請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8387
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳逸民(Yih-Min Wu) | |
dc.contributor.author | Guan-Yi Song | en |
dc.contributor.author | 宋冠毅 | zh_TW |
dc.date.accessioned | 2021-05-20T00:53:20Z | - |
dc.date.available | 2023-10-09 | |
dc.date.available | 2021-05-20T00:53:20Z | - |
dc.date.copyright | 2020-08-07 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-07-29 | |
dc.identifier.citation | [1] Cressie, N. (1990). The origins of kriging. Mathematical Geology, 22(3), 239–252. [2] Cui, J. D. (2018). “SPECTR – A program for Response Spectra Analysis”. http://www.jdcui.com/?p=1875. [3] Gilsanz, R., Huang, C., Mandrick, J., Mugford, J., Steficek C., Çelebi, M., Hwang, S. J. (2016). Learning from the recent Taiwan Meinong earthquake. In 2016 SEAOC convention proceedings (pp. 400–408). [4] Henry, R. S., Lee, B. Y., McGuigan, D., Finnegan, J., Ashby, G. (2017). THE 2016 Meinong Taiwan earthquake: Learning from earthquakes report. Bulletin of the New Zealand Society for Earthquake Engineering, 50(3), 436–468. [5] Hutchinson, T. C., Clahan, K., Sun, J., Menq, F., Lo, E. (2017). Important lessons from field reconnaissance following the 2016 Meinong earthquake in southern Taiwan. 12. [6] Kanamori, H., Ye, L., Huang, B. S., Huang, H. H., Lee, S. J., Liang, W. T., Lin, Y. Y., Ma, K. F., Wu, Y. M., Yeh, T. Y. (2017). A strong-motion hot spot of the 2016 Meinong, Taiwan, earthquake (Mw = 6.4). Terrestrial, Atmospheric and Oceanic Sciences, 28(5), 637–650. [7] Kuo, C. H., Lin, C. M., Huang, J. Y., Hsu, T. Y. (2017). Strong Ground Motions and Site Amplifications in the Near-source Region of the 2016 Mw 6.5 Meinong Earthquake, Taiwan. NCREE Research Programs and Accomplishments, 13-16. [8] Lee, S., Yeh, T., Lin, Y. (2016). Anomalously Large Ground Motion in the 2016 M L 6.6 Meinong, Taiwan, Earthquake: A Synergy Effect of Source Rupture and Site Amplification. Seismological Research Letters, 87(6), 1319–1326. [9] Lee, Y. T., Wang, Y. J., Chan, C. H., Ma, K. F. (2017). The 2016 Meinong earthquake to TEM PSHA2015. Terrestrial, Atmospheric and Oceanic Sciences, 28(5), 703–713. [10] Lu, C. C., Hwang, J. H., Hsu, S. Y. (2017). The impact evaluation of soil liquefaction on low-rise building in the Meinong earthquake. Earth, Planets and Space, 69(1), 109. [11] Shin, T. C., C. H. Chang, H. C. Pu*, H. W. Lin, and P. L. Leu, 2013: The Geophysical Database Management System in Taiwan. Terr. Atmos. Ocean. Sci., 24, 11-18. [12] Tsai, Y. B. (2001). Spatial Distribution and Age Dependence of Human-Fatality Rates from the Chi-Chi, Taiwan, Earthquake of 21 September 1999. Bulletin of the Seismological Society of America, 91(5), 1298–1309. [13] Wu, Y. M., Liang, W. T., Mittal, H., Chao, W. A., Lin, C. H., Huang, B. S., Lin, C. M. (2016). Performance of a Low‐Cost Earthquake Early Warning System ( P ‐Alert) during the 2016 M L 6.4 Meinong (Taiwan) Earthquake. Seismological Research Letters, 87(5), 1050–1059. [14] Wu, Y. M., Chung, J. K., Shin, T. C. (1999). Development of an Integrated Earthquake Early Warning System in Taiwan-Case for the Hualien Area Earthquakes. Terrestrial, Atmospheric and Oceanic Sciences, 10(4), 719. [15] Wu, Y. M., Hsiao, N. C., Teng, T. L., Shin, T. C. (2002). Near Real-Time Seismic Damage Assessment of the Rapid Reporting System. Terrestrial, Atmospheric and Oceanic Sciences, 13(3), 313. [16] Wu, Y. M., Hsiao, N. C., Teng, T. L. (2004). Relationships between Strong Ground Motion Peak Values and Seismic Loss during the 1999 Chi-Chi, Taiwan Earthquake. Natural Hazards, 32(3), 357–373. [17] Wu, Y. M., Teng, T. L., Shin, T. C., Hsiao, N. C. (2003). Relationship between Peak Ground Acceleration, Peak Ground Velocity, and Intensity in Taiwan. Bulletin of the Seismological Society of America, 93(1), 386–396. [18] Wu, Y. M., Shin, T. C., Chang, C. H. (2001). Near Real-Time Mapping of Peak Ground Acceleration and Peak Ground Velocity Following a Strong Earthquake. Bulletin of the Seismological Society of America, 91(5), 1218–1228. [19] Wu, Y. M., Kanamori, H. (2005a). Rapid Assessment of Damage Potential of Earthquakes in Taiwan from the Beginning of P Waves. Bulletin of the Seismological Society of America, 95(3), 1181–1185. [20] Wu, Y. M., Kanamori, H. (2005b). Experiment on an Onsite Early Warning Method for the Taiwan Early Warning System. Bulletin of the Seismological Society of America, 95(1), 347–353. [21] Yu, S. B., Kuo, L. C., Punongbayan, R. S., Ramos, E. G. (1999). GPS observation of crustal deformation in the Taiwan-Luzon Region. Geophysical Research Letters, 26(7), 923–926. [22] 中央氣象局(2017),地震百問,交通部中央氣象局,初版。 [23] 內政部不動產資訊平台(2016),統計資訊主題查詢-房屋稅籍住宅類數量依屋齡區分,內政部地政司,https://pip.moi.gov.tw/V3/E/SCRE0402.aspx。 [24] 內政部營建署(2011),建築物耐震設計規範及解說。 [25] 李德河、蔡百祥、吳建宏(2016),0206地震台南土壤液化災區之地層特性,土木水利,第43卷第2期,第17-23頁。 [26] 邱聰智、涂耀賢、翁樸文、沈文成、李翼安、黃世建、鍾立來、杜怡萱(2016),0206美濃地震震損調查系列報告-低矮型私有住宅建物,中華民國第十三屆結構工程研討會暨第三屆地震工程研討會,NO. 2309。 [27] 邱聰智、黃李暉、翁樸文、何郁姍、王上康、黃世建、鍾立來、葉錦勳(2018),2016美濃地震玉井區建築物普查暨震損建物資料庫,國家地震工程研究中心報告,NCREE-18-003。 [28] 陳建忠、李台光、鄒本駒、周楷峻、葉勇凱、翁樸文、邱聰智、沈文成(2014),震災後危險建築物緊急評估技術及制度之修訂研究,內政部建築研究所,第一版。 [29] 楊炫智、盧志杰、游騰瑞(2017),美濃地震台南地區土壤液化災害與因應對策,技師期刊,第77期,第25-35頁。 [30] 經濟部中央地質調查所(2020),土壤液化潛勢-地質雲加值應用平台,https://www.geologycloud.tw/map/liquefaction/zh-tw。 [31] 臺南市政府資料開放平台(2016),0206地震專區紅單、黃單危樓列表,https://data.tainan.gov.tw/dataset/0206-earthquake。 [32] 劉聰桂、傅學海、曾泰琳、胡植慶、陳文山、劉德慶、宋聖榮、吳樂群、蔡金河、郭陳澔、李錫堤、林俊全、洪奕星、陳文福、張竝瑜、顏君毅、劉平妹、張英如、鄧茂華、羅立(2018),普通地質學上下冊,國立臺灣大學,初版。 [33] 簡文郁、劉勛仁、張毓文(2013),臺灣規範反應譜查詢介面(64位元版),國家地震工程研究中心,DesignSpectraW64。 [34] 饒瑞鈞(2017),2016年高雄美濃地震-震後科學調查,臺灣地震科學中心。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8387 | - |
dc.description.abstract | 2016年2月6日臺灣高雄市美濃區發生震矩規模 (Moment magnitude, Mw) 6.4地震,造成117人死亡與超過600件以上受損建築物,是臺灣在1999年集集地震 (Mw =7.6) 後災情最嚴重的地震事件。因此本研究希望透過美濃地震PGA、PGV與受損建築物資料建立迴歸關係式,分析兩者關聯性,在下一次面對災害性地震時,提供災防相關單位評估可能造成的損失。 1999年集集地震地動參數與受損建築物間的迴歸關係式已經被前人建立。由於2010年起,臺灣採用新的地震後建築災損評估,從以往的全倒(Totally collapsed)與半倒(Partially collapsed)改為紅單(red-tagged)與黃單(yellow-tagged),故有重新探討其關聯性之必要。「紅單」意義為建築物的主要結構受損或傾斜達一定程度而發生危險,必須修建或可能拆除;「黃單」則代表建築物的次要結構或鄰近建築物傾斜達一定程度而發生危險,其不需拆除只要經過補強後,確定安全無虞即可取消列管。由於臺灣已經佈放高密度的地震站,於2016年美濃地震發生時提供充足且良好的地震紀錄,加上臺南市政府在地震後統計詳盡的災損資料,這是一個很好的機會來重建適用於新法規的迴歸式。 本研究使用資料採用交通部中央氣象局自由場強地動觀測網(Taiwan Strong Motion Instrumentation Program, TSMIP)的強地動紀錄,分為最大地動加速度(Peak Ground Acceleration, PGA)與積分後所獲得的最大地動速度(Peak Ground Velocity, PGV)。建築災損資料則使用臺南市政府資料開放平台各行政區紅單及黃單的調查結果。 根據2016年美濃地震的分析結果,本研究得到與前人文獻不同的觀察。研究結果顯示,PGA對應紅單率與黃單率的相關性比PGV高。經過調查後發現,受損建築物的總樓層數大約70%為三層樓以下。因此PGA與災損率的高相關性可能主要與本次地震事件的受損建築物為低矮樓房有關。 | zh_TW |
dc.description.abstract | The relationships between ground motion parameters (including peak ground acceleration, PGA;peak ground velocity, PGV) and building damages are crucial to estimate the possible seismic losses for future destructive earthquakes. One of such relationships had been established based on the case of the 1999 Chi-Chi earthquake (Mw=7.6). Since 2010, a new assessment system of seismic damaged buildings had been adopted in Taiwan. Damaged buildings are now classified into two categories, yellow-tagged buildings (secondary structural damage) are amendable and red-tagged buildings (major structural damage) may need to rebuild. Our main goal is to renew the relationship to better reflect the current status in Taiwan, both in the buildings and assessment system. The 2016 Meinong earthquake (Mw=6.4) caused the most damaging buildings in Taiwan since the 1999 Chi-Chi earthquake. Excellent seismic data was recorded from the Taiwan Strong Motion Instrumentation Program (TSMIP) and detailed damage statistics were sorted by Tainan city government. It’s an opportunity to combine ground motion data with building assessments for the new regression relationship. From the results, we find out that in the Meinong earthquake, the PGA seems to possess a higher correlation to the building damages, contrary to the previous studies. Further investigation suggests that it may be due to the biased sample size to the damaged buildings, that is, most of the damaged buildings tend to be lower. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T00:53:20Z (GMT). No. of bitstreams: 1 U0001-2707202010463000.pdf: 7324808 bytes, checksum: 757a663676cd50fc330c4be64a8315b7 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 論文口試委員審定書 i 致謝 ii 中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 ix Chapter 1 研究介紹與文獻回顧 1 1.1 前言 1 1.2 研究動機與目的 4 1.3 地震後建築物災損評估 5 1.3.1 1999年Mw 7.6集集地震的建築物受損程度評估 5 1.3.2 2016年Mw 6.4美濃地震的建築物受損程度評估 6 1.4 臺灣地動參數與受損建築物關係探討的文獻回顧 8 Chapter 2 研究資料 10 2.1 地動紀錄 10 2.2 2016年美濃地震紅單、黃單資料 13 2.3 2016年美濃地震受損建築物之總樓層數調查 16 Chapter 3 研究方法與流程 17 3.1 研究流程 17 3.2 地動參數等值圖建立 18 3.3 災損率計算 20 3.4 資料選取與迴歸關係式建立 21 Chapter 4 研究結果 23 4.1 PGA及PGV空間分布圖 23 4.2 臺南市各行政區災損率 26 4.3 美濃地震地動參數與災損率迴歸關係式 29 Chapter 5 研究成果討論 38 5.1 迴歸分析結果 38 5.1.1 高PGA、PGV與災損間的關係 38 5.1.2 低PGA、PGV造成災損的原因 40 5.2 地動參數與災損率相關性 42 5.2.1 近震源區域的影響 42 5.2.2 地動參數與臺南市老屋比例 43 5.3 地震波與建築物間的共振關係 45 Chapter 6 結論 49 參考文獻 50 附錄A 2016年美濃地震TSMIP測站資訊 53 附錄B 2016年美濃地震受損建築物樓層統計 66 附錄C 各行政區SA、耐震規範與總樓層數分類統計圖 68 附錄D 臺南市各行政區的位置圖 74 | |
dc.language.iso | zh-TW | |
dc.title | 2016 Mw 6.4 美濃地震地動參數及受損建築物的關係研究 | zh_TW |
dc.title | Relationships between ground motion parameters and damaged buildings for 2016 Mw 6.4 Meinong, Taiwan earthquake | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蕭乃祺(Nai-Chi Hsiao),郭俊翔(Chun-Hsiang Kuo),詹忠翰(Chung-Han Chan) | |
dc.subject.keyword | 災害分析,最大地動加速度,最大地動速度,災害評估,災損率, | zh_TW |
dc.subject.keyword | Hazard analysis,Peak ground acceleration,Peak ground velocity,Seismic damage assessment,Damage rate, | en |
dc.relation.page | 74 | |
dc.identifier.doi | 10.6342/NTU202001895 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2020-07-29 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地質科學研究所 | zh_TW |
dc.date.embargo-lift | 2023-10-09 | - |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2707202010463000.pdf | 7.15 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。