Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83079
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor連豊力zh_TW
dc.contributor.advisorFeng-Li Lianen
dc.contributor.author賴橋zh_TW
dc.contributor.authorChiao Laien
dc.date.accessioned2023-01-06T17:05:01Z-
dc.date.available2023-11-10-
dc.date.copyright2023-01-06-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1: van der Kruk & Reijne 2018]
Eline van der Kruk and Marco M. Reijne, “Accuracy of human motion capture systems for sport applications; state-of-the-art review,” European Journal of Sport Science, Vol. 18, No. 6, pp. 806–819, Jul. 2018.
[2: Zheng et al. 2022]
Ce Zheng, Wenhan Wu, Chen Chen, Taojiannan Yang, Sijie Zhu, Nasser Kehtarnavaz, and Mubarak Shah, “Deep Learning-Based Human Pose Estimation: A Survey,” arXiv:2012.13392 [cs], Jan. 2022.
[3: Stelzer et al. 2004]
A. Stelzer, K. Pourvoyeur, and A. Fischer, “Concept and application of LPM - a novel 3-D local position measurement system,” IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 12, pp. 2664–2669, Dec. 2004.
[4: Perrat et al. 2015]
Perrat, Martin J Smith, Barry S Mason, James M Rhodes, and Vicky L Goosey-Tolfrey, “Quality assessment of an Ultra-Wide Band positioning system for indoor wheelchair court sports,” Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, Vol. 229, No. 2, pp. 81–91, Jun. 2015.
[5: Schepers & Veltink 2010]
Martin Schepers and Peter Veltink, “Stochastic magnetic measurement model for relative position and orientation estimation,” Measurement Science and Technology, Vol. 21, p. 065801, Apr. 2010.
[6: Sathyan et al. 2012]
Thuraiappah Sathyan, Richard Shuttleworth, Mark Hedley, and Keith Davids, “Validity and reliability of a radio positioning system for tracking athletes in indoor and outdoor team sports,” Behavior Research Methods, Vol. 44, No. 4, pp. 1108–1114, Dec. 2012.
[7: Spörri et al. 2016]
Jörg Spörri, Christian Schiefermüller, and Erich Müller, “Collecting Kinematic Data on a Ski Track with Optoelectronic Stereophotogrammetry: A Methodological Study Assessing the Feasibility of Bringing the Biomechanics Lab to the Field,” PLOS ONE, Vol. 11, No. 8, p. e0161757, Aug. 2016.
 
[8: Begon et al. 2009]
Mickael Begon, Floren Colloud, Vincent Fohanno, Pascal Bahuaud, and Tony Monnet, “Computation of the 3D kinematics in a global frame over a 40 m-long pathway using a rolling motion analysis system,” Journal of Biomechanics, Vol. 42, pp. 2649–53, Sep. 2009.
[9: Joukov et al. 2017]
Vladimir Joukov, Josip Ćesić, Kevin Westermann, Ivan Marković, Dana Kulić, and Ivan Petrović, “Human motion estimation on Lie groups using IMU measurements,” in Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1965–1972, Sep. 2017.
[10: Chen et al. 2020]
Yawen Chen, Chenglong Fu, Winnie Suk Wai Leung, and Ling Shi, “Drift-Free and Self-Aligned IMU-Based Human Gait Tracking System With Augmented Precision and Robustness,” IEEE Robotics and Automation Letters, Vol. 5, No. 3, pp. 4671–4678, Jul. 2020.
[11: Sarafianos et al. 2016]
Nikolaos Sarafianos, Bogdan Boteanu, Bogdan Ionescu, and Ioannis A. Kakadiaris, “3D Human pose estimation: A review of the literature and analysis of covariates,” Computer Vision and Image Understanding, Vol. 152, pp. 1–20, Nov. 2016.
[12: Wang et al. 2021]
Jinbao Wang, Shujie Tan, Xiantong Zhen, Shuo Xu, Feng Zheng, Zhenyu He, and Ling Shao, “Deep 3D human pose estimation: A review,” Computer Vision and Image Understanding, Vol. 210, p. 103225, Sep. 2021.
[13: Zhang 2012]
Zhengyou Zhang, “Microsoft Kinect Sensor and Its Effect,” IEEE MultiMedia, Vol. 19, No. 2, pp. 4–10, Feb. 2012.
[14: Kim et al. 2019]
Wonhui Kim, Manikandasriram Srinivasan Ramanagopal, Charles Barto, Ming-Yuan Yu, Karl Rosaen, Nick Goumas, Ram Vasudevan, and Matthew Johnson-Roberson, “PedX: Benchmark Dataset for Metric 3-D Pose Estimation of Pedestrians in Complex Urban Intersections,” IEEE Robotics and Automation Letters, Vol. 4, No. 2, pp. 1940–1947, Apr. 2019.
[15: Du et al. 2019]
Xiaoxiao Du, Ram Vasudevan, and Matthew Johnson-Roberson, “Bio-LSTM: A Biomechanically Inspired Recurrent Neural Network for 3-D Pedestrian Pose and Gait Prediction,” IEEE Robotics and Automation Letters, Vol. 4, No. 2, pp. 1501–1508, Apr. 2019.
[16: Hwang et al. 2017]
Jihye Hwang, Sungheon Park, and Nojun Kwak, “Athlete Pose Estimation by a Global-Local Network,” in Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 114–121, Jul. 2017.
[17: Rematas et al. 2018]
Konstantinos Rematas, Ira Kemelmacher-Shlizerman, Brian Curless, and Steve Seitz, “Soccer on Your Tabletop,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4738–4747, 2018.
[18: Daubney et al. 2012]
Ben Daubney, David Gibson, and Neill Campbell, “Estimating pose of articulated objects using low-level motion,” Computer Vision and Image Understanding, Vol. 116, No. 3, pp. 330–346, Mar. 2012.
[19: Ning et al. 2008]
Wei Ning, Cai Hong-ming, and Jiang Li-hong, “A dynamical adjustment partitioning algorithm for distributed virtual environment systems,” in Proceedings of Proceedings of The 7th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry, New York, NY, USA, pp. 1–5, Dec. 8, 2008.
[20: Belagiannis et al. 2014]
Vasileios Belagiannis, Sikandar Amin, Mykhaylo Andriluka, Bernt Schiele, Nassir Navab, and Slobodan Ilic, “3D Pictorial Structures for Multiple Human Pose Estimation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1669–1676, 2014.
[21: Burenius et al. 2013]
Magnus Burenius, Josephine Sullivan, and Stefan Carlsson, “3D Pictorial Structures for Multiple View Articulated Pose Estimation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3618–3625, 2013.
[22: Zuffi et al. 2012]
Silvia Zuffi, Oren Freifeld, and Michael J. Black, “From Pictorial Structures to deformable structures,” in Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3546–3553, Jun. 2012.
[23: Huang & Yang 2010]
Jia-Bin Huang and Ming-Hsuan Yang, “Estimating Human Pose from Occluded Images,” in Proceedings of Computer Vision – ACCV 2009, Berlin, Heidelberg, pp. 48–60, 2010.
[24: Sedai et al. 2010]
Suman Sedai, Mohammed Bennamoun, and Du Huynh, “Localized fusion of Shape and Appearance features for 3D Human Pose Estimation,” in Proceedings of Procedings of the British Machine Vision Conference 2010, Aberystwyth, p. 51.1-51.10, 2010.
[25: Grauman et al. 2003]
Grauman, Shakhnarovich, and Darrell, “Inferring 3D structure with a statistical image-based shape model,” in Proceedings of Proceedings Ninth IEEE International Conference on Computer Vision, pp. 641–647 vol.1, Oct. 2003.
[26: Bergh et al. 2009]
Van den Bergh, M., Koller-Meier, E., Kehl, R., Van Gool, L., “Real-Time 3D Body Pose Estimation.,” in Multi-Camera Networks: Principles and Applications, pp. 335-361, 2009.
[27: Rosales & Sclaroff 2006]
RÓMer Rosales and Stan Sclaroff, “Combining Generative and Discriminative Models in a Framework for Articulated Pose Estimation,” International Journal of Computer Vision, Vol. 67, No. 3, pp. 251–276, May 2006.
[28: Sedai et al. 2013]
S. Sedai, M. Bennamoun, and D.Q. Huynh, “Discriminative fusion of shape and appearance features for human pose estimation,” Pattern Recognition, Vol. 46, No. 12, pp. 3223–3237, Dec. 2013.
[29: Ionescu et al. 2014]
Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu, “Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 36, No. 7, pp. 1325–1339, Jul. 2014.
[30: Ionescu et al. 2011]
Catalin Ionescu, Fuxin Li, and Cristian Sminchisescu, “Latent structured models for human pose estimation,” in Proceedings of 2011 International Conference on Computer Vision, pp. 2220–2227, Nov. 2011.
[31: Joo et al. 2018]
Hanbyul Joo, Tomas Simon, and Yaser Sheikh, “Total Capture: A 3D Deformation Model for Tracking Faces, Hands, and Bodies,” arXiv:1801.01615 [cs], Jan. 2018.
[32: Loper et al. 2015]
Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black, “SMPL: a skinned multi-person linear model,” ACM Transactions on Graphics, Vol. 34, No. 6, p. 248:1-248:16, Oct. 2015.
[33: Güler et al. 2018]
Rıza Alp Güler, Natalia Neverova, and Iasonas Kokkinos, “DensePose: Dense Human Pose Estimation in the Wild,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7297–7306, 2018.
[34: Luvizon et al. 2018]
Diogo C. Luvizon, David Picard, and Hedi Tabia, “2D/3D Pose Estimation and Action Recognition Using Multitask Deep Learning,” pp. 5137–5146, 2018.
[35: Pavlakos et al. 2017]
Georgios Pavlakos, Xiaowei Zhou, Konstantinos G. Derpanis, and Kostas Daniilidis, “Coarse-To-Fine Volumetric Prediction for Single-Image 3D Human Pose,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7025–7034, 2017.
[36: Nie et al. 2017]
Bruce Xiaohan Nie, Ping Wei, and Song-Chun Zhu, “Monocular 3D Human Pose Estimation by Predicting Depth on Joints,” Proceedings of the IEEE International Conference on Computer Vision, pp. 3447–3455, 2017.
[37: Bogo et al. 2016]
Bogo F., Kanazawa A., Lassner C., Gehler P., Romero J., Black M.J, “Keep It SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image,” 2016 European Conference on Computer Vision, Springer, pp. 561–578., 2016.
[38: Kanazawa et al. 2018]
Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and Jitendra Malik, “End-to-End Recovery of Human Shape and Pose,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7122–7131, 2018.
[39: Pavlakos et al. 2017]
Georgios Pavlakos, Xiaowei Zhou, Konstantinos G. Derpanis, and Kostas Daniilidis, “Harvesting Multiple Views for Marker-Less 3D Human Pose Annotations,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6988–6997, 2017.
[40: Rhodin et al. 2018]
Helge Rhodin, Jörg Spörri, Isinsu Katircioglu, Victor Constantin, Frédéric Meyer, Erich Müller, Mathieu Salzmann, and Pascal Fua, “Learning Monocular 3D Human Pose Estimation From Multi-View Images,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8437–8446, 2018.
[41: Iskakov et al. 2019]
Karim Iskakov, Egor Burkov, Victor Lempitsky, and Yury Malkov, “Learnable Triangulation of Human Pose,” Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7718–7727, 2019.
[42: He et al. 2020]
Yihui He, Rui Yan, Katerina Fragkiadaki, and Shoou-I. Yu, “Epipolar Transformers,” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7779–7788, 2020.
[43: Coskun et al. 2017]
Huseyin Coskun, Felix Achilles, Robert DiPietro, Nassir Navab, and Federico Tombari, “Long Short-Term Memory Kalman Filters: Recurrent Neural Estimators for Pose Regularization,” Proceedings of the IEEE International Conference on Computer Vision, pp. 5524–5532, 2017.
[44: Katircioglu et al. 2018]
Isinsu Katircioglu, Bugra Tekin, Mathieu Salzmann, Vincent Lepetit, and Pascal Fua, “Learning Latent Representations of 3D Human Pose with Deep Neural Networks,” International Journal of Computer Vision, Vol. 126, No. 12, pp. 1326–1341, Dec. 2018.
[45: Tekin et al. 2016]
Bugra Tekin, Artem Rozantsev, Vincent Lepetit, and Pascal Fua, “Direct Prediction of 3D Body Poses from Motion Compensated Sequences,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Jun. 26, 2016.
[46: Cai et al. 2019]
Yujun Cai, Liuhao Ge, Jun Liu, Jianfei Cai, Tat-Jen Cham, Junsong Yuan, and Nadia Magnenat Thalmann, “Exploiting Spatial-Temporal Relationships for 3D Pose Estimation via Graph Convolutional Networks,” Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2272–2281, 2019.
[47: Huang et al. 2017]
Yinghao Huang, Federica Bogo, Christoph Lassner, Angjoo Kanazawa, Peter V. Gehler, Javier Romero, Ijaz Akhter, and Michael J. Black, “Towards Accurate Marker-Less Human Shape and Pose Estimation over Time,” in Proceedings of 2017 International Conference on 3D Vision (3DV), pp. 421–430, Oct. 2017.
[48: Fang et al. 2017]
Hao-Shu Fang, Shuqin Xie, Yu-Wing Tai, and Cewu Lu, “RMPE: Regional Multi-Person Pose Estimation,” Proceedings of the IEEE International Conference on Computer Vision, pp. 2334–2343, 2017.
[49: Redmon & Farhadi 2018]
Joseph Redmon and Ali Farhadi, “YOLOv3: An Incremental Improvement,” arXiv:1804.02767 [cs], Apr. 2018.
[50: Julier & Uhlmann 2004]
S.J. Julier and J.K. Uhlmann, “Unscented filtering and nonlinear estimation,” Proceedings of the IEEE, Vol. 92, No. 3, pp. 401–422, Mar. 2004.
[51: Lin et al. 2015]
Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick and Piotr Dollár, “Microsoft COCO: Common Objects in Context,” arXiv:1405.0312 [cs], Feb. 2015. [Official website]: https://cocodataset.org/
[52: Gan & Dai 2011]
Yahui Gan and Xianzhong Dai, “Base frame calibration for coordinated industrial robots,” Robotics and Autonomous Systems, Vol. 59, No. 7, pp. 563–570, Jul. 2011.
[53: Eberly 2008]
David Eberly. "Euler angle formulas." Geometric Tools, LLC, Technical Report, 2008. [Online Available]: https://www.geometrictools.com/Documentation/EulerAngles.pdf (accessed Apr. 19, 2022)
[54: Zhang 2000]
Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 11, pp. 1330–1334, Nov. 2000.
[55: Ude et al. 2004]
Aleš Ude, Christopher G. Atkeson, and Marcia Riley, “Programming full-body movements for humanoid robots by observation,” Robotics and Autonomous Systems, Vol. 47, No. 2, pp. 93–108, Jun. 2004.
[56: Agamennoni et al. 2011]
Gabriel Agamennoni, Juan I. Nieto, and Eduardo M. Nebot, “An outlier-robust Kalman filter,” in Proceedings of 2011 IEEE International Conference on Robotics and Automation, pp. 1551–1558, May 2011.
[57: Ting et al. 2007]
Jo-Anne Ting, Evangelos Theodorou, and Stefan Schaal, “A Kalman filter for robust outlier detection,” in Proceedings of 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1514–1519, Oct. 2007.
[58: Mu & Yuen 2015]
He-Qing Mu and Ka-Veng Yuen, “Novel Outlier-Resistant Extended Kalman Filter for Robust Online Structural Identification,” Journal of Engineering Mechanics, Vol. 141, No. 1, p. 04014100, Jan. 2015.
[59: Gustafsson 1996]
F. Gustafsson, “Determining the initial states in forward-backward filtering,” IEEE Transactions on Signal Processing, Vol. 44, No. 4, pp. 988–992, Apr. 1996.
[60: Pavllo et al. 2019]
Dario Pavllo, Christoph Feichtenhofer, David Grangier, and Michael Auli, “3D human pose estimation in video with temporal convolutions and semi-supervised training,” arXiv, arXiv:1811.11742, Mar. 2019. doi: 10.48550/arXiv.1811.11742.
[61: Lin & Lee 2019]
Jiahao Lin and Gim Hee Lee, “Trajectory Space Factorization for Deep Video-Based 3D Human Pose Estimation,” arXiv, arXiv:1908.08289, Aug. 2019. doi: 10.48550/arXiv.1908.08289.
[62: Chen et al. 2022]
Tianlang Chen, Chen Fang, Xiaohui Shen, Yiheng Zhu, Zhili Chen, and Jiebo Luo, “Anatomy-Aware 3D Human Pose Estimation With Bone-Based Pose Decomposition,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 32, No. 1, pp. 198–209, Jan. 2022.
[63: Wang et al. 2020]
Jingbo Wang, Sijie Yan, Yuanjun Xiong, and Dahua Lin, “Motion Guided 3D Pose Estimation from Videos,” arXiv, arXiv:2004.13985, Apr. 2020. doi: 10.48550/arXiv.2004.13985.
[64: Li et al. 2022]
Wenhao Li, Hong Liu, Runwei Ding, Mengyuan Liu, Pichao Wang, and Wenming Yang, “Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation,” arXiv, arXiv:2103.14304, Jan. 2022. doi: 10.48550/arXiv.2103.14304.
[65: Bouazizi et al. 2021]
Arij Bouazizi, Ulrich Kressel, and Vasileios Belagiannis, “Learning Temporal 3D Human Pose Estimation with Pseudo-Labels,” arXiv, arXiv:2110.07578, Oct. 2021. doi: 10.48550/arXiv.2110.07578.
[66: Qiu et al. 2019]
Haibo Qiu, Chunyu Wang, Jingdong Wang, Naiyan Wang, and Wenjun Zeng, “Cross View Fusion for 3D Human Pose Estimation,” arXiv, arXiv:1909.01203, Sep. 2019. doi: 10.48550/arXiv.1909.01203.
[67: Gordon et al. 2022]
Brian Gordon, Sigal Raab, Guy Azov, Raja Giryes, and Daniel Cohen-Or, “FLEX: Extrinsic Parameter-free Multi-view 3D Human Motion Reconstruction,” arXiv, arXiv:2105.01937, Mar. 2022. doi: 10.48550/arXiv.2105.01937.
[68: Reddy et al. 2021]
N. Dinesh Reddy, Laurent Guigues, Leonid Pishchulin, Jayan Eledath, and Srinivasa G. Narasimhan, “TesseTrack: End-to-End Learnable Multi-Person Articulated 3D Pose Tracking,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15190–15200, 2021.
[69: Gupta 2020]
Vikas Gupta, “Back to the Future: Joint Aware Temporal Deep Learning 3D Human Pose Estimation,” arXiv, arXiv:2002.11251, Feb. 2020. doi: 10.48550/arXiv.2002.11251.
[70: Fang et al. 2018]
Haoshu Fang, Yuanlu Xu, Wenguan Wang, Xiaobai Liu, and Song-Chun Zhu, “Learning Pose Grammar to Encode Human Body Configuration for 3D Pose Estimation.” arXiv, Jan. 04, 2018, doi: 10.48550/arXiv.1710.06513






 
Books:
[71: Hartley & Zisserman 2004]
Richard Hartley and Andrew Zisserman, “Multiple view geometry in computer vision.” Cambridge: Cambridge University Press, 2004.
[72: Wan et al. 2004]
Eric A. Wan, Rudolph van der Merwe, and Simon Haykin, “The Unscented Kalman Filter,” Kalman Filtering and Neural Networks. John Wiley & Sons, 2004.
[73: Chatterjee & Hadi 2006]
Samprit Chatterjee and Ali S. Hadi, “Simple Linear Regression,” in Regression Analysis by Example, John Wiley & Sons, Ltd, 2006, pp. 21–51.
[74: Anderson & Moore 2007]
Brian D. O. Anderson and John B. Moore, Optimal Control: Linear Quadratic Methods. Courier Corporation, 2007.



 
Websites:
[75: Bishop 2017]
Bryan Bishop, “How War for the Planet of the Apes turned a visual effect into a reluctant hero,” The Verge, July 18, 2017. [Online]. Available: https://www.theverge.com/2017/7/18/15988096/war-for-the-planet-of-the-apes-joe-letteri-visual-effects-interview (accessed on Jan. 24 2022).
[76: Hogan 2020]
Alex Hogan, “Watch: Hollywood motion capture technology finds a new role in hospital rehab,” Feb. 12, 2020 [Online]. Available: https://www.statnews.com/2020/02/12/motion-capture-technology-hospitals-physical-rehabilitation/(accessed on Jan. 24 2022)
[77: VICON 2022]
VICON, Inc. “Lower limb monitoring and ACL best practices - Imeasureu revisits some of our recent case studies published with world-class practitioners,” Dec. 01, 2022. [Online]. Available: https://www.vicon.com/cms/wp-content/uploads/2022/01/PS4960_IMU_Case_Study.pdf
[78: Dutt 2018]
Arjun Dutt, “Radically Simple: AI Startup Makes 3D Motion Capture a Breeze for All,” May 8, 2018. [Online]. Available: https://blogs.nvidia.com/blog/2018/05/08/radical-3d-motion-capture/
[79: Neuron 2022]
Neuron, Perception, Inc. “Perception Neuron Motion Capture | Motion Capture for All.” https://neuronmocap.com/ (accessed Feb. 28, 2022).
[80: Xsens 2022]
Xsens, Inc. “Xsens 3D motion tracking.” https://www.xsens.com (accessed Feb. 28, 2022).
[81: The Imaging Source 2022]
The Imaging Source, Inc. The Imaging Source. [Online]. Available: https://www.theimagingsource.com/ (accessed Apr. 05, 2022).
[82: Sure Technology Corporation 2022]
Sure Technology Corporation, Inc. MI – CCTV鏡頭. [Online]. Available: https://www.surevision.com.tw/ (accessed Apr. 05, 2022).
[83: Bradski 2022]
Bradski, G., “The OpenCV Library,” Dr. Dobb's Journal of Software Tools. [Online Document]: https://docs.opencv.org. (accessed Apr. 05, 2022).
[84: DSHS.WA 2022]
Washington State Department of Social and Health Services (DSHS.WA), “Range of Joint Motion Evaluation Chart” [Available]: https://www.dshs.wa.gov/sites/default/files/forms/pdf/13-585a.pdf (accessed Mar. 14, 2022).
[85: Jekel 2022]
Charles Jekel, “Least Squares Sphere Fit.” https://jekel.me/2015/Least-Squares-Sphere-Fit/ (accessed Apr. 26, 2022).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83079-
dc.description.abstract近幾年來,三維人體動作估測一直都是個熱門的研究主題。從電影產業、復健治療到運動分析,越來越多的應用環境使得人們對三維人體動作估測的精準度與便利性有了更高的要求。隨者深度學習的興起,漸漸地有許多無標記式的估測方法被提出。但這些方法通常都會遇到缺乏室外三維標記資料的問題,使得提出的方法在現實情境中沒有辦法得到如預期的結果。
為了避開這個問題,一個僅基於二維人體關節偵測的方法在此篇論文中被提出。考量到直接將二維的偵測結果做三維重建可能會使得三維出測結果出現巨大的誤差,此三維重建結果還會經過骨架優化的步驟。此骨架優化由兩部分組成。第一部分為基於骨架模型的關節角度估計。第二部分則為動作平滑化。在關節角度估計中,除了關節角度的計算,來自三維重建的異常關節也會在被提出的異常分量排除無跡卡爾曼濾波器濾除以達到提升估計強韌性的目的。在動作平滑化中,除了位置之外,速度與加速度準確度這些高階次的指標也會在這一步得到顯著的提升。
最後,透過模擬與實驗,數據化的驗證所提出方法的效果與性能,以證明其可行性與精確度。
zh_TW
dc.description.abstractIn recent years, 3D human motion estimation has been a popular research topic. From the film industry, rehabilitation therapy to sports analysis, more and more application environments make people require higher accuracy and convenience of 3D human motion estimation. With the rise of deep learning, many markless estimation methods have been proposed. However, those methods usually encounter the problem of a lack of outdoor labeled data so that the estimation results are not as good as expected in real-world situations.
To avoid this problem, a method based only on 2D human keypoint detection is proposed in this thesis. Considering that direct 3D reconstruction of the 2D detection results may cause huge errors in the 3D estimation results, the 3D reconstruction results will also undergo the 3D skeleton modification process. The 3D skeleton modification process consists of two parts. The first part is joint state estimation based on the skeleton kinematic model. The second part is motion smoothing. In the joint state estimation, besides the calculation of the joint angle, the outlier keypoint from the 3D reconstruction will also be filtered out with the proposed outlier-component rejecting UKF (OCR-UKF) to improve the robustness of the estimation. In motion smoothing, in addition to position, higher-order metrics such as velocity and acceleration accuracy will also be significantly improved in this step.
Finally, through simulation and experiment, the properties and performance of the proposed method are verified with data to prove its feasibility and accuracy.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-06T17:05:01Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-01-06T17:05:01Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
ABSTRACT iii
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xiii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Problem Formulation 4
1.2.1 Single track 3D human motion estimation 5
1.2.2 Multi-track 3D human motion estimation 6
1.3 Contributions 6
1.4 Organization of the Thesis 9
Chapter 2 Background and Literature Survey 10
2.1 Motion Capture Systems 10
2.1.1 Electromagnetic Measurement System (EMS) 11
2.1.2 Image Processing System (IMS) 11
2.1.3 Optoelectronic Measurement System (OMS) 12
2.1.4 Inertial Measurement Unit (IMU) 13
2.2 3D Human Pose Estimation (HPE) with Vision 13
2.2.1 3D Human Pose Estimation in 2008-2015 14
2.2.2 3D Human Pose Estimation after 2016 15
Chapter 3 Related Algorithms 20
3.1 AlphaPose 21
3.2 Epipolar Geometry 22
3.3 Sphere fitting 26
3.4 Unscented Kalman Filter 28
3.5 Simple Linear Regression 32
3.6 3D Transformation Matrix Estimation 33
3.7 Rotation Matrix Decomposition 35
3.8 Linear Quadratic Regulator 37
Chapter 4 3D Raw Skeleton Reconstruction 42
4.1 System structure of multi-view system 42
4.2 Camera Calibration and Synchronization 46
4.2.1 Camera Calibration 46
4.2.2 Camera Synchronization 48
4.3 3D Reconstruction from AlphaPose 52
Chapter 5 Single-Track 3D Human Motion Modification 60
5.1 Kinematic model of Human Skeleton 61
5.2 Body parameter estimation 70
5.2.1 Limb parameter estimation 70
5.2.2 Head parameter estimation 71
5.2.3 Spine parameter estimation 74
5.3 Modified UKF with Outlier Component Rejection and State Constraints 77
5.3.1 UKF implementation for human motion estimation 77
5.3.2 Outlier Component Rejecting UKF (OCR-UKF) 80
5.3.3 KKT condition and joint damper force for joint velocity 92
5.4 Initial Inversed Kinematic Estimation 95
5.5 Iterative LQR Motion Smoother 105
Chapter 6 Simulation and Experimental Results and Analysis 113
6.1 Overview of the Procedures of the Simulations and Experiments 114
6.2 Evaluation Metrics 117
6.3 Simulation Setups 119
6.3.1 Kinematic model Setups 119
6.3.2 Tested Motions 122
6.3.3 Parameter Settings 129
6.4 Simulation Results and Analysis 131
6.4.1 Performance Analysis of Motion Estimation 131
6.4.2 Effectiveness of OCR Joint State Estimator 138
6.4.3 Effectiveness of Iterative LQR Motion Smoother 150
6.4.4 Influence of the Motion Speed 158
6.5 Experiment Setups 160
6.5.1 Multi-view system setups 161
6.5.2 Tested Motions 165
6.5.3 Parameter Settings 167
6.6 Experiment Results and Analysis 170
6.6.1 Result of 3D Reconstruction 170
6.6.2 Performance Analysis of Motion Estimation 176
6.6.3 Effectiveness of OCR Joint State Estimator 179
6.6.4 Effectiveness of Iterative LQR Motion Smoother 181
6.6.5 Influence of the Motion Speed 185
6.6.6 Processing Time for Proposed Method 194
6.7 Compare with Deep learning-based methods 196
6.7.1 Human3.6M Evaluation Setups 196
6.7.2 Performance Analysis of Motion Estimation 201
Chapter 7 Conclusions and Future Works 206
7.1 Conclusions 206
7.2 Future Works 207
References 209
Appendix A Optimal rigid body point solution 221
Appendix B KKT condition for state constraints with Kalman gain 225
-
dc.language.isozh_TW-
dc.subject動作平滑化zh_TW
dc.subject異常分量濾除zh_TW
dc.subject人體動作估測zh_TW
dc.subject人體姿態估測zh_TW
dc.subjectmotion smoothingen
dc.subjectHuman motion estimationen
dc.subjecthuman pose estimationen
dc.subjectoutlier component rejectionen
dc.title基於優化無跡卡爾曼濾波器與迭代式LQR追蹤之無標記式單人三維人體動作估測系統zh_TW
dc.titleA Markerless Multi-view 3D Human Motion Estimation System for Single Person with Modified Unscented Kalman Filter and iterative LQR trackingen
dc.title.alternativeA Markerless Multi-view 3D Human Motion Estimation System for Single Person with Modified Unscented Kalman Filter and iterative LQR tracking-
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳育任;吳沛遠zh_TW
dc.contributor.oralexamcommitteeYuh-Renn Wu;Pei-Yuan Wuen
dc.subject.keyword人體動作估測,人體姿態估測,異常分量濾除,動作平滑化,zh_TW
dc.subject.keywordHuman motion estimation,human pose estimation,outlier component rejection,motion smoothing,en
dc.relation.page228-
dc.identifier.doi10.6342/NTU202202468-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-08-19-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf10.4 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved