Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84072
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘敏雄(Min-Hsiung Pan)
dc.contributor.authorTai-Ling Chuehen
dc.contributor.author闕岱伶zh_TW
dc.date.accessioned2023-03-19T21:30:43Z-
dc.date.copyright2022-10-19
dc.date.issued2022
dc.date.submitted2022-09-23
dc.identifier.citationAbenavoli, L., Scarpellini, E., Colica, C., Boccuto, L., Salehi, B., Sharifi-Rad, J., Aiello, V., Romano, B., De Lorenzo, A., Izzo, A. A., & Cappaso, R. (2019). Gut microbiota and obesity: a role for probiotics. Nutrients, 11, 2690. Aghdaei, H. A., Kadijani, A. A., Sorrentino, D., Mirzaei, A., Shahrokh, S., Balaii, H., Geraci, M., & Zali, M. R. (2018). An increased Bax/Bcl-2 ratio in circulating inflammatory cells predicts primary response to infliximab in inflammatory bowel disease patients. United European Gastroenterol Journal, 6, 1074-1081. Ahluwalia, B., Moraes, L., Magnusson, M. K., & ?hman, L. (2018). Immunopathogenesis of inflammatory bowel disease and mechanisms of biological therapies. Scandinavian Journal of Gastroenterology, 53, 379-389. Akinwumi, B., Bordun, K. A., & Anderson, H. (2018). Biological activities of stilbenoids. International Journal of Molecular Sciences, 19, 792. Al-Sadi, R., Boivin, M., & Ma, T. (2009). Mechanism of cytokine modulation of epithelial tight junction barrier. Frontiers in Bioscience: a Journal and Virtual Library, 14, 2765-2778. Al-Sadi, R., Guo, S., Ye, D., Rawat, M., & Ma, T. Y. (2016). TNF-α modulation of intestinal tight junction permeability is mediated by NIK/IκK-α axis activation of the canonical NF-κB pathway. The American Journal of Pathology, 186, 1151-1165. Al-Sadi, R., Khatib, K., Guo, S., Ye, D., Youssef, M., & Ma, T. (2011). Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. American Journal of Physiology-Gastrointestinal and Liver Physiology, 300, G1054-G1064. Alam, M. T., Amos, G. C. A., Murphy, A. R. J., Murch, S., Wellington, E. M. H., & Arasaradnam, R. P. (2020). Microbial imbalance in inflammatory bowel disease patients at different taxonomic levels. Gut Pathogens, 12, 1. Almeida, L., Vaz-da-Silva, M., Falc?o, A., Soares, E., Costa, R., Loureiro, A. I., Fernandes-Lopes, C., Rocha, J. F., Nunes, T., Wright, L., & Soares-da-Silva, P. (2009). Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Molecular Nutrition & Food Research, 53, S7-S15. Alrafas, H. R., Busbee, P. B., Nagarkatti, M., & Nagarkatti, P. S. (2019). Resveratrol modulates the gut microbiota to prevent murine colitis development through induction of Tregs and suppression of Th17 cells. Journal of Leukocyte Biology 106, 467-480. Ananthakrishnan, A. N. (2015). Epidemiology and risk factors for IBD. Nature Reviews Gastroenterology & Hepatology, 12, 205-217. Anderson, R. C., Cookson, A. L., McNabb, W. C., Park, Z., McCann, M. J., Kelly, W. J., & Roy, N. C. (2010). Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiology, 10, 316. Bailey, S. A., Zidell, R. H., & Perry, R. W. (2004). Relationships between organ weight and body/brain weight in the rat: what is the best analytical endpoint? Toxicologic Pathology, 32, 448-466. Balestrieri, P., Ribolsi, M., Guarino, M. P. L., Emerenziani, S., Altomare, A., & Cicala, M. (2020). Nutritional aspects in inflammatory bowel diseases. Nutrients, 12, 372. Barone, M., Chain, F., Sokol, H., Brigidi, P., Berm?dez-Humar?n, L., Langella, P., & Martin, R. (2018). A versatile new model of chemically induced chronic colitis using an outbred murine strain. Frontiers in Microbiology, 9, 565. Basso, P. J., C?mara, N. O. S., & Sales-Campos, H. (2018). Microbial-based therapies in the treatment of inflammatory bowel disease-an overview of human studies. Frontiers in Pharmacology, 9, 1571. Bauer, C., Duewell, P., Mayer, C., Lehr, H. A., Fitzgerald, K. A., Dauer, M., Tschopp, J., Endres, S., Latz, E., & Schnurr, M. (2010). Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut, 59, 1192-1199. Beaugerie, L., & Itzkowitz, S. H. (2015). Cancers complicating inflammatory bowel disease. New England Journal of Medicine, 372, 1441-1452. Becker, C., Watson, A. J., & Neurath, M. F. (2013). Complex roles of caspases in the pathogenesis of inflammatory bowel disease. Gastroenterology, 144, 283-293. Bernardi, S., Del Bo', C., Marino, M., Gargari, G., Cherubini, A., Andr?s-Lacueva, C., Hidalgo-Liberona, N., Peron, G., Gonz?lez-Dominguez, R., Kroon, P., Kirkup, B., Porrini, M., Guglielmetti, S., & Riso, P. (2020). Polyphenols and intestinal permeability: rationale and future perspectives. Journal of Agricultural and Food Chemistry, 68, 1816-1829. Blander, J. M. (2019). A new approach for inflammatory bowel disease therapy. Nature Medicine, 25, 545-546. Bolton, J. L., & Dunlap, T. (2017). Formation and biological targets of quinones: cytotoxic versus cytoprotective effects. Chemical Research in Toxicology, 30, 13-37. Borges, L. V., Mattar, R., Silva, J. M. K. D., Silva, A. L. W. D., Carrilho, F. J., & Hashimoto, C. L. (2018). Fecal occult blood: a comparison of chemical and immunochemical tests. Arquivos de Gastroenterologia, 55, 128-132. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. Bronte, V., & Pittet, M. J. (2013). The spleen in local and systemic regulation of immunity. Immunity, 39, 806-818. Buela, K. A., De Salvo, C., Havran, H., Hager, C., Di Martino, L., Cominelli, F., Ghannoum, M., & Pizarro, T. (2020). NOD2 promotes protective responses and recovery from Candida tropicalis infection in dextran sodium sulfate (DSS) colitic mice. The Journal of Immunology, 204, 231. Byndloss, M. X., Olsan, E. E., Rivera-Ch?vez, F., Tiffany, C. R., Cevallos, S. A., Lokken, K. L., Torres, T. P., Byndloss, A. J., Faber, F., Gao, Y., Litvak, Y., Lopez, C. A., Xu, G., Napoli, E., Giulivi, C., Tsolis, R. M., Revzin, A., Lebrilla, C. B., & B?umler, A. J. (2017). Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science, 357, 570-575. Cai, Z., Wang, S., & Li, J. (2021). Treatment of inflammatory bowel disease: a comprehensive review. Frontiers in Medicine, 8, 765474. Cani, P. D., Depommier, C., Derrien, M., Everard, A., & de Vos, W. M. (2022). Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nature Reviews Gastroenterology & Hepatology. Caruso, R., Lo, B. C., & N??ez, G. (2020). Host–microbiota interactions in inflammatory bowel disease. Nature Reviews Immunology, 20, 411-426. Chang, C. J., Wang, P. C., Huang, T. C., & Taniguchi, A. (2019). Change in renal glomerular collagens and glomerular filtration barrier-related proteins in a dextran sulfate sodium-induced colitis mouse model. International Journal of Molecular Sciences, 20, 1458. Chassaing, B., Aitken, J. D., Malleshappa, M., & Vijay-Kumar, M. (2014). Dextran sulfate sodium (DSS)-induced colitis in mice. Current Protocols in Immunology, 104, 15.25.11-15.25.14. Chassaing, B., Kumar, M., Baker, M. T., Singh, V., & Vijay-Kumar, M. (2014). Mammalian gut immunity. Biomedical Journal, 37, 246-258. Chelakkot, C., Ghim, J., & Ryu, S. H. (2018). Mechanisms regulating intestinal barrier integrity and its pathological implications. Experimental & Molecular Medicine, 50, 1-9. Chen, L. Z., Zhang, X. X., Liu, M. M., Wu, J., Ma, D., Diao, L. Z., Li, Q., Huang, Y. S., Zhang, R., Ruan, B. F., & Liu, X. H. (2021). Discovery of novel pterostilbene-based derivatives as potent and orally active NLRP3 inflammasome inhibitors with inflammatory activity for colitis. Journal of Medicinal Chemistry, 64, 13633-13657. Chen, Y., Zhou, J., & Wang, L. (2021). Role and mechanism of gut microbiota in human disease. Frontiers in Cellular and Infection Microbiology, 11, 625913. Cheng, T. C., Lai, C. S., Chung, M. C., Kalyanam, N., Majeed, M., Ho, C. T., Ho, Y. S., & Pan, M. H. (2014). Potent anti-cancer effect of 3′-hydroxypterostilbene in human colon xenograft tumors. PLoS one, 9, e111814. Chou, J. W., Lai, H. C., Chang, C. H., Cheng, K. S., Feng, C. L., & Chen, T. W. (2019). Epidemiology and clinical outcomes of inflammatory bowel disease: a hospital-based study in Central Taiwan. Gastroenterology Research and Practice, 2019, 4175923. Contreras, T. C., Ricciardi, E., Cremonini, E., & Oteiza, P. I. (2015). (-)-Epicatechin in the prevention of tumor necrosis alpha-induced loss of Caco-2 cell barrier integrity. Archives of Biochemistry and Biophysics, 573, 84-91. Cooper, H. S., Murthy, S. N., Shah, R. S., & Sedergran, D. J. (1993). Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Laboratory Investigation, 69, 238-249. Cosnes, J., Gower-Rousseau, C., Seksik, P., & Cortot, A. (2011). Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology, 140, 1785-1794. Craig, E. A., Yan, Z., & Zhao, Q. J. (2015). The relationship between chemical-induced kidney weight increases and kidney histopathology in rats. Journal of Applied Toxicology, 35, 729-736. Cremonini, E., Mastaloudis, A., Hester, S. N., Verstraeten, S. V., Anderson, M., Wood, S. M., Waterhouse, A. L., Fraga, C. G., & Oteiza, P. I. (2017). Anthocyanins inhibit tumor necrosis alpha-induced loss of Caco-2 cell barrier integrity. Food & Function, 8, 2915-2923. Crespo, I., San-Miguel, B., Prause, C., Marroni, N., Cuevas, M. J., Gonz?lez-Gallego, J., & Tu??n, M. J. (2012). Glutamine treatment attenuates endoplasmic reticulum stress and apoptosis in TNBS-induced colitis. PLoS one, 7, e50407. Danese, S., Colombel, J. F., Peyrin-Biroulet, L., Rutgeerts, P., & Reinisch, W. (2013). Review article: the role of anti-TNF in the management of ulcerative colitis – past, present and future. Alimentary Pharmacology & Therapeutics, 37, 855-866. De Fazio, L., Cavazza, E., Spisni, E., Strillacci, A., Centanni, M., Candela, M., Pratic?, C., Campieri, M., Ricci, C., & Valerii, M. C. (2014). Longitudinal analysis of inflammation and microbiota dynamics in a model of mild chronic dextran sulfate sodium-induced colitis in mice. World Journal of Gastroenterology, 20, 2051-2061. Delgado, M. E., Grabinger, T., & Brunner, T. (2016). Cell death at the intestinal epithelial front line. The FEBS Journal, 283, 2701-2719. Den Besten, G., Van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D. J., & Bakker, B. M. (2013). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research, 54, 2325-2340. Dhawan, P., Ahmad, R., Chaturvedi, R., Smith, J. J., Midha, R., Mittal, M. K., Krishnan, M., Chen, X., Eschrich, S., Yeatman, T. J., Harris, R. C., Washington, M. K., Wilson, K. T., Beauchamp, R. D., & Singh, A. B. (2011). Claudin-2 expression increases tumorigenicity of colon cancer cells: role of epidermal growth factor receptor activation. Oncogene, 30, 3234-3247. Dinkova-Kostova, A. T., & Wang, X. J. (2011). Induction of the Keap1/Nrf2/ARE pathway by oxidizable diphenols. Chemico-Biological Interactions, 192, 101-106. Eichele, D. D., & Kharbanda, K. K. (2017). Dextran sodium sulfate colitis murine model: an indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World Journal of Gastroenterology, 23, 6016-6029. Erben, U., Loddenkemper, C., Doerfel, K., Spieckermann, S., Haller, D., Heimesaat, M. M., Zeitz, M., Siegmund, B., & K?hl, A. A. (2014). A guide to histomorphological evaluation of intestinal inflammation in mouse models. International Journal of Clinical and Experimental Pathology, 7, 4557-4576. Escaffit, F., Boudreau, F., & Beaulieu, J. F. (2005). Differential expression of claudin-2 along the human intestine: Implication of GATA-4 in the maintenance of claudin-2 in differentiating cells. Journal of Cellular Physiology, 203, 15-26. Fan-Jiang, P. Y., Lee, P. S., Nagabhushanam, K., Ho, C. T., & Pan, M. H. (2021). Pterostilbene attenuates high-fat diet and dextran sulfate sodium-induced colitis via suppressing inflammation and intestinal fibrosis in mice. Journal of Agricultural and Food Chemistry, 69, 7093-7103. Fanning, A. S., Itallie, C. M. V., & Anderson, J. M. (2012). Zonula occludens-1 and -2 regulate apical cell structure and the zonula adherens cytoskeleton in polarized epithelia. Molecular Biology of the Cell, 23, 577-590. Feighery, L. M., Cochrane, S. W., Quinn, T., Baird, A. W., O’Toole, D., Owens, S. E., O’Donoghue, D., Mrsny, R. J., & Brayden, D. J. (2008). Myosin light chain kinase inhibition: correction of increased intestinal epithelial permeability in vitro. Pharmaceutical Research, 25, 1377-1386. Furuse, M., Hirase, T., Itoh, M., Nagafuchi, A., Yonemura, S., Tsukita, S., & Tsukita, S. (1993). Occludin: a novel integral membrane protein localizing at tight junctions. Journal of Cell Biology, 123, 1777-1788. G?nther, C., Martini, E., Wittkopf, N., Amann, K., Weigmann, B., Neumann, H., Waldner, M. J., Hedrick, S. M., Tenzer, S., Neurath, M. F., & Becker, C. (2011). Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis. Nature, 477, 335-339. Gareb, B., Otten, A. T., Frijlink, H. W., Dijkstra, G., & Kosterink, J. G. W. (2020). Review: Local tumor necrosis factor-α inhibition in inflammatory bowel disease. Pharmaceutics, 12, 539. Genua, F., Raghunathan, V., Jenab, M., Gallagher, W. M., & Hughes, D. J. (2021). The role of gut barrier dysfunction and microbiome dysbiosis in colorectal cancer development. Frotiers in Oncology, 11, 626349. Ghosh, S. S., Wang, J., Yannie, P. J., & Ghosh, S. (2020). Intestinal barrier dysfunction, LPS translocation, and disease development. Journal of the Endocrine Society 4, bvz039. Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. The Journal of Nutrition, 125, 1401-1412. Giery?ska, M., Szulc-D?browska, L., Struzik, J., Mielcarska, M. B., & Gregorczyk-Zboroch, K. P. (2022). Integrity of the intestinal barrier: the involvement of epithelial cells and microbiota-a mutual relationship. Animals (Basel), 12, 145. Gong, Z., Zhao, S., Zhou, J., Yan, J., Wang, L., Du, X., Li, H., Chen, Y., Cai, W., & Wu, J. (2018). Curcumin alleviates DSS-induced colitis via inhibiting NLRP3 inflammsome activation and IL-1β production. Molecular Immunology, 104, 11-19. Graham, W. V., Wang, F., Clayburgh, D. R., Cheng, J. X., Yoon, B., Wang, Y., Lin, A., & Turner, J. R. (2006). Tumor necrosis factor-induced long myosin light chain kinase transcription is regulated by differentiation-dependent signaling events. Characterization of the human long myosin light chain kinase promoter. Journal of Biological Chemistry, 281, 26205-26215. Grant, D. M. (1991). Detoxification pathways in the liver. Journal of Inherited Metabolic Disease, 14, 421-430. Haas, K. N., & Blanchard, J. L. (2017). Kineothrix alysoides, gen. nov., sp. nov., a saccharolytic butyrate-producer within the family Lachnospiraceae. International Journal of Systematic and Evolutionary Microbiology, 67, 402-410. Hasnan, J., Yusof, M. I., Damitri, T. D., Faridah, A. R., Adenan, A. S., & Norbaini, T. H. (2010). Relationship between apoptotic markers (Bax and Bcl-2) and biochemical markers in type 2 diabetes mellitus. Singapore Medical Journal, 51, 50-55. He, Y., Li, X., Yu, H., Ge, Y., Liu, Y., Qin, X., Jiang, M., & Wang, X. (2019). The functional role of fecal microbiota transplantation on dextran sulfate sodium-induced colitis in mice. Frontiers in Cellular and Infection Microbiology, 9, 393. Heller, F., Florian, P., Bojarski, C., Richter, J., Christ, M., Hillenbrand, B., Mankertz, J., Gitter, A. H., B?rgel, N., Fromm, M., Zeitz, M., Fuss, I., Strober, W., & Schulzke, J. D. (2005). Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology, 129, 550-564. Hern?ndez-Chirlaque, C., Aranda, C. J., Oc?n, B., Capit?n-Ca?adas, F., Ortega-Gonz?lez, M., Carrero, J. J., Su?rez, M. D., Zarzuelo, A., S?nchez de Medina, F., & Mart?nez-Augustin, O. (2016). Germ-free and antibiotic-treated mice are highly susceptible to epithelial injury in DSS colitis. Journal of Crohn's and Colitis, 10, 1324-1335. Hiraishi, K., Zhao, F., Kurahara, L. H., Li, X., Yamashita, T., Hashimoto, T., Matsuda, Y., Sun, Z., Zhang, H., & Hirano, K. (2022). Lactulose modulates the structure of gut microbiota and alleviates colitis-associated tumorigenesis. Nutrients, 14, 649. Hossen, I., Hua, W., Ting, L., Mehmood, A., Jingyi, S., Duoxia, X., Yanping, C., Hongqing, W., Zhipeng, G., Kaiqi, Z., Fang, Y., & Junsong, X. (2020). Phytochemicals and inflammatory bowel disease: a review. Critical Reviews in Food Science and Nutrition, 60, 1321-1345. Hu, J. C. E., Wei?, F., Bojarski, C., Branchi, F., Schulzke, J. D., Fromm, M., & Krug, S. M. (2021). Expression of tricellular tight junction proteins and the paracellular macromolecule barrier are recovered in remission of ulcerative colitis. BMC Gastroenterology, 21, 141. Hu, N., Huang, Y., Gao, X., Li, S., Yan, Z., Wei, B., & Yan, R. (2017). Effects of dextran sulfate sodium induced experimental colitis on cytochrome P450 activities in rat liver, kidney and intestine. Chemico-Biological Interactions, 271, 48-58. Hua, F., Shi, L., & Zhou, P. (2022). Phenols and terpenoids: natural products as inhibitors of NLRP3 inflammasome in cardiovascular diseases. Inflammopharmacology, 30, 137-147. Huda-Faujan, N., Abdulamir, A. S., Fatimah, A. B., Anas, O. M., Shuhaimi, M., Yazid, A. M., & Loong, Y. Y. (2010). The impact of the level of the intestinal short chain fatty acids in inflammatory bowel disease patients versus healthy subjects. The Open Biochemistry Journal, 4, 53-58. Iablokov, S. N., Klimenko, N. S., Efimova, D. A., Shashkova, T., Novichkov, P. S., Rodionov, D. A., & Tyakht, A. V. (2020). Metabolic phenotypes as potential biomarkers for linking gut microbiome with inflammatory bowel diseases. Frontiers in Molecular Biosciences, 7, 603740. Ichim, G., & Tait, S. W. G. (2016). A fate worse than death: apoptosis as an oncogenic process. Nature Reviews Cancer, 16, 539-548. Ishida, T., Matsui, H., Matsuda, Y., Hosomi, R., Shimono, T., Kanda, S., Nishiyama, T., Fukunaga, K., & Yoshida, M. (2022). Oyster (Crassostrea gigas) extract attenuates dextran sulfate sodium-induced acute experimental colitis by improving gut microbiota and short-chain fatty acids compositions in mice. Foods, 11, 373. Itallie, C. M. V., & Anderson, J. M. (2006). Claudins and epithelial paracellular transport. Annual Review of Physiology, 68, 403-429. Jeong, S. O., Son, Y., Lee, J. H., Cheong, Y. K., Park, S. H., Chung, H. T., & Pae, H. O. (2015). Resveratrol analog piceatannol restores the palmitic acid-induced impairment of insulin signaling and production of endothelial nitric oxide via activation of anti-inflammatory and antioxidative heme oxygenase-1 in human endothelial cells. Molecular Medicine Reports, 12, 937-944. Jia, P., Ji, S., Zhang, H., Chen, Y., & Wang, T. (2020). Piceatannol ameliorates hepatic oxidative damage and mitochondrial dysfunction of weaned piglets challenged with diquat. Animals (Basel), 10, 1239. Jiang, X. T., Peng, X., Deng, G. H., Sheng, H. F., Wang, Y., Zhou, H. W., & Tam, N. F. (2013). Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microbial Ecology, 66, 96-104. Jin, C., & Flavell, R. A. (2010). Molecular mechanism of NLRP3 inflammasome activation. Journal of Clinical Immunology, 30, 628-631. Jin, J. (2014). Inflammatory bowel disease. The Journal of the American Medical Association, 311, 2034-2034. Kabeerdoss, J., Jayakanthan, P., Pugazhendhi, S., & Ramakrishna, B. S. (2015). Alterations of mucosal microbiota in the colon of patients with inflammatory bowel disease revealed by real time polymerase chain reaction amplification of 16S ribosomal ribonucleic acid. The Indian Journal of Medical Research, 142, 23-32. Kaplan, G. G. (2015). The global burden of IBD: from 2015 to 2025. Nature Reviews Gastroenterology & Hepatology, 12, 720-727. Kaplan, G. G., & Windsor, J. W. (2021). The four epidemiological stages in the global evolution of inflammatory bowel disease. Nature Reviews Gastroenterology & Hepatology, 18, 56-66. Kawakami, S., Morinaga, M., Tsukamoto-Sen, S., Mori, S., Matsui, Y., & Kawama, T. (2021). Constituent characteristics and functional properties of passion fruit seed extract. Life, 12, 38. Kershaw, J., & Kim, K. H. (2017). The therapeutic potential of piceatannol, a natural stilbene, in metabolic diseases: a review. Journal of Medicinal Food, 20, 427-438. Khan, I., Ullah, N., Zha, L., Bai, Y., Khan, A., Zhao, T., Che, T., & Zhang, C. (2019). Alteration of gut microbiota in inflammatory bowel disease (IBD): Cause or consequence? IBD treatment targeting the gut microbiome. Pathogens, 8, 126. Khodapasand, E., Jafarzadeh, N., Farrokhi, F., Kamalidehghan, B., & Houshmand, M. (2015). Is Bax/Bcl-2 ratio considered as a prognostic marker with age and tumor location in colorectal cancer? Iranian Biomedical Journal, 19, 69-75. Kim, S. H., Lee, W., Kwon, D., Lee, S., Son, S. W., Seo, M. S., Kim, K. S., Lee, Y. H., Kim, S., & Jung, Y. S. (2020). Metabolomic analysis of the liver of a dextran sodium sulfate-induced acute colitis mouse model: implications of the gut-liver connection. Cells, 9, 341. Kim, W. R., Flamm, S. L., Di Bisceglie, A. M., & Bodenheimer, H. C. (2008). Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease. Hepatology, 47, 1363-1370. Kimura, Y. (2022). Long-term oral administration of piceatannol (3,5,3′,4′-tetrahydroxystilbene) attenuates colon tumor growth induced by azoxymethane plus dextran sulfate sodium in C57BL/6J mice. Nutrition and Cancer, 74, 2184-2195. Kobayashi, T., Siegmund, B., Le Berre, C., Wei, S. C., Ferrante, M., Shen, B., Bernstein, C. N., Danese, S., Peyrin-Biroulet, L., & Hibi, T. (2020). Ulcerative colitis. Nature Reviews Disease Primers, 6, 74. Koelink, P. J., Wildenberg, M. E., Stitt, L. W., Feagan, B. G., Koldijk, M., Van ‘t Wout, A. B., Atreya, R., Vieth, M., Brandse, J. F., Duijst, S., Te Velde, A. A., D’Haens, G. R. A. M., Levesque, B. G., & Van den Brink, G. R. (2018). Development of reliable, valid and responsive scoring systems for endoscopy and histology in animal models for inflammatory bowel disease. Journal of Crohn's and Colitis, 12, 794-803. Koh, Y. C., Ho, C. T., & Pan, M. H. (2021). Recent advances in health benefits of stilbenoids. Journal of Agricultural and Food Chemistry, 69, 10036-10057. Koh, Y. C., Lin, S. J., Nagabhushanam, K., Ho, C. T., & Pan, M. H. (2022). The anti-obesity and anti-inflammatory capabilities of pterostilbene and its colonic metabolite pinostilbene protect against tight junction disruption from western diet feeding. Molecular Nutrition & Food Research, 66, 2200146. Kong, R., Luo, H., Wang, N., Li, J., Xu, S., Chen, K., Feng, J., Wu, L., Li, S., Liu, T., Lu, X., Xia, Y., Shi, Y., Zhou, Y., He, W., Dai, Q., Zheng, Y., & Lu, J. (2018). Portulaca extract attenuates development of dextran sulfate sodium induced colitis in mice through activation of PPARγ. PPAR Research, 2018, 6079101. Kong, S., Zhang, Y. H., & Zhang, W. (2018). Regulation of intestinal epithelial cells properties and functions by amino acids. BioMed Research International, 2018, 2819154. Kotla, N. G., Isa, I. L. M., Rasala, S., Demir, S., Singh, R., Baby, B. V., Swamy, S. K., Dockery, P., Jala, V. R., Rochev, Y., & Pandit, A. (2022). Modulation of gut barrier functions in ulcerative colitis by hyaluronic acid system. Advanced Science, 9, 2103189. Kulsoom, B., Shamsi, T., Afsar, N., Memon, Z., Ahmed, N., & Hasnain, S. (2018). Bax, Bcl-2, and Bax/Bcl-2 as prognostic markers in acute myeloid leukemia: are we ready for Bcl-2-directed therapy? Cancer Management and Research, 10, 403-416. Kumar, M., Garand, M., & Al Khodor, S. (2019). Integrating omics for a better understanding of inflammatory bowel disease: a step towards personalized medicine. Journal of Translational Medicine, 17, 419. Kumari, R., Ahuja, V., & Paul, J. (2013). Fluctuations in butyrate-producing bacteria in ulcerative colitis patients of North India. World Journal of Gastroenterology, 19, 3404-3414. Lai, C. S., Yang, G. L., Li, S. M., Lee, P. S., Wang, B. N., Chung, M. C., Nagabhushanam, K., Ho, C. T., & Pan, M. H. (2017). 3′-hydroxypterostilbene suppresses colitis-associated tumorigenesis by inhibition of IL-6/STAT3 signaling in mice. Journal of Agricultural and Food Chemistry, 65, 9655-9664. Lamb, C. A., Kennedy, N. A., Raine, T., Hendy, P. A., Smith, P. J., Limdi, J. K., Hayee, B., Lomer, M. C. E., Parkes, G. C., Selinger, C., Barrett, K. J., Davies, R. J., Bennett, C., Gittens, S., Dunlop, M. G., Faiz, O., Fraser, A., Garrick, V., Johnston, P. D., Parkes, M., Sanderson, J., Terry, H., Gaya, D. R., Iqbal, T. H., Taylor, S. A., Smith, M., Brookes, M., Hansen, R., & Hawthorne, A. B. (2019). British society of gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut, 68, s1-s106. Lao, L., Yang, G., Zhang, A., Liu, L., Guo, Y., Lian, L., Pan, D., & Wu, Z. (2022). Anti-inflammation and gut microbiota regulation properties of fatty acids derived from fermented milk in mice with dextran sulfate sodium-induced colitis. Journal of Dairy Science, 105, 7865-7877. Larrosa, M., Ya??z-Gasc?n, M. J., Selma, M. V., Gonz?lez-Sarr?as, A., Toti, S., Cer?n, J. J., Tom?s-Barber?n, F., Dolara, P., & Esp?n, J. C. (2009). Effect of a low dose of dietary resveratrol on colon microbiota, inflammation and tissue damage in a DSS-induced colitis rat model. Journal of Agricultural and Food Chemistry, 57, 2211-2220. Latz, E., Xiao, T. S., & Stutz, A. (2013). Activation and regulation of the inflammasomes. Nature Reviews Immunology, 13, 397-411. Lavelle, A., & Sokol, H. (2020). Gut microbiota-derived metabolites as key factors in inflammatory bowel disease. Nature Reviews Gastroenterology & Hepatology, 17, 223-237. Lee, B., Moon, K. M., & Kim, C. Y. (2018). Tight junction in the intestinal epithelium: its association with diseases and regulation by phytochemicals. Journal of Immunology Research, 2018, 1-11. Lee, C., Kim, B. G., Kim, J. H., Chun, J., Im, J. P., & Kim, J. S. (2017). Sodium butyrate inhibits the NF-κB signaling pathway and histone deacetylation, and attenuates experimental colitis in an IL-10 independent manner. International Immunopharmacology, 51, 47-56. Lee, P. S., Chiou, Y. S., Nagabhushanam, K., Ho, C. T., & Pan, M. H. (2020). 3′-hydroxypterostilbene potently alleviates obesity exacerbated colitis in mice. Journal of Agricultural and Food Chemistry, 68, 5365-5374. Leonardi, I., Gerstgrasser, A., Schmidt, T. S. B., Nicholls, F., Tewes, B., Greinwald, R., von Mering, C., Rogler, G., & Frey-Wagner, I. (2017). Preventive Trichuris suis ova (TSO) treatment protects immunocompetent rabbits from DSS colitis but may be detrimental under conditions of immunosuppression. Scientific Reports, 7, 16500-16500. Li, D., Ding, S., Luo, M., Chen, J., Zhang, Q., Liu, Y., Li, A., Zhong, S., & Ding, J. (2022). Differential diagnosis of acute and chronic colitis in mice by optical coherence tomography. Quantitative Imaging in Medicine and Surgery, 12, 3193-3203. Li, F., Wang, Q., Han, Y., Song, M., Cai, X., Goulette, T., & Xiao, H. (2021). Dietary pterostilbene inhibited colonic inflammation in dextran-sodium-sulfate-treated Mice: a perspective of gut microbiota. Infectious Microbes & Diseases, 3, 22-29. Li, Z., Gao, M., Yang, B., Zhang, H., Wang, K., Liu, Z., Xiao, X., & Yang, M. (2018). Naringin attenuates MLC phosphorylation and NF-κB activation to protect sepsis-induced intestinal injury via RhoA/ROCK pathway. Biomedicine & Pharmacotherapy, 103, 50-58. Li, Z., Guo, J., & Bi, L. (2020). Role of the NLRP3 inflammasome in autoimmune diseases. Biomedicine & Pharmacotherapy, 130, 110542. Li, Z. F., Zhang, S., Huang, Y., Xia, X. M., Li, A. M., Pan, D., Zhang, W., & Wang, J. (2008). Morphological changes of blood spleen barrier in portal hypertensive spleen. Chinese Medical Journal, 121, 561-565. Liu, C., Zeng, Y., Wen, Y., Huang, X., & Liu, Y. (2022). Natural products modulate cell apoptosis: a promising way for the treatment of ulcerative colitis. Frontiers in Pharmacology, 13, 806148. Liu, T., Zhang, L., Joo, D., & Sun, S. C. (2017). NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2, 17023. Lu, P. D., & Zhao, Y. H. (2020). Targeting NF-κB pathway for treating ulcerative colitis: comprehensive regulatory characteristics of Chinese medicines. Chinese Medicine, 15, 15. Luo, Y. H., Lan, C., Xie, K. H., Li, H., Devillard, E., He, J., Liu, L., Cai, J. Y., Tian, G., Wu, A. M., Ren, Z. H., Chen, D. W., Yu, B., Huang, Z. Q., Zheng, P., Mao, X. B., Yu, J., Luo, J. Q., Yan, H., Wang, Q. Y., Wang, H. F., & Tang, J. Y. (2021). Active or autoclaved Akkermansia muciniphila relieves TNF-α-induced inflammation in intestinal epithelial cells through distinct pathways. Frontiers in Immunology, 12, 788638. M?ller, M., Hermes, G. D. A., Canfora, E. E., Smidt, H., Masclee, A. A. M., Zoetendal, E. G., & Blaak, E. E. (2020). Distal colonic transit is linked to gut microbiota diversity and microbial fermentation in humans with slow colonic transit. American Journal of Physiology-Gastrointestinal and Liver Physiology, 318, G361-G369. Ma, T. Y., Boivin, M. A., Ye, D., Pedram, A., & Said, H. M. (2005). Mechanism of TNF-α modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light-chain kinase protein expression. American Journal of Physiology-Gastrointestinal and Liver Physiology, 288, G422-G430. Ma, Z. J., Li, X., Li, N., & Wang, J. H. (2002). Stilbenes from Sphaerophysa salsula. Fitoterapia, 73, 313-315. Maguire, M., & Maguire, G. (2019). Gut dysbiosis, leaky gut, and intestinal epithelial proliferation in neurological disorders: towards the development of a new therapeutic using amino acids, prebiotics, probiotics, and postbiotics. Reviews in the Neurosciences, 30, 179-201. Marchiando, A. M., Shen, L., Graham, W. V., Edelblum, K. L., Duckworth, C. A., Guan, Y., Montrose, M. H., Turner, J. R., & Watson, A. J. M. (2011). The epithelial barrier is maintained by in vivo tight junction expansion during pathologic intestinal epithelial shedding. Gastroenterology, 140, 1208-1218. Marier, J. F., Vachon, P., Gritsas, A., Zhang, J., Moreau, J. P., & Ducharme, M. P. (2002). Metabolism and disposition of resveratrol in rats: extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model. Journal of Pharmacology and Experimental Therapeutics, 302, 369-373. Martinon, F., Burns, K., & Tschopp, J. (2002). The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of pro-IL-beta. Molecular Cell, 10, 417-426. Mart?n, R., Chain, F., Miquel, S., Motta, J. P., Vergnolle, N., Sokol, H., & Langella, P. (2017). Using murine colitis models to analyze probiotics–host interactions. FEMS Microbiology Reviews, 41, S49-S70. Matsui, Y., Sugiyama, K., Kamei, M., Takahashi, T., Suzuki, T., Katagata, Y., & Ito, T. (2010). Extract of passion fruit (Passiflora edulis) seed containing high amounts of piceatannol inhibits melanogenesis and promotes collagen synthesis. Journal of Agricultural and Food Chemistry, 58, 11112-11118. Melgar, S., Karlsson, A., & Micha?lsson, E. (2005). Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation. American Journal of Physiology-Gastrointestinal and Liver Physiology, 288, G1328-G1338. Melgar, S., Karlsson, L., Rehnstr?m, E., Karlsson, A., Utkovic, H., Jansson, L., & Micha?lsson, E. (2008). Validation of murine dextran sulfate sodium-induced colitis using four therapeutic agents for human inflammatory bowel disease. International Immunopharmacology, 8, 836-844. Miao, F., Shan, C., Ma, T., Geng, S., & Ning, D. (2021). Walnut oil alleviates DSS-induced colitis in mice by inhibiting NLRP3 inflammasome activation and regulating gut microbiota. Microbial Pathogenesis, 154, 104866. Michael, B., Yano, B., Sellers, R. S., Perry, R., Morton, D., Roome, N., Johnson, J. K., & Schafer, K. (2007). Evaluation of organ weights for rodent and non-rodent yoxicity studies: a review of regulatory guidelines and a survey of current practices. Toxicologic Pathology, 35, 742-750. Mohammad, S.,
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84072-
dc.description.abstract發炎性腸道疾病已被視為一項全球性的疾病,主要受到工業化國家生活方式西化及環境因子的影響。腸道屏障損傷是造成腸炎持續惡化的主因,而腸道屏障主要受到上皮緊密結合蛋白 (tight junction, TJ) 的支持。普遍而言,TJ 的損傷早於疾病進程,而腸道屏障功能喪失也受到促發炎細胞激素分泌及腸道菌相紊亂的影響,因此維持腸道屏障的完整性被視為腸炎的治療標的。雖然目前已有許多藥物用於治療腸炎,然而長期使用卻會引發諸多副作用,因此許多植化素已被作為腸炎的疾病預防策略。?類化合物 (stilbenoids) 是廣泛存在於葡萄、百香果、花生等植物中的酚類物質,已被證實具有抗氧化、抗發炎、抗癌等生物活性,其中又以白皮杉醇 (piceatannol. PIC) 及三羥基紫檀? (3′-hydroxypterostilbene, HPSB) 被認為具有相對良好的生物活性,然而兩者改善腸道屏障受損的相關機制仍有待釐清。因此本實驗旨在探討 PIC 及 HPSB 是否具有保護腸道屏障以緩解腸炎的能力,首先利用 TNF-α 誘導的細胞模型模擬腸道發炎環境,評估 PIC 及 HPSB 抗發炎及保護腸道屏障之潛力,再藉由 dextran sulfate sodium (DSS) 誘導的腸炎模式評估兩者調控分子機制、腸道菌相以改善腸炎的效果。細胞實驗結果顯示,PIC 與 HPSB 皆顯著下調 p-p65/p65 表現量,並且降低腸道上皮細胞單層的通透性。而在 DSS 誘導之 ICR 小鼠,則發現 PIC 與 HPSB 皆能顯著抑制 TNF-α/NF-κB/MLC 路徑及降低 NLRP3 發炎小體活化緩解發炎反應,但僅有 PIC 顯著調節 TJ 組成,推測可能與 PIC 更可顯著抑制腸道上皮細胞凋亡蛋白 bax/bcl-2 及 caspase-3 活化有關。從腸道菌相分析結果則觀察到 PIC 與 HPSB 皆能調節腸道菌相,提高 Akkermansiaceae、Lactobacillus intestinalis 等益菌,並下調 Spiroplasmataceae、Acholeplasmataceae 等害菌。由 LEfSe 分析則顯示介入 PIC 的組別,以丁酸鹽產生菌作為標識菌種,由此推測 PIC 尚具有增加短鏈脂肪酸合成之潛力,而可提供上皮細胞能量來源,以維持腸道屏障之構造。綜上所述,PIC 顯著降低發炎反應、抑制細胞凋亡,並調節腸道菌相,而相較 HPSB 更能夠維持腸道屏障的完整性,在未來具有作為腸炎化學預防製劑之潛力。zh_TW
dc.description.abstractInflammatory bowel disease (IBD) has emerged as a global disease, which is attributed to westernized lifestyle and other environmental factors in industrialized countries. Research has indicated that the disruption of gut barrier plays a crucial role in the development of colitis, and it is mainly supported by epithelial tight junctions (TJs). Commonly, TJs are impaired substantially precede the development of the disease. Besides, gut barrier dysfunction also affected by pro-inflammatory cytokines production and gut microbiota dysbiosis. Thus, maintaining gut barrier integrity is considered as the therapeutic target in colitis. Many synthetic drugs are currently in use to treat IBD; however, long-term usage of these drugs results in many complications. Hence, lots of phytochemical compounds have been proven as preventive strategy for IBD treatment. Stilbenoids are a group of phenolic compounds present in various plants, such as grape, passionfruit, and peanuts, which exert diverse bioactivities ranging from anti-oxidant, anti-inflammation, and cancer prevention. Among them, piceatannol (PIC) and 3′-hydroxypterostilbene (HPSB) are considered to have relatively good bioactivities. However, the mechanisms of PIC and HPSB on ameliorating gut barrier dysfunction haven’t been fully investigated. Therefore, we aimed to evaluate the ability of PIC and HPSB on gut barrier protection to reduce the severity of colitis. Firstly, we used TNF-α induced cell model to examine the anti-inflammatory and gut protection effect of PIC and HPSB, then used a DSS-induced colitis mice model to clarify the effect of both compounds on underlying mechanisms and microbiota modulation. Results obtained from in vitro experiments showed that, both of PIC and HPSB downregulated p-p65/p65 expression and decreased the permeability of intestinal epithelial monolayer. In contrast, in DSS-induced colitis ICR mice, both of PIC and HPSB could attenuate inflammation through inhibiting TNF-α/NF-κB/MLC pathway and reducing NLRP3 inflammasome activation. However, PIC was comparably effective in TJs modulation. The results may attribute to the effect of PIC on reducing cell apoptosis associated protein expression, including bax/bcl-2 and caspase-3 activation. Furthermore, the result of microbiota analysis showed that both of PIC and HPSB could increase the representative probiotics, including Akkermansiaceae and Lactobacillus intestinalis. On the other hand, supplementation of PIC and HPSB exhibited inhibitory effects on the several bacteria species (at family level) with undesired effect, including Spiroplasmataceae and Acholeplasmataceae. Based on LEfSe analysis, butyrate-producing bacteria was regarded as a biomarker in PIC group, so we speculated that PIC has the capability to increase short chain fatty acid production and can be used as an energy source for epithelial cell. In conclusion, the results demonstrated that PIC reduced inflammation, inhibited cell apoptosis, and regulated microbiota composition. Consequently, PIC is more effective on maintaining gut barrier integrity, and it will be a promising ingredient applied to the development of functional food for colitis prevention.en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:30:43Z (GMT). No. of bitstreams: 1
U0001-2109202201174400.pdf: 8890787 bytes, checksum: deece5f5932610c0dd2c53c49fccc397 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 I 謝誌 II 摘要 IV Abstract V 目錄 VII 附圖索引 XI 附表索引 XII 圖目錄 XIII 縮寫表 XIV 第一章、 文獻回顧 1 第一節、 發炎性腸道疾病 1 (一)、 定義 1 (二)、 流行病學概況 2 (三)、 致病因素 5 (四)、 腸道發炎反應 6 (五)、 腸道屏障 8 (六)、 腸道屏障受損相關機制 11 (七)、 發炎小體活化對於發炎性腸道疾病之影響 12 (八)、 腸道上皮細胞凋亡對於發炎性腸道疾病之影響 14 (九)、 腸道菌相及短鏈脂肪酸與發炎性腸道疾病之關聯 16 (十)、 治療方式 18 第二節、 誘導結腸炎之動物模式 20 (一)、DSS 之特性與作用機制 20 (二)、DSS 之使用方式 21 第三節、 ?類化合物 (Stilbenoids) 22 (一)、 簡介 22 (二)、 白皮杉醇 (Piceatannol) 23 (三)、 三羥基紫檀? (3′-hydroxypterostilbene) 24 第二章、 實驗目的與架構 25 第一節、 實驗目的 25 第二節、 實驗架構 25 (一)、 細胞實驗 25 (二)、 動物實驗 26 第三章、 材料與方法 28 第一節、 實驗材料 28 (一)、 樣品及誘導劑 28 (二)、 藥品試劑 28 (三)、 分析套組 29 (四)、 實驗耗材 29 (五)、 儀器設備 29 (六)、 抗體 31 第二節、 細胞實驗 (in vitro) 方法 32 (一)、 細胞株 32 (二)、 培養液及試藥製備 32 (三)、 細胞培養 33 (四)、 樣品製備 35 (五)、 細胞存活率試驗 (MTT assay) 36 (六)、 細胞蛋白質萃取 37 (七)、 跨上皮電阻試驗 (Transepithelial electrical resistance, TEER) 38 (八)、 細胞旁通透性測試 39 第三節、 動物實驗 (in vivo) 方法 40 (一)、 動物品系與飼養環境 40 (二)、 動物實驗組別設計 40 (三)、 疾病活動指數 (Disease activity index, DAI) 41 (四)、 動物犧牲 43 (五)、 血液生化數值分析 43 (六)、 細胞激素測定 43 (七)、 腸道通透性試驗 46 (八)、 組織切片 46 (九)、 蘇木精-伊紅染色 (hematoxylin and eosin stain, H&E stain) 48 (十)、 免疫螢光染色 (Immunofluorescence stain, IF stain) 50 (十一)、 組織均質及蛋白質萃取 53 (十二)、 蛋白質定量 54 (十三)、 西方墨點法 54 (十四)、 微生物體全長 16S 定序分析 58 (十五)、 短鏈脂肪酸含量分析 59 第四節、 統計分析 61 第四章、 結果與討論 62 第一節、 細胞實驗 62 (一)、 ?類化合物與 TNF-α 對 NCM460 細胞毒性分析 62 (二)、 ?類化合物抑制發炎反應相關蛋白表現量之比較 64 (三)、 PIC 與 HPSB 對 TNF-α 誘導 Caco-2 腸道上皮細胞通透性 之影響 67 第二節、 動物實驗 70 (一)、 PIC 與 HPSB對 DSS 誘導之 ICR 小鼠體重、攝食量及飲水 量之影響 70 (二)、 PIC 與 HPSB 對 DSS 誘導之 ICR 小鼠結腸炎疾病活動指數 及受損程度之影響 72 (三)、 PIC 與 HPSB 對 DSS 誘導之 ICR 小鼠臟器重量之影響 77 (四)、 PIC 與 HPSB 對 DSS 誘導之 ICR 小鼠血清生化值之影響 80 (五)、 PIC 與 HPSB 對 DSS 誘導之 ICR 小鼠腸道通透性之影響 82 (六)、 PIC 與 HPSB 對 DSS 誘導之 ICR 小鼠腸道發炎之影響 86 (七)、 PIC 與 HPSB 對 DSS 誘導之 ICR 小鼠腸道上皮細胞凋亡 之影響 91 (八)、 PIC 與 HPSB 對DSS誘導之 ICR小鼠腸道菌相組成之影響 94 (九)、 PIC 與 HPSB 對 DSS 誘導之 ICR 小鼠結腸糞便短鏈脂肪酸 含量之影響 102 第五章、 結論 104 參考文獻 106 附錄 129
dc.language.isozh-TW
dc.title白皮杉醇與3′-羥基紫檀?維持腸黏膜屏障完整性緩解發炎性腸道疾病之功效zh_TW
dc.titleEffects of piceatannol and 3′-hydroxypterostilbene on alleviating inflammatory bowel disease by maintaining intestinal epithelial integrityen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何元順(Yuan-Soon Ho),黃步敏(Bu-Miin Huang),王應然(Yin-Jan Wang),郭靜娟(Ching-Chuan Kuo)
dc.subject.keyword結腸炎,腸道屏障,緊密結合,NLRP3 發炎小體,白皮杉醇,三羥基紫檀?,zh_TW
dc.subject.keywordcolitis,gut barrier,tight junctions,NLRP3 inflammasome,piceatannol,3′-hydroxypterostilbene,en
dc.relation.page129
dc.identifier.doi10.6342/NTU202203694
dc.rights.note未授權
dc.date.accepted2022-09-25
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
U0001-2109202201174400.pdf
  目前未授權公開取用
8.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved