lawal and E. AlShamaileh, 'Recent progress in graphene based polymer nanocomposites,' Cogent Chemistry, vol. 6, no. 1, 2020, doi: 10.1080/23312009.2020.1833476. [25] J. Yang et al., 'Improved mechanical and functional properties of elastomer/graphite nanocomposites prepared by latex compounding,' Acta Materialia, vol. 55, no. 18, pp. 6372-6382, 2007, doi: 10.1016/j.actamat.2007.07.043. [26] Y. Zhan, J. Wu, H. Xia, N. Yan, G. Fei, and G. Yuan, 'Dispersion and Exfoliation of Graphene in Rubber by an Ultrasonically-Assisted Latex Mixing and In situ Reduction Process,' Macromolecular Materials and Engineering, vol. 296, no. 7, pp. 590-602, 2011, doi: 10.1002/mame.201000358. [27] O. Vryonis, T. M. Harrell, T. Andritsch, A. S. Vaughan, and P. L. Lewin, 'Solvent Mixing and Its Effect on Epoxy Resin Filled with Graphene Oxide,' in 2018 IEEE 2nd International Conference on Dielectrics (ICD), 1-5 July 2018 2018, pp. 1-4, doi: 10.1109/ICD.2018.8514728. [28] A. O’Neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. N. Coleman, 'Graphene Dispersion and Exfoliation in Low Boiling Point Solvents,' The Journal of Physical Chemistry C, vol. 115, no. 13, pp. 5422-5428, 2011, doi: 10.1021/jp110942e. [29] J. Zhu, C. Abeykoon, and N. Karim, 'Investigation into the effects of fillers in polymer processing,' International Journal of Lightweight Materials and Manufacture, vol. 4, no. 3, pp. 370-382, 2021, doi: 10.1016/j.ijlmm.2021.04.003. [30] L.-C. Tang, L. Zhao, F. Qiang, Q. Wu, L.-X. Gong, and J.-P. Peng, 'Chapter Twelve - Mechanical Properties of Rubber Nanocomposites Containing Carbon Nanofillers,' in Carbon-Based Nanofillers and Their Rubber Nanocomposites, S. Yaragalla, R. K. Mishra, S. Thomas, N. Kalarikkal, and H. J. Maria Eds.: Elsevier, 2019, pp. 367-423. [31] G. Gonçalves et al., 'Graphene oxide modified with PMMA via ATRP as a reinforcement filler,' Journal of Materials Chemistry, vol. 20, no. 44, 2010, doi: 10.1039/c0jm01674h. [32] S. Paszkiewicz and A. Szymczyk, 'Chapter 6 - Graphene-Based Nanomaterials and Their Polymer Nanocomposites,' in Nanomaterials and Polymer Nanocomposites, N. Karak Ed.: Elsevier, 2019, pp. 177-216. [33] C. Chen et al., 'High-performance epoxy/binary spherical alumina composite as underfill material for electronic packaging,' Composites Part A: Applied Science and Manufacturing, vol. 118, pp. 67-74, 2019, doi: 10.1016/j.compositesa.2018.12.019. [34] P. L. Teh, M. Jaafar, H. M. Akil, K. N. Seetharamu, A. N. R. Wagiman, and K. S. Beh, 'Thermal and mechanical properties of particulate fillers filled epoxy composites for electronic packaging application,' Polymers for Advanced Technologies, vol. 19, no. 4, pp. 308-315, 2008, doi: 10.1002/pat.1014. [35] K. Li, N. Huo, X. Liu, J. Cheng, and J. Zhang, 'Effects of the furan ring in epoxy resin on the thermomechanical properties of highly cross-linked epoxy networks: a molecular simulation study,' RSC Advances, vol. 6, no. 1, pp. 769-777, 2016, doi: 10.1039/c5ra22955c. [36] S. Perumal, R. Atchudan, and I. W. Cheong, 'Recent Studies on Dispersion of Graphene-Polymer Composites,' Polymers (Basel), vol. 13, no. 14, Jul 20 2021, doi: 10.3390/polym13142375. [37] M. J. Fernández-Merino et al., 'Investigating the influence of surfactants on the stabilization of aqueous reduced graphene oxide dispersions and the characteristics of their composite films,' Carbon, vol. 50, no. 9, pp. 3184-3194, 2012, doi: 10.1016/j.carbon.2011.10.039. [38] S.-Z. Zu and B.-H. Han, 'Aqueous Dispersion of Graphene Sheets Stabilized by Pluronic Copolymers: Formation of Supramolecular Hydrogel,' The Journal of Physical Chemistry C, vol. 113, no. 31, pp. 13651-13657, 2009/08/06 2009, doi: 10.1021/jp9035887. [39] S. S. Shazali et al., 'Investigation of the thermophysical properties and stability performance of non-covalently functionalized graphene nanoplatelets with Pluronic P-123 in different solvents,' Materials Chemistry and Physics, vol. 206, pp. 94-102, 2018, doi: 10.1016/j.matchemphys.2017.12.008. [40] K. Yin, Q. Liu, L. Wang, S. Zhou, B. Liu, and H. Li, 'Thermo-responsive graphene dispersions by liquid phase exfoliation of graphite aided by an alkylated Percec monodendron,' Science China Materials, vol. 60, no. 4, pp. 343-351, 2017, doi: 10.1007/s40843-016-9011-1. [41] A. Ciesielski and P. Samori, 'Supramolecular Approaches to Graphene: From Self-Assembly to Molecule-Assisted Liquid-Phase Exfoliation,' Adv Mater, vol. 28, no. 29, pp. 6030-51, Aug 2016, doi: 10.1002/adma.201505371. [42] J. Phiri, P. Gane, and T. C. Maloney, 'High-concentration shear-exfoliated colloidal dispersion of surfactant–polymer-stabilized few-layer graphene sheets,' Journal of Materials Science, vol. 52, no. 13, pp. 8321-8337, 2017, doi: 10.1007/s10853-017-1049-y. [43] S. Yoon and I. In, 'Role of poly(N-vinyl-2-pyrrolidone) as stabilizer for dispersion of graphene via hydrophobic interaction,' Journal of Materials Science, vol. 46, no. 5, pp. 1316-1321, 2010, doi: 10.1007/s10853-010-4917-2. [44] '<Aqueous Dispersion of Graphene Sheets Stabilized by Pluronic Copolymers Formation of.pdf>.' [45] J. Fan et al., 'Structure dependence of water vapor permeation in polymer nanocomposite membranes investigated by positron annihilation lifetime spectroscopy,' Journal of Membrane Science, vol. 549, pp. 581-587, 2018, doi: 10.1016/j.memsci.2017.12.046. [46] B. S. Bouakaz, I. Pillin, A. Habi, and Y. Grohens, 'Synergy between fillers in organomontmorillonite/graphene–PLA nanocomposites,' Applied Clay Science, vol. 116-117, pp. 69-77, 2015/11/01/ 2015, doi: [47] V. Loryuenyong, C. Saewong, C. Aranchaiya, and A. Buasri, 'The Improvement in Mechanical and Barrier Properties of Poly(Vinyl Alcohol)/Graphene Oxide Packaging Films,' Packaging Technology and Science, https://doi.org/10.1002/pts.2149 vol. 28, no. 11, pp. 939-947, 2015/11/01 2015, [48] C.-C. Lai and C.-T. Lo, 'Preparation of Nanostructural Carbon Nanofibers and Their Electrochemical Performance for Supercapacitors,' Electrochimica Acta, vol. 183, pp. 85-93, 2015/11/20/ 2015, doi: [49] Z. Yang, H. Guo, C. Kang, and L. Gao, 'Enhanced gas barrier properties of polymer substrates for flexible OLEDs by adjusting the backbone rigidity and incorporating 2D nanosheets,' New Journal of Chemistry, vol. 45, no. 29, pp. 12945-12956, 2021, doi: 10.1039/d1nj01671g. [50] Y. Zhao et al., 'Biodegradable intelligent film for food preservation and real-time visual detection of food freshness,' Food Hydrocolloids, vol. 129, 2022, doi: 10.1016/j.foodhyd.2022.107665. [51] J. Jin, R. Rafiq, Y. Q. Gill, and M. Song, 'Preparation and characterization of high performance of graphene/nylon nanocomposites,' European Polymer Journal, vol. 49, no. 9, pp. 2617-2626, 2013/09/01/ 2013. [52] S. Y. Jung and K. W. Paik, 'Effects of alignment of graphene flakes on water permeability of graphene-epoxy composite film,' in 2014 IEEE 64th Electronic Components and Technology Conference (ECTC), 27-30 May 2014 2014, pp. 2255-2259, doi: 10.1109/ECTC.2014.6897618. [53] H. Kwon, D. Kim, J. Seo, and H. Han, 'Enhanced moisture barrier films based on EVOH/exfoliated graphite (EGn) nanocomposite films by solution blending,' Macromolecular Research, vol. 21, no. 9, pp. 987-994, 2013/09/01 2013, doi: 10.1007/s13233-013-1124-4. [54] J. You, B. Oh, Y. S. Yun, and H.-J. Jin, 'Improvement in Barrier Properties Using a Large Lateral Size of Exfoliated Graphene Oxide,' Macromolecular Research, vol. 28, no. 8, pp. 709-713, 2020, doi: 10.1007/s13233-020-8089-x. [55] H.-D. Huang, P.-G. Ren, J. Chen, W.-Q. Zhang, X. Ji, and Z.-M. Li, 'High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films,' Journal of Membrane Science, vol. 409-410, pp. 156-163, 2012/08/01/ 2012. [56] N. Yousefi et al., 'Highly aligned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: Mechanical properties and moisture permeability,' Composites Part A: Applied Science and Manufacturing, vol. 49, pp. 42-50, 2013/06/01/ 2013. [57] C.-H. Chang et al., 'Novel anticorrosion coatings prepared from polyaniline/graphene composites,' Carbon, vol. 50, no. 14, pp. 5044-5051, 2012/11/01/ 2012. [58] I. H. Tseng, M.-H. Tsai, and C.-W. Chung, 'Flexible and Transparent Polyimide Films Containing Two-Dimensional Alumina Nanosheets Templated by Graphene Oxide for Improved Barrier Property,' ACS Applied Materials & Interfaces, vol. 6, no. 15, pp. 13098-13105, 2014/08/13 2014, doi: 10.1021/am502962b. [59] I. H. Tseng, Y.-F. Liao, J.-C. Chiang, and M.-H. Tsai, 'Transparent polyimide/graphene oxide nanocomposite with improved moisture barrier property,' Materials Chemistry and Physics, vol. 136, no. 1, pp. 247-253, 2012/09/14/ 2012. [60] J. Wei et al., 'Effect of silane functionalized graphene prepared by a supercritical carbon dioxide process on the barrier properties of polyethylene terephthalate composite films,' RSC Adv, vol. 9, no. 38, pp. 21903-21910, Jul 11 2019, doi: 10.1039/c9ra02479d. [61] M. Periolatto, M. Sangermano, and P. R. Spena, 'Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties,' 2016. [62] M.-H. Tsai, C.-J. Chang, H.-H. Lu, Y.-F. Liao, and I. H. Tseng, 'Properties of magnetron-sputtered moisture barrier layer on transparent polyimide/graphene nanocomposite film,' Thin Solid Films, vol. 544, pp. 324-330, 2013/10/01/ 2013. [63] K.-H. Liao, S. Aoyama, A. A. Abdala, and C. Macosko, 'Does Graphene Change Tg of Nanocomposites?,' Macromolecules, vol. 47, no. 23, pp. 8311-8319, 2014, doi: 10.1021/ma501799z. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84352 | - |
| dc.description.abstract | 由於石墨烯具有不透性、疏水性和非常大的長寬比等獨特優勢,石墨烯/高分子奈米複合材料成為一種很有前途的封裝材料,可滿足敏感性電子產品所需的阻氣要求,然而石墨烯/高分子奈米複合材料的發展一直受到限制,因為石墨烯之間擁有很強的內聚力,使其難以均勻分散在高分子基質中。本研究開發了能夠均勻分散高濃度且具有大長寬比的石墨烯的無溶劑環氧樹脂配方,再利用原位聚合製備出高阻水氣性質的複合材料。藉由測試一系列含有對石墨烯高親和性結構的環氧樹脂單體,找出有最佳的分散能力的單體,其中雙酚 A 二縮水甘油醚(DGEBA-377, Mn ~ 377)和雙酚 A 丙氧基化二縮水甘油醚(BPDG)因為含有苯環結構,因此具有很好的石墨烯分散性,最後再添加二亞乙基三胺 (DETA) 硬化劑來將石墨烯/環氧樹脂單體混合物固化。根據實驗結果,與純高分子膜相比,加入石墨烯後的高分子複合材料薄膜水氣滲透速率(WVTR)下降98.3%,遠比過去關於石墨烯/高分子之阻水氣的相關文獻還多。另外,我們發現在環氧樹脂單體中加入微量聚乙烯吡咯烷酮 (PVP) 作為分散穩定劑 (DSA) 可使石墨烯分散性進一步提升,DGEBA-377/DETA/PVP 配方因具有大量的苯基再加上 PVP 的 DSA 效應增強了石墨烯的分散性,相較未加入石墨烯的薄膜,阻氣性達到了前所未有的提升,WVTR 下降比例大於 99.5%,而在DSC的分析中發現添加石墨烯後,材料的玻璃轉移溫度(Tg)提高了,這是因為石墨烯片在基質中的侷限效應(confinement effects)限制了高分子鏈的移動。根據實驗結果,我們證明了一種非常有前景的方法來製備高性能且無溶劑的高分子密封劑,能夠應用於電子元件或其他產品。 | zh_TW |
| dc.description.abstract | Graphene/polymer nanocomposites are a promising type of encapsulant material for achieving high moisture/gas-barrier performance required for sensitive electronic devices, thanks to graphene’s unique advantages of impermeability, hydrophobicity, and large aspect ratio. However, development of graphene/polymer nanocomposites has been impeded by graphene’s resistance to dispersing in a polymer matrix due to its exceptionally strong cohesive forces. This study developed solvent-less epoxy precursor formulations capable of uniformly dispersing high concentrations of pristine, non-oxidized, and large-aspect-ratio graphene, which allowed facile fabrication of graphene/epoxy polymer nanocomposite films with excellent moisture-barrier properties via in-situ polymerization. By testing a range of epoxy precursors containing structural moieties with potentially high affinity to graphene, bisphenol A diglycidyl ether (average molecular weight ~377) (DGEBA-377) and bisphenol A propoxylate diglycidyl ether (BPDG) were identified as possessing high graphene dispersibility. Facile in-situ polymerization of the graphene/epoxy precursor mixtures was achieved by the addition of diethylenetriamine (DETA) as a hardener. The graphene dispersibility of the precursor formulations was found to further improved upon the introduction of a trace amount of polyvinylpyrrolidone (PVP) to serve as a dispersion-stabilizing agent (DSA). The nanocomposite films upon optimization of their graphene content exhibited fractional WVTR reductions of > 98.3% compared with the unreinforced epoxy polymers, which were on par or far superior to literature results on graphene/polymer nanocomposite moisture-barrier films. Notably, the DGEBA-377/DETA/PVP formulation achieved an unprecedented level of fractional WVTR reduction at > 99.5% owing to its enhanced graphene dispersibility as a result of its abundance of phenyl moieties as well as the DSA effects of PVP. DSC analyses revealed that the Tg‘s of the nanocomposites were distinctly elevated relative to their unreinforced polymer matrices, which was attributed to the confinement effects of the graphene reinforcements. Our results demonstrate a highly promising approach to fabricating high-performance, solvent-less, polymer-based encapsulants for electronics and other applications. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:09:13Z (GMT). No. of bitstreams: 1 U0001-1805202214281100.pdf: 3724783 bytes, checksum: e2038e4bbd5da7f7aa4805401c768279 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1 1.1 Overview of gas barriers 1 1.2 Polymer-based composite film 2 1.2.1 Overview of polymer-based encapsulation 2 1.2.2 Clay-based polymer nanocomposite for gas barrier 7 1.2.3 Graphene-based polymer nanocomposite for gas barrier 10 1.2.4 Approach to blend fillers into polymer: In-situ polymerization 15 1.3 Research approach 17 1.3.1 Epoxy encapsulation system 17 1.3.2 Selection of monomer 19 1.3.3 Dispersion-stabilizing agents 23 1.4 Motivation and objective statements 25 Chapter 2 Experiment Methods 27 2.1 Materials 27 2.2 Dispersibility test 29 2.3 Preparation of epoxy/graphene films 31 2.4 The WVTR prediction with Cussler’s model 32 2.5 Characterization 33 2.5.1 Water vapor transmission rate measurement 33 2.5.2 Differential scanning calorimetry measurement 33 2.5.2 Other characterization 34 Chapter 3 Result and discussion 35 3.1 Dispersibility of graphene in epoxy precursors 35 3.2 Fabrication of graphene/epoxy composites 39 3.2.1 Determination of curing conditions 39 3.2.2 Dispersibility of graphene in graphene/epoxy composites 41 3.3 Moisture-barrier properties of graphene/epoxy nanocomposite films 45 3.4 Glass transition temperatures of the graphene/epoxy nanocomposites 50 Chapter 4 Conclusion 52 | |
| dc.language.iso | en | |
| dc.subject | 封裝 | zh_TW |
| dc.subject | 水氣滲透率 | zh_TW |
| dc.subject | 原位聚合 | zh_TW |
| dc.subject | 高分子複合材料 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | encapsulation | en |
| dc.subject | graphene | en |
| dc.subject | polymer composite | en |
| dc.subject | water vapor transmission rate | en |
| dc.subject | in-situ polymerization | en |
| dc.title | 以原位聚合製備高阻氣性環氧樹脂/石墨烯複合材料 | zh_TW |
| dc.title | Preparation of High-performance Gas Barrier Epoxy/graphene Nanocomposite via In-situ Polymerization | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 羅世強(Shyh-Chyang Luo),童世煌(Shih-Huang Tung) | |
| dc.subject.keyword | 石墨烯,高分子複合材料,水氣滲透率,原位聚合,封裝, | zh_TW |
| dc.subject.keyword | graphene,polymer composite,water vapor transmission rate,in-situ polymerization,encapsulation, | en |
| dc.relation.page | 59 | |
| dc.identifier.doi | 10.6342/NTU202200775 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-05-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-05 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1805202214281100.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
