Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84059
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙基揚zh_TW
dc.contributor.advisorChi-Yang Chaoen
dc.contributor.author張皓鈞zh_TW
dc.contributor.authorHao-Chun Changen
dc.date.accessioned2023-03-19T21:30:01Z-
dc.date.available2023-12-29-
dc.date.copyright2022-09-29-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationCui, Z. M.; Liu, C. P.; Lu, T. H.; Xing, W., Polyelectrolyte complexes of chitosan and phosphotungstic acid as proton-conducting membranes for direct methanol fuel cells. Journal of Power Sources 2007, 167 (1), 94-99.
2. Liu, Y.; Wang, J.; Zhang, H.; Ma, C.; Liu, J.; Cao, S.; Zhang, X., Enhancement of proton conductivity of chitosan membrane enabled by sulfonated graphene oxide under both hydrated and anhydrous conditions. Journal of Power Sources 2014, 269, 898-911.
3. Smitha, B.; Sridhar, S.; Khan, A. A., Solid polymer electrolyte membranes for fuel cell applications—a review. Journal of Membrane Science 2005, 259 (1), 10-26.
4. Yan, Q.; Toghiani, H.; Causey, H., Steady state and dynamic performance of proton exchange membrane fuel cells (PEMFCs) under various operating conditions and load changes. Journal of Power Sources 2006, 161 (1), 492-502.
5. Steele, B. C. H.; Heinzel, A., Materials for fuel-cell technologies. Nature 2001, 414 (6861), 345-352.
6. Peighambardoust, S. J.; Rowshanzamir, S.; Amjadi, M., Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen Energy 2010, 35 (17), 9349-9384.
7. Borup, R.; Meyers, J.; Pivovar, B.; Kim, Y. S.; Mukundan, R.; Garland, N.; Myers, D.; Wilson, M.; Garzon, F.; Wood, D.; Zelenay, P.; More, K.; Stroh, K.; Zawodzinski, T.; Boncella, J.; McGrath, J. E.; Inaba, M.; Miyatake, K.; Hori, M.; Ota, K.; Ogumi, Z.; Miyata, S.; Nishikata, A.; Siroma, Z.; Uchimoto, Y.; Yasuda, K.; Kimijima, K. I.; Iwashita, N., Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chemical Reviews 2007, 107 (10), 3904-3951.
8. Elmer, T.; Worall, M.; Wu, S.; Riffat, S. B., Fuel cell technology for domestic built environment applications: State of-the-art review. Renewable and Sustainable Energy Reviews 2015, 42, 913-931.
9. Gardner, C. L.; Mehta, D.; Chugh, S.; Kjeang, E., Modeling the spatial and temporal distribution of current in a carbon monoxide poisoned polymer electrolyte fuel cell using a dynamic pseudo 1-D approach. Journal of The Electrochemical Society 2019, 166 (7), F3123-F3135.
10. Wang, W., The effect of internal air bleed on CO poisoning in a proton exchange membrane fuel cell. Journal of Power Sources 2009, 191 (2), 400-406.
11. Larminie, J.; Dicks, A., Proton exchange membrane fuel cells. In Fuel Cell Systems Explained, 2003; pp 67-119.
12. Dufour, J.; Serrano, D. P.; Gálvez, J. L.; Moreno, J.; García, C., Life cycle assessment of processes for hydrogen production. Environmental feasibility and reduction of greenhouse gases emissions. International Journal of Hydrogen Energy 2009, 34 (3), 1370-1376.
13. Pereira, L. G. S.; Paganin, V. A.; Ticianelli, E. A., Investigation of the CO tolerance mechanism at several Pt-based bimetallic anode electrocatalysts in a PEM fuel cell. Electrochimica Acta 2009, 54 (7), 1992-1998.
14. Kawasoe, Y.; Tanaka, S.; Kuroki, T.; Kusaba, H.; Ito, K.; Teraoka, Y.; Sasaki, K., Preparation and electrochemical activities of Pt–Ti alloy PEFC electrocatalysts. Journal of The Electrochemical Society 2007, 154 (9), B969.
15. Shah, A. A.; Sui, P. C.; Kim, G. S.; Ye, S., A transient PEMFC model with CO poisoning and mitigation by O2 bleeding and Ru-containing catalyst. Journal of Power Sources 2007, 166 (1), 1-21.
16. Mukerjee, S.; Urian, R. C.; Lee, S. J.; Ticianelli, E. A.; McBreen, J., Electrocatalysis of CO tolerance by carbon-supported PtMo electrocatalysts in PEMFCs. Journal of the Electrochemical Society 2004, 151 (7), A1094-A1103.
17. Chen, C.-Y.; Lai, W.-H.; Yan, W.-M.; Chen, C.-C.; Hsu, S.-W., Effects of nitrogen and carbon monoxide concentrations on performance of proton exchange membrane fuel cells with Pt–Ru anodic catalyst. Journal of Power Sources 2013, 243, 138-146.
18. Sung, L.-Y.; Hwang, B.-J.; Hsueh, K.-L.; Su, W.-N.; Yang, C.-C., Comprehensive study of an air bleeding technique on the performance of a proton-exchange membrane fuel cell subjected to CO poisoning. Journal of Power Sources 2013, 242, 264-272.
19. Gottesfeld, S., Pa! ord J. 1988. A new approach to the problem of carbon monoxide poisoning in fuel cells operating at low temperatures. Journal of the Electrochemical Society 135 (10), 2651.
20. Gottesfeld, S., Preventing CO poisoning in fuel cells. Google Patents: 1990.
21. Das, S. K.; Reis, A.; Berry, K. J., Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cell. Journal of Power Sources 2009, 193 (2), 691-698.
22. Sarma, P. J.; Gardner, C. L.; Chugh, S.; Sharma, A.; Kjeang, E., Strategic implementation of pulsed oxidation for mitigation of CO poisoning in polymer electrolyte fuel cells. Journal of Power Sources 2020, 468, 228352.
23. Baldauf, M.; Preidel, W., Status of the development of a direct methanol fuel cell. Journal of Power Sources 1999, 84 (2), 161-166.
24. Dyer, C. K., Fuel cells for portable applications. Journal of Power Sources 2002, 106 (1), 31-34.
25. Broussely, M.; Archdale, G., Li-ion batteries and portable power source prospects for the next 5–10 years. Journal of Power Sources 2004, 136 (2), 386-394.
26. Casalegno, A.; Grassini, P.; Marchesi, R., Experimental analysis of methanol cross-over in a direct methanol fuel cell. Applied Thermal Engineering 2007, 27 (4), 748-754.
27. Kamarudin, S. K.; Daud, W. R. W.; Ho, S. L.; Hasran, U. A., Overview on the challenges and developments of micro-direct methanol fuel cells (DMFC). Journal of Power Sources 2007, 163 (2), 743-754.
28. Kamarudin, S. K.; Achmad, F.; Daud, W. R. W., Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. International Journal of Hydrogen Energy 2009, 34 (16), 6902-6916.
29. Han, J.; Liu, H., Real time measurements of methanol crossover in a DMFC. Journal of Power Sources 2007, 164 (1), 166-173.
30. Cowey, K.; Green, K. J.; Mepsted, G. O.; Reeve, R., Portable and military fuel cells. Current Opinion in Solid State and Materials Science 2004, 8 (5), 367-371.
31. Liu, J. H.; Jeon, M. K.; Choi, W. C.; Woo, S. I., Highly-optimized membrane electrode assembly for direct methanol fuel cell prepared by sedimentation method. Journal of Power Sources 2004, 137 (2), 222-227.
32. Zaidi, S. M. J., Research Trends in Polymer Electrolyte Membranes for PEMFC. In Polymer Membranes for Fuel Cells, Zaidi, S. M. J.; Matsuura, T., Eds. Springer US: Boston, MA, 2009; pp 7-25.
33. Gebel, G., Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution. Polymer 2000, 41 (15), 5829-5838.
34. Peckham, T. J.; Holdcroft, S., Structure-morphology-property relationships of non-perfluorinated proton-conducting membranes. Advanced Materials 2010, 22 (42), 4667-4690.
35. Kreuer, K. D., On the complexity of proton conduction phenomena. Solid State Ionics 2000, 136, 149-160.
36. Zuo, Z.; Fu, Y.; Manthiram, A., Novel blend membranes based on acid-base interactions for fuel cells. Polymers 2012, 4 (4).
37. Zawodzinski, T. A.; Derouin, C.; Radzinski, S.; Sherman, R. J.; Smith, V. T.; Springer, T. E.; Gottesfeld, S., Water-uptake by and transport through nafion(R) 117 membranes. Journal of The Electrochemical Society 1993, 140 (4), 1041-1047.
38. Alberti, G.; Casciola, M.; Massinelli, L.; Bauer, B., Polymeric proton conducting membranes for medium temperature fuel cells (110–160°C). Journal of Membrane Science 2001, 185 (1), 73-81.
39. Ueki, T.; Watanabe, M., Macromolecules in ionic liquids: progress, challenges, and opportunities. Macromolecules 2008, 41 (11), 3739-3749.
40. Stenina, I. A.; Sistat, P.; Rebrov, A. I.; Pourcelly, G.; Yaroslavtsev, A. B., Ion mobility in Nafion-117 membranes. Desalination 2004, 170 (1), 49-57.
41. Cassidy, P. E.; Aminabhavi, T. M.; Farley, J. M., Polymers derived from hexafluoroacetone. Journal of Macromolecular Science, Part C 1989, 29 (2-3), 365-429.
42. Kreuer, K. D., On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. Journal of Membrane Science 2001, 185 (1), 29-39.
43. Wang, F.; Hickner, M.; Kim, Y. S.; Zawodzinski, T. A.; McGrath, J. E., Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes. Journal of Membrane Science 2002, 197 (1), 231-242.
44. Namboodiri, M. M. T.; Pakshirajan, K., Sustainable and green approach of chitosan production from Penicillium citrinum biomass using industrial wastewater as a cheap substrate. Journal of Environmental Management 2019, 240, 431-440.
45. Gortari, M. C.; Hours, R. A., Biotechnological processes for chitin recovery out of crustacean waste: A mini-review. Electronic Journal of Biotechnology 2013, 16 (3).
46. Másson, M., Chapter 33 - Chitin and chitosan. In Handbook of Hydrocolloids (Third Edition), Phillips, G. O.; Williams, P. A., Eds. Woodhead Publishing: 2021; pp 1039-1072.
47. Vedula, S. S.; Yadav, G. D., Chitosan-based membranes preparation and applications: Challenges and opportunities. Journal of the Indian Chemical Society 2021, 98 (2), 100017.
48. Ahmad, M.; Ahmed, S.; Swami, B. L.; Ikram, S., Preparation and characterization of antibacterial thiosemicarbazide chitosan as efficient Cu(II) adsorbent. Carbohydrate Polymers 2015, 132, 164-172.
49. Duan, C.; Meng, X.; Meng, J.; Khan, M. I. H.; Dai, L.; Khan, A.; An, X.; Zhang, J.; Huq, T.; Ni, Y., Chitosan as a preservative for fruits and vegetables: a review on chemistry and antimicrobial properties. Journal of Bioresources and Bioproducts 2019, 4 (1), 11-21.
50. Kean, T.; Thanou, M., Biodegradation, biodistribution and toxicity of chitosan. Advanced Drug Delivery Reviews 2010, 62 (1), 3-11.
51. Ramirez-Salgado, J., Study of basic biopolymer as proton membrane for fuel cell systems. Electrochimica Acta 2007, 52 (11), 3766-3778.
52. Ikram, S.; Ahmed, S.; Wazed Ali, S.; Agarwal, H., Chitosan-based polymer electrolyte membranes for fuel cell applications. In Organic-Inorganic Composite Polymer Electrolyte Membranes: Preparation, Properties, and Fuel Cell Applications, Inamuddin, D.; Mohammad, A.; Asiri, A. M., Eds. Springer International Publishing: Cham, 2017; pp 381-398.
53. Mukoma, P.; Jooste, B. R.; Vosloo, H. C. M., Synthesis and characterization of cross-linked chitosan membranes for application as alternative proton exchange membrane materials in fuel cells. Journal of Power Sources 2004, 136 (1), 16-23.
54. Mukoma, P.; Jooste, B. R.; Vosloo, H. C. M., A comparison of methanol permeability in Chitosan and Nafion 117 membranes at high to medium methanol concentrations. Journal of Membrane Science 2004, 243 (1-2), 293-299.
55. Dashtimoghadam, E.; Hasani-Sadrabadi, M. M.; Moaddel, H., Structural modification of chitosan biopolymer as a novel polyelectrolyte membrane for green power generation. Polymers for Advanced Technologies 2010, 21 (10), 726-734.
56. Zhang, Y.; Cui, Z.; Liu, C.; Xing, W.; Zhang, J., Implantation of Nafion® ionomer into polyvinyl alcohol/chitosan composites to form novel proton-conducting membranes for direct methanol fuel cells. Journal of Power Sources 2009, 194 (2), 730-736.
57. de Moraes, M. A.; Cocenza, D. S.; Vasconcellos, F. D.; Fraceto, L. F.; Beppu, M. M., Chitosan and alginate biopolymer membranes for remediation of contaminated water with herbicides. Journal of Environmental Management 2013, 131, 222-227.
58. Vaghari, H.; Jafarizadeh-Malmiri, H.; Berenjian, A.; Anarjan, N., Recent advances in application of chitosan in fuel cells. Sustainable Chemical Processes 2013, 1 (1), 16.
59. Di Noto, V.; Boaretto, N.; Negro, E.; Pace, G., New inorganic-organic proton conducting membranes based on Nafion and hydrophobic fluoroalkylated silica nanoparticles. Journal of Power Sources 2010, 195 (23), 7734-7742.
60. Ahmed, S.; Arshad, T.; Zada, A.; Afzal, A.; Khan, M.; Hussain, A.; Hassan, M.; Ali, M.; Xu, S. A., Preparation and characterization of a novel sulfonated titanium oxide incorporated chitosan nanocomposite membranes for fuel cell application. Membranes 2021, 11 (6).
61. Yang, J. Y.; Shen, P. K.; Varcoe, J.; Wei, Z. D., Nafion/polyaniline composite membranes specifically designed to allow proton exchange membrane fuel cells operation at low humidity. Journal of Power Sources 2009, 189 (2), 1016-1019.
62. Thanganathan, U., Structural study on inorganic/organic hybrid composite membranes. Journal of Materials Chemistry 2011, 21 (2), 456-465.
63. Li, L.; Xu, L.; Wang, Y., Novel proton conducting composite membranes for direct methanol fuel cell. Materials Letters 2003, 57 (8), 1406-1410.
64. Yang, X.; Tu, Y.; Li, L.; Shang, S.; Tao, X.-m., Well-dispersed chitosan/graphene oxide nanocomposites. ACS Applied Materials & Interfaces 2010, 2 (6), 1707-1713.
65. Liu, Y. H.; Wang, J. T.; Zhang, H. Q.; Ma, C. M.; Liu, J. D.; Cao, S. K.; Zhang, X., Enhancement of proton conductivity of chitosan membrane enabled by sulfonated graphene oxide under both hydrated and anhydrous conditions. Journal of Power Sources 2014, 269, 898-911.
66. Hasani-Sadrabadi, M. M.; Ghaffarian, S. R.; Mokarram-Dorri, N.; Dashtimoghadam, E.; Majedi, F. S., Characterization of nanohybrid membranes for direct methanol fuel cell applications. Solid State Ionics 2009, 180 (32), 1497-1504.
67. Vijayalekshmi, V.; Khastgir, D., Chitosan/partially sulfonated poly(vinylidene fluoride) blends as polymer electrolyte membranes for direct methanol fuel cell applications. Cellulose 2018, 25 (1), 661-681.
68. Ghasemi, M.; Daud, W. R. W.; Alam, J.; Ilbeygi, H.; Sedighi, M.; Ismail, A. F.; Yazdi, M. H.; Aljlil, S. A., Treatment of two different water resources in desalination and microbial fuel cell processes by poly sulfone/Sulfonated poly ether ether ketone hybrid membrane. Energy 2016, 96, 303-313.
69. Li, Z.; Ma, Z.; Xu, Y.; Wang, X.; Sun, Y.; Wang, R.; Wang, J.; Gao, X.; Gao, J., Developing homogeneous ion exchange membranes derived from sulfonated polyethersulfone/N-phthaloyl-chitosan for improved hydrophilic and controllable porosity. Korean Journal of Chemical Engineering 2018, 35 (8), 1716-1725.
70. Jiang, Y.; Yan, X. M.; Ma, Z. F.; Mei, P.; Xiao, W.; You, Q. L.; Zhang, Y., Development of the peo based solid polymer electrolytes for all-solid state lithium ion batteries. Polymers 2018, 10 (11).
71. Kalaiselvimary, J.; Sundararajan, M.; Prabhu, M. R., Preparation and characterization of chitosan-based nanocomposite hybrid polymer electrolyte membranes for fuel cell application. Ionics 2018, 24 (11), 3555-3571.
72. Jung, B. O.; Na, J.; Kim, C. H., Synthesis of chitosan derivatives with anionic groups and its biocompatibility In vitro. Journal of Industrial and Engineering Chemistry 2007, 13 (5), 772-776.
73. Yang, J. H.; Xie, Q. Y.; Zhu, J. F.; Zou, C.; Chen, L. Y.; Du, Y. M.; Li, D. L., Preparation and In vitro antioxidant activities of 6-amino-6-deoxychitosan and its sulfonated derivatives. Biopolymers 2015, 103 (10), 539-549.
74. Dimassi, S.; Tabary, N.; Chai, F.; Blanchemain, N.; Martel, B., Sulfonated and sulfated chitosan derivatives for biomedical applications: A review. Carbohydrate Polymers 2018, 202, 382-396.
75. Ouerghemmi, S.; Degoutin, S.; Tabary, N.; Cazaux, F.; Maton, M.; Gaucher, V.; Janus, L.; Neut, C.; Chai, F.; Blanchemain, N.; Martel, P. B., Triclosan loaded electrospun nanofibers based on a cyclodextrin polymer and chitosan polyelectrolyte complex. International Journal of Pharmaceutics 2016, 513 (1-2), 483-495.
76. Lima, P. H. L.; Pereira, S. V. A.; Rabello, R. B.; Rodriguez-Castellón, E.; Beppu, M. M.; Chevallier, P.; Mantovani, D.; Vieira, R. S., Blood protein adsorption on sulfonated chitosan and κ-carrageenan films. Colloids and Surfaces B: Biointerfaces 2013, 111, 719-725.
77. Divya, K.; Rana, D.; Rameesha, L.; Saraswathi, M.; Nagendran, A., Highly selective custom-made chitosan based membranes with reduced fuel permeability for direct methanol fuel cells. Journal of Applied Polymer Science 2021, 138 (46).
78. Xiang, Y.; Yang, M.; Guo, Z. B.; Cui, Z., Alternatively chitosan sulfate blending membrane as methanol-blocking polymer electrolyte membrane for direct methanol fuel cell. Journal of Membrane Science 2009, 337 (1-2), 318-323.
79. Shirdast, A.; Sharif, A.; Abdollahi, M., Effect of the incorporation of sulfonated chitosan/sulfonated graphene oxide on the proton conductivity of chitosan membranes. Journal of Power Sources 2016, 306, 541-551.
80. Dadhich, P.; Das, B.; Dhara, S., Microwave assisted rapid synthesis of N-methylene phosphonic chitosan via Mannich-type reaction. Carbohydrate Polymers 2015, 133, 345-352.
81. Binsu, V. V.; Nagarale, R. K.; Shahi, V. K.; Ghosh, P. K., Studies on N-methylene phosphonic chitosan/poly(vinyl alcohol) composite proton-exchange membrane. Reactive & Functional Polymers 2006, 66 (12), 1619-1629.
82. Nishi, N.; Ebina, A.; Nishimura, S.; Tsutsumi, A.; Hasegawa, O.; Tokura, S., Highly phosphorylated derivatives of chitin, partially deacetylated chitin and chitosan as new functional polymers - preparation and characterization. International Journal of Biological Macromolecules 1986, 8 (5), 311-317.
83. Yuan, Y.; Shen, C. H.; Chen, J. Q.; Ren, X. C., Synthesis and characterization of cross-linked quaternized chitosan/poly(diallyldimethylammonium chloride) blend anion-exchange membranes. Ionics 2018, 24 (4), 1173-1180.
84. Laine, R. M.; Kim, S. G.; Rush, J.; Tamaki, R.; Wong, E.; Mollan, M.; Sun, H. J.; Lodaya, M., Ring-opening polymerization of epoxy end-terminated polyethylene oxide (PEO) as a route to cross-linked materials with exceptional swelling behavior. Macromolecules 2004, 37 (12), 4525-4532.
85. Kahdestani, S. A.; Shahriari, M. H.; Abdouss, M., Synthesis and characterization of chitosan nanoparticles containing teicoplanin using sol-gel. Polymer Bulletin 2021, 78 (2), 1133-1148.
86. Hamid, N. S. A.; Kamarudin, S. K.; Karim, N. A., Potential of Nafion/eggshell composite membrane for application in direct methanol fuel cell. International Journal of Energy Research 2021, 45 (2), 2245-2264.
87. Jiang, Z.; Zheng, X.; Wu, H.; Wang, J.; Wang, Y., Proton conducting CS/P(AA-AMPS) membrane with reduced methanol permeability for DMFCs. Journal of Power Sources 2008, 180 (1), 143-153.
88. Smitha, B.; Sridhar, S.; Khan, A. A., Polyelectrolyte complexes of chitosan and poly(acrylic acid) as proton exchange membranes for fuel cells. Macromolecules 2004, 37 (6), 2233-2239.
89. Hu, E.; Yao, Y.; Chen, Y.; Cui, Y.; Wang, Z.; Qian, G., Boosting hydrogen generation by anodic oxidation of iodide over Ni–Co(OH)2 nanosheet arrays. Nanoscale Advances 2021, 3 (2), 604-610.
90. Adam, D. B.; Tsai, M.-C.; Awoke, Y. A.; Huang, W.-H.; Yang, Y.-W.; Pao, C.-W.; Su, W.-N.; Hwang, B. J., Iodide oxidation reaction catalyzed by ruthenium–tin surface alloy oxide for efficient production of hydrogen and iodine simultaneously. ACS Sustainable Chemistry & Engineering 2021, 9 (26), 8803-8812.
91. Mendil-Jakani, H.; Zamanillo Lopez, I.; Legrand, P. M.; Mareau, V. H.; Gonon, L., A new interpretation of SAXS peaks in sulfonated poly(ether ether ketone) (sPEEK) membranes for fuel cells. Physical Chemistry Chemical Physics 2014, 16 (23), 11243-11250.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84059-
dc.description.abstract質子傳導膜(proton exchange membrane, PEM)於多種電化學裝置中扮演重要的角色,像是質子交換燃料電池(PEMFCs)、直接甲醇燃料電池(DMFCs)、電解水產氫及全釩液流電池(VRFBs)等。質子傳導膜除了需要具有良好的質子傳導能力,還要能避免燃料或特定離子從陽極滲透至陰極以降低電化學反應效率。目前常使用的質子傳導膜多為碳氟系高分子,像是Nafion系列,具有優秀的質子傳導能力及化學穩定性,但是其成本過高且對環境負擔較大,不利大量生產及廣泛應用。本研究因此開發出磺酸化幾丁聚醣接枝聚乙二醇(sulfonated chitosan-graft-poly(ethylene oxide), SCS-g-PEO) 並以其為基材製備質子傳導膜,期望在材料與膜材製備上達到成本低廉及環境友善的目標。
幾丁聚醣是一種天然的多醣類,主要來自甲殼類動物,例如:蝦、蟹的外殼、昆蟲的硬殼及各種真菌及藻類的細胞壁,其含量相當豐富且成本低廉。藉由化學反應將幾丁聚醣修飾上磺酸根基團增加了其親水性及改善其傳導能力。側鏈接枝低分子量的PEO有助於改善幾丁聚醣脆硬的機械性質及改變膜材的微結構,使幾丁聚醣能在質子傳導膜應用上展現良好的傳導能力與機械性質。由於SCS-g-PEO對水的溶解性佳,在製膜過程能以水作為溶劑,能有效減少有機溶劑的使用以降低對環境的負擔。本研究藉由調控幾丁聚醣的磺酸化程度及PEO接枝率,並改變膜材組成以最佳化質子傳導膜的傳導特性與機械性質。
SCS-g-PEO膜材於室溫下飽水的狀態,其質子傳導度高達46.7 mS cm-1,接近於Nafion 117。儘管SCS-g-PEO膜材具有高度的離子交換能力(IEC > 2 mmol g-1)且與水的親和力佳,導致高吸水率(WU > 100%),但是藉由適合的交聯系統成功抑制其膨潤程度(SR < 27%),且改善了乾膜的機械性質(Young’s modulus > 300 MPa)。值得注意的是SCS-g-PEO膜材在19 M甲醇溶液下具有低甲醇滲透率,使其選擇度高達1.34"×" 104 S s cm-1,具有作為高濃度甲醇燃料電池之潛能。另外SCS-g-PEO的磺酸根可以交換成不同離子形式以應用於其他陽離子傳導膜系統,像是高值化產氫系統,利用碘化鉀溶液在陽極進行碘離子氧化反應(Iodide oxidation reaction, IOR)並搭配陰極進行電解水產氫(hydrogen evolution reaction, HER),當SCS-g-PEO的磺酸根置換成SO3K形式,其傳導度於1 M碘化鉀溶液中較Nafion 117高出兩倍,陽離子遷移係數高達0.990,具有作為鉀離子傳導膜(potassium conducting membranes, PCMs)之潛力。
zh_TW
dc.description.abstractProton conducting membranes are one of the most important components in a varieties of electrochemical devices such as proton exchange membrane fuel cells (PEMFCs), direct methanol fuel cells (DMFCs), hydrogen production from water splitting and vanadium redox flow batteries (VRFBs). These membranes need to effectively transport protons between two electrodes while prevent undesirable crossover of fuels and ions, and which are critical to the device performance. As far, membranes based on all fluorocarbon polymers, such as Nafion, are the most employed PEMs; nevertheless, high cost and environmental issues intrinsically limit successful commercialization of these devices. In this study, we design and fabricate novel PEMs based on custom made sulfonated chitosan grafting with poly(ethylene oxide) (SCS-g-PEO) to achieve cost effectiveness and environmental benignancy in the aspect of material itself and the membrane production.
Chitosan is a biorenewable, natural abundant polysaccharide which could be extracted from crustaceans, insects, and etc. to achieve possible low cost. Modification of chitosan to incorporate sulfonic acids could improve solubility and hydrophilicity of chitosan and increase proton conductivity of the resulting PEMs. The grafted PEO side chains could further tailor the mechanical property and the microstructure of the membrane. Since SCS-g-PEO is highly water soluble, free standing PEMs could be fabricated from environmental friendly water based process by incorporating suitable crosslinkers. In this work, the degree of sulfonation of SCS, the grating ratio of PEO side chains and the composition of the membranes are systematically varied to optimize the transport properties and the mechanical properties of the PEMs.
SCS-g-PEO membrane exhibited a high proton conductivity (46.7 mS cm-1) at fully hydrated state at room temperature, slightly lowered than Nafion 117. Though high ion exchange capacity (IEC > 2 mmol g-1) and high water affinity of SCS-g-PEO leads high water uptake (WU > 100%), the delicately designed crosslinking would limit the swelling ratio (SR < 27%) and allow the dry membrane to exhibit good mechanical properties with Young’s modulus (> 300 MPa). It is worthy to address that the membrane could retain good dimensional stability and low methanol crossover at high methanol concentration up to 19 M (75%) leading a high selectivity (1.34"×" 104 S s cm-1), allowing it a good candidate to serve as PEMs for high energy DMFC. By simply exchanging protons with other cations, the SCS-g-PEO membranes could extend their uses to other cation conducting/exchange membranes. To realize the application in hydrogen production with KI solution at iodine oxidation reaction (IOR) side and water at hydrogen evolution reaction (HER) side, the SCS-g-PEO membranes with SO3K form shows an ion conductivity twice higher than Nafion 117 in 1M KI solution alone with a high cation transport number of 0.990, exhibiting promising potential as potassium conducting membranes (PCMs).
en
dc.description.provenanceMade available in DSpace on 2023-03-19T21:30:01Z (GMT). No. of bitstreams: 1
U0001-2209202223313500.pdf: 6694322 bytes, checksum: 5b686e697a2f62f29157e3ac00c48674 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
ABSTRACT v
目錄 vii
圖索引 x
表索引 xiii
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的與架構 2
第二章 文獻回顧 4
2.1 燃料電池 4
2.1.1 燃料電池種類 4
2.1.2 質子交換膜燃料電池 6
2.1.3 直接甲醇燃料電池 8
2.2 常見的高分子電解質膜材 10
2.3 幾丁聚醣為基材之質子傳導膜 15
2.3.1 幾丁聚醣應用於質子傳導膜 17
2.3.2 官能基化幾丁聚醣應用於質子傳導膜 21
第三章 實驗步驟與原理 27
3.1 實驗藥品 27
3.2 實驗儀器 29
3.3 材料製備 30
3.3.1 磺酸化幾丁聚醣之合成 30
3.3.2 聚乙二醇甲醚之環氧基修飾 31
3.3.3 磺酸化幾丁聚醣接枝聚乙二醇之合成 32
3.3.4 交聯膜材製備 33
3.4 材料分析 35
3.4.1 化學結構之鑑定 35
3.4.2 熱重分析 35
3.4.3 熱分析 36
3.4.4 膜材機械強度分析 36
3.4.5 膜材吸水率及膨潤量測 36
3.4.6 膜材表面及截面形貌分析 37
3.4.7 離子交換容量測試 37
3.4.8 質子傳導度量測 37
3.4.9 甲醇滲透率量測 39
3.4.10 離子傳導度量測 40
3.4.11 離子滲透率量測 40
3.4.12 膜材微結構分析 41
第四章 結果與討論 43
4.1 磺酸化幾丁聚醣(SCS)之合成 43
4.2 聚乙二醇甲醚之環氧基修飾(emPEO)之合成 45
4.3 磺酸化幾丁聚醣接枝聚乙二醇(SCS-g-PEO)之合成 46
4.4 交聯膜材之製備 51
4.4.1 熱性質分析 55
4.4.2 機械性質 56
4.4.3 膜材吸水率與尺寸安定性 58
4.4.4 膜材表面及截面形貌 60
4.4.5 離子交換能力 62
4.4.6 質子傳導度 63
4.4.7 甲醇滲透率 66
4.4.8 鉀離子傳導度 71
4.4.9 碘離子滲透度 73
4.4.10 膜材微結構分析 76
第五章 結論 79
第六章 未來展望 80
參考文獻 81
附錄 89
-
dc.language.isozh_TW-
dc.subject質子交換膜zh_TW
dc.subject電解產氫zh_TW
dc.subject鉀離子傳導膜zh_TW
dc.subject化學交聯zh_TW
dc.subject接枝共聚物zh_TW
dc.subject聚乙二醇zh_TW
dc.subject幾丁聚醣zh_TW
dc.subject直接甲醇燃料電池zh_TW
dc.subjectgrafting copolymeren
dc.subjectDMFCen
dc.subjectpotassium conducting membranesen
dc.subjecthydrogen productionen
dc.subjectsulfonated chitosanen
dc.subjectpoly(ethylene oxide)en
dc.subjectproton exchange membraneen
dc.title磺酸化幾丁聚醣衍生物作為離子傳導膜應用於氫能源zh_TW
dc.titleSulfonated Chitosan Derivatives for Ion Conductivity Membrans in Hydrogen Energy Applicationsen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee呂幸江;王丞浩;劉英麟zh_TW
dc.contributor.oralexamcommitteeShing-Jiang Lue;Chen-Hao Wang;Ying-Ling Liuen
dc.subject.keyword直接甲醇燃料電池,質子交換膜,幾丁聚醣,聚乙二醇,接枝共聚物,化學交聯,鉀離子傳導膜,電解產氫,zh_TW
dc.subject.keywordsulfonated chitosan,poly(ethylene oxide),grafting copolymer,proton exchange membrane,DMFC,potassium conducting membranes,hydrogen production,en
dc.relation.page93-
dc.identifier.doi10.6342/NTU202203865-
dc.rights.note未授權-
dc.date.accepted2022-09-26-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  未授權公開取用
6.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved