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A Markerless Multi-view 3D Human Motion Estimation
System for Single Person with Modified Unscented
Kalman Filter and iterative LQR tracking

Student: Chiao Lai Advisor: Dr. Feng-Li Lian

Department of Electrical Engineering

National Taiwan University

ABSTRACT

In recent years, 3D human motion estimation has been a popular research topic.
From the film industry, rehabilitation therapy to sports analysis, more and more
application environments make people require higher accuracy and convenience of 3D
human motion estimation. With the rise of deep learning, many markless estimation
methods have been proposed. However, those methods usually encounter the problem of
a lack of outdoor labeled data so that the estimation results are not as good as expected in
real-world situations.

To avoid this problem, a method based only on 2D human keypoint detection is
proposed in this thesis. Considering that direct 3D reconstruction of the 2D detection

results may cause huge errors in the 3D estimation results, the 3D reconstruction results
iii
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will also undergo the 3D skeleton modification process. The 3D skeleton modification
process consists of two parts. The first part is joint state estimation based on the skeleton
kinematic model. The second part is motion smoothing. In the joint state estimation,
besides the calculation of the joint angle, the outlier keypoint from the 3D reconstruction
will also be filtered out with the proposed outlier-component rejecting UKF (OCR-UKF)
to improve the robustness of the estimation. In motion smoothing, in addition to position,
higher-order metrics such as velocity and acceleration accuracy will also be significantly
improved in this step.

Finally, through simulation and experiment, the properties and performance of the

proposed method are verified with data to prove its feasibility and accuracy.

Keywords:

Human motion estimation, human pose estimation, outlier component rejection, motion

smoothing
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Chapter 1
Introduction

In this chapter, the motivation of this thesis is discussed in Section 1.1. Then the
problem formulation for this thesis is provided in Section 1.2. Section 1.3 states the
contributions of this thesis. Finally, the organization for the rest chapters of this thesis is

provided in Section 1.4.

1.1 Motivation

In recent years, 3D human motion estimation is a widely used technology in several
fields. In the film industry, there have been several movies using optical motion capture
system to capture the accurate motion of the actors/actresses. With accurate motions and
computer graphic technology, the filmmakers can make unreal creatures and have them
act like they are real and emotional. A famous film, “War for the Planet of the Apes”,
used this technology to do so [75: Bishop 2017]. The apes in this movie were actually
acted by real actors and actresses in labs with high-precision optical motion capture
systems as shown in Figure 1.1 (a).

Not only for films, nowadays, 3D human motion estimation is also used in hospitals,
as shown in Figure 1.1 (b). The rehabilitation of stroke or traumatic brain injury patients

is a tough and long process. The treatments highly rely on the experiences of physical
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therapists. As [76: Hogan 2020] mentioned, with the 3D motion estimation, physical

therapists can analyze the movements of patients with mobility-limiting conditions such

as Parkinson’s disease. This would provide the ability to characterize the abnormal

motion with high accuracy, and it’s necessary for surgical evaluations.

(@) (b)

Figure 1.1: The applications for 3D human motion technology with optical motion

capture system.
(@) Motion transferring in film industry [75: Bishop 2017] (b) rehabilitation [76:
Hogan 2020]

However, to use the high-accuracy optical motion capture systems, the scenario

environment should be an indoor and stable environment like labs. Also, the expansive

cost of the whole optical motion capture system is one of the weaknesses to increase its

universality. Therefore, there are some wearable devices developed for issues. [77:

VICON 2022] shows that wearable inertia measurement units (IMUs) can help athletes

to monitor their motions and furthermore give the clinicians a signal whether the anterior

cruciate ligament (ACL) injuries occur at both prevention and rehabilitation stages as

shown in Figure 1.2 (a).
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Despite the fact that the wearable devices are cheap and don’t need abundant room

to implement, not all the cases suit the wearable devices. For some sports, like baseball,

the players can’t wear any devices or sensors during the official games. In these situations,

some vision-based 3D human motion estimation algorithms are the most suitable methods.

In the last few years, due to the growth of computational power and the machine

learning technique, more and more problems that used to be regarded as almost

unsolvable can be modeled with artificial neural networks. Vision-based human motion

estimation is one of them. In Figure 1.2 (b), [78: Dutt 2018] shows a good example that

the dancing motions of humans can be captured and reproduced with only videos. With

these techniques, 3D human motion estimation becomes a universal and easy-to-

implement technology.

(b)

Figure 1.2: The applications for 3D human motion technology with other

measurement techniques.
(@) IMU-based motion estimation [77: VICON 2022] (b) vision-based motion
estimation [78: Dutt 2018]

But there are still some challenges for vision-based human motion estimation. 1) the

precision of vision-based human motion estimation is lower than the optical motion
3
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capture systems. 2) the computational cost for 3D human motion estimation networks is
still high for personal computers. Usually, the networks run on servers. 3) to lower the
computational loading, few algorithms consider the motion continuity along the time. It
also causes bad velocity and acceleration estimation, which we don’t want especially for
athlete performance monitoring. 4) since the train data for 3D human motion estimation
models are recorded in a stable environment, the high noise of real-world data often
causes bad estimation. Sometimes, the estimated results don’t even conform to real
human-like motions.

Considering the problems above, we want to propose a method that combines the
advantages of pattern recognition for machine learning and model-based method for
signal processing. Therefore, the estimated motions would be robust to the real-world

noise and also conform to the human motion model.

1.2  Problem Formulation

For vision-based multi-view 3D human motion estimation, the estimated target
would make actions under a multi-camera system, which is illustrated in Figure 1.3 (a).
The purpose is to estimate the motions, including position, velocity, and acceleration, of
each keypoint on a human body. The keypoints for human bodies are shown on Figure
1.3 (b). There are totally 17 keypoints on a human body, including nose (Nose), left eye
(LEye), right eye (REye), left ear (LEar), right ear (REar), left shoulder (LShoulder), right

4
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shoulder (RShoulder), left elbow (LEIbow), right elbow (REIbow), left wrist (LWrist),
right wrist (RWrist), left hip (LHip), right hip (RHip), left knee (LKnee), right knee
(RKnee), left ankle (LAnKle), right ankle (RAnkle), which is the same definition in

Microsoft COCO keypoint detection task [51: Lin et al. 2015].

L
- L ||

(a)
Figure 1.3: Illustration on the formulated problems.
(a) the scheme diagram for 3D motion estimation with multi-view systems
(b) the keypoints to estimate the motion for a human body

-
N

Based on the times of tracking, the 3D human motion estimation can be divided into
single-track scenarios and multi-track scenarios.
1.2.1 Single-track 3D human motion estimation

For single-track 3D human motion estimation, the input data only contain one
sequence of human motion. Without any additional information, it needs to estimate the
target’s 3D motion for each keypoint from the videos of the multi-view system and also

resist the huge noise in the real-world images.
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1.2.2 Multi-track 3D human motion estimation

For multi-track 3D human motion estimation, the input data contain multiple
sequences from the same person with similar motions. This situation is common for
repeated actions such as pitching, batting, walking... etc. Those actions have a fixed
pattern and few variations in different tracks. In this task, we can leverage the
repeatability of motions to improve the robustness of the estimated result and resist the

captured noise. Moreover, it can increase the precision of the estimated results.

1.3  Contributions

The master thesis is devoted to the robustness issue of real-world 3D human motion
estimation. To fulfill a robust 3D human motion estimation, we divide the whole process
into two parts: 1) 3D raw skeleton reconstruction and 2) single-track 3D skeleton
stabilization, which is also illustrated in Figure 1.4. The main contribution of this thesis
mainly lies in the second part.

In terms of robustness for 3D human motion estimation, this work provides an outlier
rejection method to avoid the outliers which cause by the capture noises corrupting the
estimated outputs in the second part.

In addition, to consider the estimation of velocity and acceleration, this work

implements the iterative LQR motion smoother. With this process, the output motions
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have great improvement in velocity and acceleration improvement, Wthh fe(m«m(ethodsg
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Figure 1.4: Overview of the proposed system.
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1.4 Organization of the Thesis

This rest of this thesis is organized as the following statements. Chapter 2 presents
the background and literature survey of the thesis. Chapter 3 introduces the related
algorithms of the proposed method. Chapter 4 shows how we build the multi-view system
and reconstruct the raw skeleton from the system. Chapter 5 describes the proposed
single-track 3D human motion estimation in detail. Chapter 6 demonstrates the simulation
and experiment results and analyzes the effects of the proposed methods in advance.

Chapter 7 summarizes this thesis and points out the future works of this research.
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Chapter 2

Background and Literature Survey

In this chapter, the background and literature survey for this thesis is discussed.

There are three topics in this chapter. Section 2.1 provides the state-of-the-art motion

capture systems for sports. Section 2.2 presents how the other works estimate the human

poses with vision information.

2.1  Motion Capture Systems

Motion capture systems are the systems that capture the 3D motion of the targets,

for humans mainly. Depending on the applied scenarios, various motion capture systems

have been developed. According to the measurement techniques, those systems can be

divided into four categories: electromagnetic measurement systems (EMS), image

processing systems (IMS), optoelectronic measurement systems (OMS), and inertial

measurement units (IMU) [1: van der Kruk & Reijne 2018], as shown in Figure 2.1.

[4: Perrat et al. 2015]
[6: Sathyan et al. 2012]

Discussed in Section 2.2

Motion Capture System
[1: van der Kruk & Reijne
2018]
Electromagnetic Image Processing Optoelectronic Inertial Measurement
Measurement System System Measurement System Unit
(EMS) (IMS) (OMS) (IMU)
. VICON [9: Joukov et al. 2017]
[3: Stelzer et al. 2004] Optotrak 3020 [10: Chen et al. 2020]

[7: Sporri et al. 2016]
[8: Begon et al. 2009]

[54: Neuron 2017]
[55: Xsens 2017]

Figure 2.1: Classification of motion capture systems.
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2.1.1 Electromagnetic Measurement System (EMS)

The EMSs measure the positions with the time-of-flight of the electromagnetic
waves — radio waves — traveling from the transponder to the base stations [3: Stelzer et al.
2004][4: Perrat et al. 2015]. Since the human body is transparent at the wave frequency
[5: Schepers & Veltink 2010], this measurement technique suits crowded environments,
such as team sports [6: Sathyan et al. 2012]. However, the accuracy of EMSs is relatively
low among the four categories. The transponders needed to be installed on the moving
targets is also another issue for some scenarios, like some official sport games.

2.1.2 Image Processing System (IMS)

The IMSs are also called vision-based methods. Rather than sensing the additional
objects (markers or transponders) on targets, these systems sense the target, usually
humans, with images or videos by computer vision algorithms directly. Therefore, they
can fulfill markerless motion capture, which makes it have wider applied scenarios. The
IMSs generally have better accuracy than the EMSs but worse than the OMSs. Computer
vision algorithm development is a difficulty for IMSs. But with the growth of machine
learning techniques, the IMSs become more and more popular in recent years, which

would be described in detail in Section 2.2.
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doi:10.6342/NTU202202468



2.1.3 Optoelectronic Measurement System (OMS)

The OMSs are the most accurate among those four categories and are often regarded
as the gold standard in the literature. Those systems use infrared light to locate the
markers on the moving targets with triangulation by multiple cameras. Dependent on
whether the markers contain the source of light or not, the marker systems can be
classified into passive, e.g. VICON, or active, e.g. Optotrak 3020. Without the additional
cable and battery, the former has fewer limited motions. On the other hand, the latter
performs more robust results than the passive ones.

To fulfill the high precision, most OMSs utilize several mounted cameras in a fixed
frame. Consequentially, the accuracy of the systems is highly dependent on the
experimental setup, such as distances between cameras and markers, calibration between
cameras, positions and number of markers, and brightness of environment infrared.
Owing to the sensitivity, the implementation spaces of OMSs are often limited in indoor
environments, and their range is highly relative to the number of mounted cameras [7:
Sporri et al. 2016]. To expand the applied range with fewer cameras, [8: Begon et al. 2009
used several mounted cameras on a movable frame and made the frame track the target

with several markers fixed on the ground as the only global information.

12
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2.14 Inertial Measurement Unit (IMU)

Instead of installing the sensors away from the targets, the IMUs sense the targets’
motions directly mounted on the targets. Thus, the implementation range would not be
constrained by the equipment. However, the IMUs can’t output the positions directly.
Besides, the performance is dependent on the fusion filters. [79: Neuron 2022] and [80:
Xsens 2022] utilize rigid-body models to estimate the positions of human bodies. [9:
Joukov et al. 2017] uses Lie-group extend Kalman filter to solve the gimbal lock issue
occurring for sphere joints. [10: Chen et al. 2020] developed a self-aligned algorithm for

IMUs and solve the drifting problem for the IMUs.

2.2 3D Human Pose Estimation (HPE) with Vision

In recent years, human pose estimation has become more and more popular [11:
Sarafianos et al. 2016]. The main reason causes from the increasing of new applications
[12: Wang et al. 2021], such as human-robot interaction [13: Zhang 2012], autonomous
driving [14: Kim et al. 2019][15: Du et al. 2019], sport performance analysis [16: Hwang
et al. 2017][17: Rematas et al. 2018], etc. The vision-based human pose estimation has
the advantage for wide application scenarios. Since these methods don’t need any devices
attached to human bodies, they are compatible with our daily usage.

In this field, the algorithms can be divided into two periods. From 2008 to 2015,
most works developed several classical methods and few deep-learning-based methods

13
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[11: Sarafianos et al. 2016]. After 2016, the deep-learning-based methods for 3D human

pose estimation progressed rapidly [12: Wang et al. 2021]. In this section, the works of

literature would be introduced in the two periods respectively.

2.2.1 3D Human Pose Estimation in 2008-2015

3D Human Pose Estimation
(2008-2015)
[11: Sarafianos et al. 2016]

|

Model-based Model-free Hybrid
(Generative) (Discriminative)
[
[18: Daubney et al. 2012] J !
[19: Ning et al. 2008] [27: Rosales & Sclaroff
[20: Belagiannis et al. 2014] Learning-based Example-based 2006]
[21: Burenius et al. 2013] [28: Sedai et al. 2013]
[22: Zuffi et al. 2012] [23: Huang & Yang 2010] [25: Grauman et al. 2003]
[24: Sedai et al. 2010] [26: Bergh et al. 2009]

Figure 2.2: Classification of 3D human pose estimation methods from 2008 to 2015.

According to the algorithm, the vision-based methods for human pose estimation
can be categorized as model-based, model-free and hybrid methods, as shown in Figure
2.2.

For the model-based methods, they are also referred as generative model approach
in [11: Sarafianos et al. 2016]. These methods employ a known model based on prior
information such as specific motion [18: Daubney et al. 2012] and context [19: Ning et
al. 2008]. Another category of model-based methods is called part-based or bottom-up
methods. Those methods regard the representation of human skeletons as a collection of

body parts [20: Belagiannis et al. 2014][21: Burenius et al. 2013][22: Zuffi et al. 2012].

14
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For model-free methods, also known as discriminative approaches, they can be

divided into learning-based and example-based. The learning-based methods learn the

mapping function from the input images to the estimated 3D poses [23: Huang & Yang

2010][24: Sedai et al. 2010]. The example-based methods output the interpolation of

candidates as the estimated poses [25: Grauman et al. 2003][26: Bergh et al. 2009], which

can increase the robustness and speed for the estimation.

Finally, for the hybrid methods, they combine the generative and discriminative

approaches to predict the pose more accurately. As the combination of two approaches,

the observation of discriminative approaches would be verified with the generative

approaches. [27: Rosales & Sclaroff 2006] and [28: Sedai et al. 2013] are examples of

hybrid approaches. Besides, our proposed framework in this thesis can also be regarded

as a hybrid approach.

2.2.2 3D Human Pose Estimation after 2016

With the growth of machine learning techniques and the large 3D human pose

datasets, such as Human3.6M [29: lonescu et al. 2014], CMU Panoptic [31: Joo et al.

2018], ... etc., deep-learning-based methods become the mainstream for 3D human

motion estimation in last few years.

There are three common human body models for those deep 3D human pose

estimation approaches: skeleton-based model, SMPL (skinned multi-person linear) model,

15
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and surface-based model. The skeleton-based model is the first and foremost model. It’s

commonly used in 2D human motion estimation and extended to 3D naturally. The human

skeleton is represented as a tree where the vertices are the keypoints of the human body

and the edges are formed by connecting the adjacent joints. The keypoint definitions are

different in different datasets. For the SMPL model [32: Loper et al. 2015], it is a

triangulated mesh with 6890 vertices to represent the human skin. The mesh of SMPL

models is parameterized by the shape and pose parameters. The 3D pose positions can be

estimated by learning those parameters. For the last one, surface-based model, the most

famous one is DensePose [33: Giler et al. 2018]. Considering the fact that the sparse

correspondence of the image and keypoints may not be enough to capture the status of

the human body for some applications, this model established the correspondences

between the 3D positions of the human surfaces and the image pixels.

Based on the input data are a single frame or a sequence, monocular or multi-views,

there are four types of 3D human pose estimation. The classification is illustrated in

Figure 2.3.
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3D Human Pose Estimation
(after 2016, learning-based)
[12: Wang et al. 2021]

|
| }

Frame Sequence

| |
| l | l

Monocular Multi-view Monocular Multi-view
[33: Giiler et al. 2018]
[34: Luvizon et al. 2018] [39: Pavlakos et al. 2017] [43: Coskun et al. 2017]
[35: Pavlakos et al. 2017] [40: Rhodin et al. 2018] [44: Katircioglu et al. 2018] [31: Joo et al. 2018]
[36: Nie et al. 2017] [41: Iskakov et al. 2019] [45: Tekin et al. 2016 [47: Huang et al. 2017]
[37: Bogo et al. 2016] [42: He et al. 2020] [46: Cai et al. 2019]
[38: Kanazawa et al. 2018]

Figure 2.3: Classification of deep-learning-based 3D human pose estimation methods
after 2016.

For the single-frame monocular type, the fact that a 2D pose may correspond to

several different 3D poses is often regarded as an ill-defined problem. But due to the

appealing low requirement of the image, there are still several methods have been

developed. [34: Luvizon et al. 2018] and [35: Pavlakos et al. 2017] estimate the 3D human

poses through an end-to-end network directly. [33: Guler et al. 2018] and [36: Nie et al.

20177 lift the 2D keypoints to form the corresponding 3D poses. [37: Bogo et al. 2016]

and [38: Kanazawa et al. 2018] use the SMPL model to match the SMPL parameters and

the images so that the keypoints on SMPL models can be projected to the corresponding

2D positions.

With the multi-view images, the single-frame multi-view type 3D HPE can reduce

the ambiguity of depth significantly. On the other hand, the challenge for this type is how

to fuse the information from multiple views. [39: Pavlakos et al. 2017] fused the multi-
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view 2D heatmaps by back-projecting to a common discretized 3D space with 3D

pictorial structures models. The multi-view consistency is used in [40: Rhodin et al. 2018]

as weak supervision, by forcing the network to predict the same pose from all views

during training. Triangulation is one of the fundamental and popular techniques for 3D

HPE. Some state-of-the-art methods in Human3.6M used this technique, such as [41:

Iskakov et al. 2019] and [42: He et al. 2020].

For the sequential monocular 3D HPE, the inherent depth ambiguity also causes

ill-defined problems like single-frame monocular 3D HPE. To reduce the ambiguity,

temporal information, like invariant body shapes and motion continuity, is often used. To

utilize them on artificial neural networks, various model architectures are implemented,

such as long short-term memory (LSTM) [43: Coskun et al. 2017][44: Katircioglu et al.

2018], convolutional neural networks (CNN) [45: Tekin et al. 2016], and graph

convolutional networks (GCN) [46: Cai et al. 2019]. [43: Coskun et al. 2017] proposed

LSTM-KF and tried to learn the motion and noise model of Kalman filter from LSTM.

[44: Katircioglu et al. 2018] used LSTM to impose the temporal constraint on the early

features. [45: Tekin et al. 2016] concatenated the input sequences to form the spatial-

temporal volume and extract the feature from the volume. With the skeleton model, [46:

Cai et al. 2019] formed the spatial graph of a human skeleton and further connected the

18
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keypoints along the time axis to build a spatial-temporal graph. With the GCNSs, the
estimated poses are refined with spatial and temporal information.

For the sequential multi-view 3D HPE, it has better performance than single-view
methods with the richness of the information. [31: Joo et al. 2018] used 480 synchronized
VGA views to calculate the 3D position likelihood with the projection of the center voxel
to all 2D views. [47: Huang et al. 2017] proposed SMPLify which fits SMPL model for
all views independently and regularizes the motion in time.

Nonetheless, although the deep-learning-based methods have become the
mainstream methods in the last few years. The in-the-wild scenarios are always a
bottleneck for learning-based methods inherently. Not like 2D annotations, it’s hard to
construct large datasets for 3D annotations without marker-based vision systems. As
mentioned in Section 2.1.3, those optoelectronic measurement systems are sensitive to
the experiment setup. Therefore, a large accurate outdoor 3D dataset for human pose
estimation is almost impossible. To overcome this problem, we proposed a non-learning
3D lifting and refining framework with the real-world well-perform 2D pose estimator,

AlphaPose [48: Fang et al. 2017], to get rid of 3D annotation data.
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Chapter 3
Related Algorithms

In this chapter, the related algorithms used in this thesis would be introduced. To
reconstruct the 3D raw skeleton from multi-view images, AlphaPose and epipolar
geometry are presented in Section 3.1 and Section 3.2 respectively. The sphere fitting
useful to estimate the unknown joint position is described in Section 3.3. Applied to the
outlier component rejecting mechanism, the simple linear regression is mentioned in
Section 3.5. To solve the state initialization with inversed kinematics, the 3D
transformation estimation and rotation matrix decomposition are shown in Section 3.6
and Section 3.7. Finally, the unscented Kalman filter (UKF) and linear quadratic regulator
are the main algorithms helping to filter the rough raw skeletons into smooth post

skeletons and would be explained in Section 3.4 and Section 3.8.
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3.1 AlphaPose

AlphaPose [48: Fang et al. 2017] is the state-of-the-art algorithm for 2D multi-
person pose estimation. As a two-step top-down method, the framework of AlphaPose
combined YOLOvV3 [49: Redmon & Farhadi 2018] as the region of interest (ROI)
proposer for human detection and the symmetric spatial transformer network (SSTN) +
single-person pose estimator (SPPE) to propose the corresponding poses of humans.

Using SPPE to estimate the human poses directly is a straightforward idea. However,
the performances of the SPPE are sensitive to the bounding box of the proposed ROI.
Since this issue, [48: Fang et al. 2017] proposed the spatial transformer network (STN)
to adjust the proposed ROI from the input ROI image. The SPPE performs better with the
adjusted ROI. To find estimated poses in the original ROI coordinates, the authors used
the spatial de-transformer network (SDTN) to recover the original pose coordinates with
the parameters in STN. With the STN and SDTN, the symmetric STN (SSTN) is formed.

Besides, to increase the robustness of AlphaPose for wild images, the authors
introduce the pose-guided proposals generator (PGPG) to augment the imperfect human
ROI proposals and set a fixed parallel SPPE module to penalize distance errors between
the center of the ground truth bounding boxes and the estimated poses after STN during
training. This process can make the STN try to propose the ROl around the human centers.

Finally, because the human ROI proposer may generate highly overlapped ROIs for the
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same person, the authors proposed a parametric pose non-maximum-suppression (p-Pose

NMS) to remove the lower-confidence poses overlapped with the other higher-confidence

poses. The overall pipeline of AlphaPose is shown in Figure 3.1.

STN SPPE SDTN

Human ROI
Proposer

PGPG SPPE

Figure 3.1: The Pipeline of AlphaPose

3.2  Epipolar Geometry

Image Coordinate {/}

Camera Coordinate {C}

World Coordinate {IW}
Yc Xw I

R, St
Figure 3.2: The Pinhole Camera Model

Refer to chapter 6 in [71: Hartley & Zisserman 2004], the projection from a point in

the world to an image point can be formulated with Equation (3.1), where K € R3*3 is
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the intrinsic parameters including the focal lengths f,, f, and lens center u,, v, inthe
image coordinate, and the extrinsic parameters ,SR € R3*3 and St € R3 represent the
rotation and translation transformation from the world coordinate to camera coordinate.
[u v]T is the 2D image position of the projected point in the image coordinate.
X “Y YZ]T and [X €Y “Z]T represent the 3D point position in world

coordinate and camera coordinate respectively.

w
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With the pinhole camera model in Figure 3.2, we can realize that the 3D position of
a point projected on a camera may come from any points in the corresponding ray.
Therefore, it’s not possible to reconstruct the 3D points with only one camera.

To find the 3D positions, a multi-camera system is needed. The technique to

reconstruct the 3D points with two cameras is called “epipolar geometry,” shown in

Figure 3.3.
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Cip C1
CzR' Czt

Figure 3.3: The Schematic Diagram of Epipolar Geometry

Since a camera can generate a ray as the candidates of a 3D point position, with two

cameras whose rays are not parallel to each other, the 3D position of the point can be

estimated at the intersection or the middle point of the common perpendicular of the two

rays.

To formulate it, assuming the camera sensing is ideal, Equation (3.1) is re-written as

Equation (3.2) and Equation (3.3) for camera C; and camera C,:

_C -

1y ”

Gyl=k,1 -z lvll =%z7.qa (3.2)
Ciy 1
_C -

2y w ~

CZY = KZ_1 ' CZZ Ivzl = CZZ b (33)
C2y 1

With the known rigid body transformation [8R|§;t] from C, to C,, Equation (3.4)
is formed:
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C1X
Gz.a=|%y
Ciy
Cay
c c
= R| Y[+ gt (3.4)
CZZ
= 2R(%Z-b) + ¢t
= “Z{Rb + (it
Since “'Z is a scalar, we can find that @ is parallel to *Z - g;RE + g;t which
forms Equation (3.5):
ax(“z-ZRb+¢t)=0 (3.5)

Therefore, the depth from C, can be calculated as the Equation (3.6):

szlﬁx&m (3.6)
|lax crb)|

“27 >0 since the projected point must be in the front of camera. Then, the 3D point
position in C; and C, can be calculated by Equation (3.4) and Equation (3.3) with the

calculated ©2Z.
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3.3  Sphere fitting

Referring to [85: Jekel 20221, a sphere can be formulated as:
=X —x0)*+ (Y —y0)* + (2 — 20)? (3.7)
where [Xo Yo Zo]T isthe sphere center and r is the radius of the sphere.

By arranging the terms in Equation (3.7):

r?2 =x2—=2xox + x2 +y%2 = 2yoy + y3 + 2% — 224z + z? (3.8)
2x0x + 2yoy + 2zgz + 1% — x3 —y3 — z2 = x* + y? + z? (3.9)
X0
Yo 2 2 2
[2x 2y 2z 1] Z =x“+y°+z (3.10)

2 2 2 2
=Xy — Yo — %o

Every point on the sphere should follow the relation in Equation (3.10). Therefore,

when there are n points sampled on a sphere:

2x; 2y, 274 [x1° +y1° + 2,7
2X, 2)’2 222 \ I Yo _ |x22 + yzz + Zzz | (3.11)
2xy 2y Zn 1lr? - XO yO - ZO Xp? + Yp? + 2,2
Let
2x, 2y; 2z; 1
e e O
2%, 2y, 2z, 1
(3.12)
Xo
- Yo
s = Z

2 2 2 2
r =Xy — Yo — 2o
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As=f (3.13)
5 =pinv(4) - f (3.14)
where pinv(-) is the pseudo inverse function.

Therefore, the center ¢ € R3 and the radius r € R of the sphere can be estimated

with s € R*:

Il
vl

2 —c||c||2] (3.15)
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3.4 Unscented Kalman Filter

Unscented Kalman filter (UKF) [50: Julier & Uhlmann 2004] is a variation of

Kalman filter for the nonlinear systems in Equation (3.16) and Equation (3.17).

x; = f(xe—p,u) +wy

{Zt - h(xt) :‘ vt (316)
Wt"’N(O, Q)
{vt~N(0, R) (3.17)

x; € R™ and z, € R™ are the system states and observations at the time ¢t. w; €
R™ is the process noise sampled from a zero-mean Gaussian distribution with the
nonnegative definite covariance @ at the time t. v, € R™ is the measurement noise
sampled from a zero-mean Gaussian distribution with the positive definite covariance R
at the time t. u; isthe system input at the time t. f(-) is the state transition function,
and h(-) isthe observation function. Both f(-) and h(-) can be nonlinear.

In the UKF, the processes are composed of three steps: 1) initialization, 2) time
update, and 3) measurement update.
1). Initialization:

During the time update, the previous estimated state X;_; and state covariance

P_4;—1 are needed. However, the X, and P, aren’t estimated before the

filtering process. Thus, they should be initialized as Equation (3.18) and Equation

(3.19):

%o = E[x,] (3.18)
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Py = E[(xq — %) (%o — %)"] (3.19)
2). Time update:
Unlike the extended Kalman filter (EKF), the UKF uses unscented transform
to linearize the nonlinear system without calculating the Jacobian of f(-) and h(-).

An example of the unscented transform for state transition is illustrated in Figure 3.4.

Weighted
mean
Weighted
. covariance

A 4

v v
Py I
L |
=21 Ry +V+DPy Ry — [+ DP_]
(a)
P, Pt|t—1

f4,t|t—1 fz,t|t—1

@ @ 0 O

Sotjt—1 Xtje-1

fO,t—l/jzt—l

f():nonlinear tranform

gB,t—l

$3tit-1

(b)
Figure 3.4: The illustration of the unscented transform for state transition function
(a) the block diagram (b) illustration for the relationship between sigma points and the
predicted state and covariance
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Refer to [72: Wan et al. 2004], the first step of the unscented transform is to
generate the sigma points §;,_; with Equation (3.20) while (\/ (-)), is the i —th
l

column of the matrix square root calculated by Cholesky decomposition.

( $ot-1 = Xq

fi,t—l = 56\,:_1 + (\/(n + A)Pt_llt_l = 1,2,. ., n

(3.20)

)
L{i't_l = Qt—l - (\/(n + A)Pt—lﬁf—l) ) i=n + 1,n + 2,.. .,Zn
i
The second step is to do the state transition for every sigma point like Equation
(3.21):
Sirjeer = f(&ir—pue),  1=012,...2n (3.21)
Then, the one-step predicted state X;,—; and covariance P, can be

calculated by weighted average with w;* and w{ as Equation (3.22) and Equation

(3.23).
2n
Xeje-1 = Z @7 $itje-1 (3.22)
i=0
2n
Py = [z wic(fi,tlt—l - 2t|t—1)(fi,t|t—1 - 5C\t|t_1)T +Q (3.23)
i=0

Next, the predicted observation Z;;_, and observation covariance P31
can also be calculated as Equation (3.25) and Equation (3.26) from the unscented
transform for observation function as Equation (3.24)

Yiereer = B(&ige—1),  1=0,12,...2n (3.24)
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2n
Zijt-1 = Z w{n]/i,ﬂt—l (3.25)
i=0

2n
A ~ T
Psie-1= [z wic(]’i,t|t—1 - Zt|t—1)(]’i,t|t—1 - Zt|t—1) + R (3.26)
i=0

For the parameters occurring in Equation (3.20) - (3.26), they are defined as:

( m_ 2
Yo =
P BN
4 " n+2 (3.27)
1 .
w?:wlczm, l:1,2,...,2n
\ A=a’(n+k)—n

The parameters «, B, and k are the handcrafted parameters. For Gaussian
distribution, f =2 is optimal. Therefore, in this thesis, these handcrafted
parameters for UKF are setas « = 0.2, f = 2,and k =3 —n.

3). Measurement update:

In the measurement update, the UKF will use the current observation z; to

correct the predicted estimation. However, the covariance between the state and

observation Pgz;.;—1 should be calculated first as:

2n

~ . T
Pistie—1 = 2 wic(fi,t|t—1 - xt|t—1)(]’i,t|t—1 - Zt|t—1) € R™™ (3.28)
i=0

Then, the Kalman gain K; would be calculated as:
K. = Pﬁ,t|t—1pi,t|t—1_1 € R™™ (3.29)
Eventually, the corrected state X; and covariance P; with the current
observation z, would be calculated as:
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X = /x\t|t—1 + Kt(zt - 2t|t—1) (3.30)

P, = Pt|t—1 - Ktpi,t|t—1KtT (3.31)

3.5 Simple Linear Regression

Refer to [73: Chatterjee & Hadi 2006], for a set of points {(x;,y,)| i =1, ...,n}
where the means of x; and y; are u, and u,, we can find a line to fit the relationship
between x and y among those points as Equation (3.32), where p, , is the variance of

x; and p, , isthe covariance between x; and y;.

y=a+px (3.32)
[)3 _ ?=1(xi - :ux)(yi - .uy)
ina O — py)? (3.33)
_ Pyx
px,x
@ =, — Puy (3.34)

Besides, we can calculate the correlation coefficient p,, between x; and y; as:

Z?=1(xi - ux)(yi - .uy)

Pxy = 5
\/ i O — ) X (v — 1y) (3.35)
py,x

- v/ Px,xPy,y

Therefore, once we have the means u,, u, and the variances p,, py, for x;

and y; and their covariance p, ,, every y; can be estimated with x; as:
Vi =a+px (3.36)
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3.6 3D Transformation Matrix Estimation

Refer to [52: Gan & Dai 2011], a 3D transformation matrix 4T between two
coordinates {A} and {B} can be estimated with n >4 points (po,P1,---»Pn-1)
whose positions are known in the both coordinates.

The 3D transformation matrix is composed of the rotation matrix 4R € R3*3, the

translation vector 4t € R and some constants as:

sR 5t

AT — [03x1 ) (3.37)
For every point Zp; in {B}, its position in {4} can be written as:
Ap, = 4RBp;+4t Vvi=012,...,n—1 (3.38)
The relative vectors from p, t0 p4,p2,...,Pn—1 Can be written as:
(“pi = “po) = ER("pi — "po) + (5t — §1)
= 4R("pi — "po) (3.39)

Vi=12,....n—-1

Concatenating every relative vector, we can obtain the relative vector matrixes:

{AP =[("pi="po) (“p2=po) = (“ps=‘po)] R
’p = [( BPl - Bpo) (sz - Bpo) (Bps - BPO)] € R~V .
And their transformation equation is:
Ap = 4REP (3.41)
To estimate the rotation matrix 4R, it’s equal:
4R = “P - pinv(°P) (3.42)
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pinv(-) isthe pseudo inverse function for the matrixes.

Then, the translation vector 4t can be estimated by:

(3.43)

Therefore, the transformation matrix 4T between {4} and {B} can be estimated

as.

- AR 4%
AT — [ B B
P05 1
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3.7  Rotation Matrix Decomposition

Refer to [53: Eberly 2008], for a rotation matrix R, it can be decomposed as three
rotation matrixes along the repeated or different axis R,(6), R, (68), or R,(6).

The rotation matrix along the x-axis with the angle 6 is:

1 0 0
R,.(6) = [O cos —sin 0] (3.45)
0 sin@ cos@
The rotation matrix along the y-axis with the angle 6 is:
cos@ 0 sin@
R,(®=| 0 1 0 (3.46)
—sin@ 0 cos@
The rotation matrix along the z-axis with the angle 6 is:
cos@ —sinf 0
R,(0) =|sin8 cosf® 0 (3.47)
0 0 1

For roll-pitch-yaw representation, the rotation matrix R should be decomposed as:
R =R,(y)R,(B)R,(a) (3.48)

while a, B, y are calculated with:

Algorithm 3.1: ZYX Rotation Decomposition

Input: rotation matrix R

Output: the rotation angle @, B, y while R = R,(y)R,(f)R,(a)

Note: r;; isthe element of R inthe i-th rowand the j-th column

1. if iy <1 do

2 if 33, >—1 do

3 B « arcsin(—r3;)

4 y « arctan2(ry,771)
5 a « arctan2(r3y, 133)
6 else do
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10:
11:
12:
13:
14:
15:
16:

BT/
y « —arctan2(—ry3, 735)
a<0
if end
else do
Be=—T/
y < arctan2(—7ry3,13;)
a«0
if end

return a, B, v

For another representation used in this thesis R = R, (B)R.(a)R,(y), the

decomposition algorithm is:

Algorithm 3.2: YXZ Rotation Decomposition

Input: rotation matrix R

Output: the rotation angle «, f, y while R = R, (B)R,(a)R,(y)

Note: r;; isthe element of R inthe i-th row and the j-th column

e e L i i

if r,3<1 do
if r,3 >—1 do
a « arcsin(—ry3)
B « arctan2(ry3,733)
y « arctan2(ryy, 155)
else do
a <"/
B « —arctan2(—ry5,711)
y <0
if end
else do
ae="/
B < arctan2(—1y4,711)
y <0
if end

return a, B, y

36

doi:10.6342/NTU202202468



3.8  Linear Quadratic Regulator

Refer to [74: Anderson & Moore 2007], discrete linear quadratic regulator (LQR) is

an optimization problem formulated in Equation (3.49):

N—-1
: 1 E T T 1 T

min— xt th‘l'ut Rut +_xN QNxN
Ut 2 2

t=0

(3.49)

s.t. X¢y1 =Ax;+Bu,, t=0,1,...,N —1 given x,
By minimizing the quadratic form of the state x, and control input u, for t =
0,1,..,N — 1 plus the terminal state cost x57Quyxy, LQR finds the optimal solution
while the state dynamic is fit.

To solve this optimization problem, we can easily implement Lagrange multiplier:

[Z x:TQx; +u,"Ru,

N-1
+ Z Aiq (Ax; + Bu, — xt+1)]

t=0

1
+= ) XN QNxN

(3.50)

Thus, the constrained optimization problem becomes into an unconstrained

optimization problem:

1 T
+ ExN Qnxy

N-1
. . 1 T T
min L= min = E X Qx; +u; Ru,
Xt XN UL A1 Xt XN UL ALy 2 pord

(3.51)

N-1
+ Z At+1T(Axt + Bu; — xt+1)]

t=0

For Equation (3.51), the minimal point of L can be found by taking the partial

derivative for x;, xy, u, and 4, equal to O.
37
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dx;
JaL
m =Qnxy—Ay =0
oL .
6_ut:Rut+B A1 =0, t=01,..,.N—-1
oL
:Axt+But_xt+1:0, t:(),l,...,N_l
0441

With Equation (3.54), the optimal control is:

ut - _R_lBTAt_Fl

oL
—=th+AT).t+1—).t=0, t:0,1,...,N_1

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

After arranging Equation (3.52) - (3.56) and the given x,, we can get the dynamic

and the boundary conditions of the state x; and the co-state A;:

{ Qx; + A" A1 = Ay, Ay = Quxy
Ax, —BRBT2,,, = x,,,,  givenx,

vt=0,1,.., N—-1

Assume A4; = P.x;, P, € R™™:

For t=01,..,N—1

Atv1 = Prya X
= P 1(Ax, — BRT'B"2,,)
=Py 1Ax; — P tBRT'BT 2,4

(I+ P yBRT'B)Apyq = Py Ax,
Ay =T+ Pt+1BR_lBT)_1Pt+1Axt

With the co-state dynamic in Equation (3.57),

A= Qx, + ATApyq
= th + AT(I + Pt+1BR_1BT)_1Pt+1Axt
=[Q+AT(I+ Py,1BR'BT) P, Alx,
= Pix,

38

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)
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Therefore, 4, = P.x; is proved where P; is:

P, = { Qv t=N (3.63)

Q+A"(I+ P, ,BRBT)"'P,, A, t=01,..,N—1

Then, the optimal state and co-state can be solved after solving P, and the given

Xo:
Xeyq = Ax, — BR‘iBTAHl (3.64)
= Ax; —BR'B"Py,1x; 44
(I+BR'B"P,, )x.., = Ax, (3.65)
X4, = A+ BR1BTP, ) 'Ax, (3.66)
Atv1 = PryiXein (3.67)

In addition, since the state x; close to O is not always desirable, there is a variation
of LQR for state tracking problem as Equation (3.42) where X, is the desirable state at

time t.

N—1
1 1
min > [Z (e = ROTQE: — %) + . Rute | + 5 G — %) @ — E)

t=0 (3.68)

s.t. Xty1 = Axt + But, t = 0,1, ,N -1 glven Xo

Similar to the original LQR, we can also solve the state tracking LQR with Lagrange

multiplier:
N-1
1 A N\T ~ T 1 =~ \T >
L= 3 Z(xt — %) Q(x; —X;) + u; Ruy | + E(xN —Xy) Qn(xy — Xy)
t=0

(3.69)

N-1
+ z At+1T(Axt + Bu; — xt+1)]

t=0
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Xt XN U A1 Xt XN UL A1

N-1
1
min L == min LE |:Z (xt - Qt)TQ(xt - it) + utTRut
t=0
1 o T N
+ 5 (xy —%y) Qn(xy — Xy) (3.70)

N-1
+ Z '1t+1T(Axt + Bu; — xt+1)]

t=0

Likewise, take the partial derivative equal to 0 for the optimal point:

oL
E = Q(xt - /x\t) + ATAt_l_l - At = 0, t = 0,1, ...,N - 1 (371)
t
oL ~
m =Qn(xy —Xy) — Ay =0 (3.72)
oL
——=Ru + B2, =0, t=01.,N-1 (3.73)
t
JdL
alt R = Axt + But - xt+1 = 0, t = 0,1, ...,N - 1 (374)
+

With Equation (3.73), the optimal control is:
u, = —-RBTA, (3.75)
After arranging Equation (3.71) - (3.75) and the given x,, we can get the dynamic

and the boundary conditions of the state x; and the co-state A;:

{Q(xt —X) + AT/lt+1 = A Ay = Qnxy — QuXy
Axt - BR_1BTlt+1 - xt+1, glven xo (376)

vt=0,1,.., N—-1

In this problem, we assume 4; = P:x; + ¢;, P, € R™™" and c; € R™:

Py =Qy
~ ort=N 3.77
{Ct = —QnXy ! ( )
For t=01,.. N—-1
40
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Aty = PryaXepr + €y
=P 1(Ax, — BRT'B" A1) + Ceiq (3.78)
=Py 1Ax; + €y — P BRT'BT A4

(I+ P 1BRT'B")Ary1 = Py AXy + Criq (3.79)
Aeyr =+ P BRBT) P, Ax, + (I + P, .;:BR'B) ¢,y (3.80)

With the co-state dynamic in Equation (3.76),

A =Q(x; — %) +ATApyq
= Qx; +A"(I + P.,;BR'B")"'P,,, Ax, — QX,
+A"(I+ P..;BR™'B") ‘¢,

3.81
=[Q+A"(I+ P, yBR'BT)'P, ., Alx, — QX, (381
+A"(I+ P..;BR™'B") ‘¢,
= Ptxt + Ct
Therefore, 4; = P:x; + c; is proved where P, and c; are:
_ QN' t = N
Pe= {Q +A"(I + P,,,BR"1B")"'P,.,A, t=01,..,.N—1 (3.82)
_ { “QvEy,  E=N (3.83)
7 -Qx,+ A" + P,,,BR"'BT) '¢,,;, t=01,..,N—1 '
Then, the optimal tracking state be solved with P, ¢, and the given x,:
Xer1 = Ax — BRT'BT 2,4 (3.84)
= Ax, — BRT'BT (P 1Xp41 + Cpi1)
(I+BRB"P,, )x,,; = Ax, — BR"1BT¢,,, (3.85)
X417 =+ BRB"P,, ;)" *(Ax, — BR"'B"c,.,) (3.86)
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Chapter 4
3D Raw Skeleton Reconstruction

In this chapter, the proposed 3D human motion capture system and a rough 3D
skeleton reconstruction method would be introduced. An overview of the multi-view
system we build will be presented in Section 4.1. Next, in Section 4.2, an easy approach
to calibrate and synchronize the system would be shown. Finally, to capture the 3D data
with the proposed system, the 3D raw human pose reconstruction would be described in

Section 4.3.

4.1  System structure of multi-view system

The cameras used in our multi-view system are the GigE industrial cameras as shown
in Figure 4.1. The capture frequency can reach 300 Hz while the output image size is set
as 720x540 pixels or 640x480 pixels. Besides the image capturing, these cameras can also
record the capturing time for each frame with respect to the clock in the cameras. This
function would increase the precision for synchronization and be introduced in Section

4.2.2.
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(a)
Figure 4.1: The GigE industrial cameras used in this thesis from [81: The Imaging
Source 2022]
(a) color camera DFK 33GX287
(b) monochrome camera DMK 33GX287

In addition, the lenses used in our system are listed in Table 4.1. Depending on the

applied ranges, these lenses are selected to fit the best field of view (FOV) containing the

whole activity range of the human. For our portable small-size capture system illustrated

in Figure 4.4, we use the lenses MI-03524MP C to fulfill the small-range data recording.

For the baseball field implementation, since the cameras should be installed out of the

field, the other long-focal-length lenses listed in Table 4.1 are selected.

Table 4.1

Datasheet of the industrial lenses used in this thesis
from [82: Sure Technology Corporation 2022]

Nearest Working Distance

Lens Model Focal Length (mm) )
M1-03524MP C 3.5 Not provided
MI-3514MP 35 0.3
MI-5018MP 50 0.5
MI-7528MP 75 11
43
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[ Signal generator ] BNC cable

(Trigger) J

L —1

OV <300H: caml [ |
[~

LT

~ cam2 L |

Computer

(Data Recorder) | cam3 |
Z Ethernet cable —

Figure 4.2: System overview of the multi-view system

The overview of the multi-view system is illustrated in Figure 4.2. To control the

multiple cameras in the system, the cameras are connected to the computer as the control

center. The computer involves the GigE PoE interface card to receive data and supply the

power to the cameras through the ethernet cables. Furthermore, to synchronize the capture

time for each camera, a signal generator outputs a 0 - 5V squared wave as the trigger

signal and connects to all cameras with BNC cables. The connection is shown in Figure

4.3. In the trigger mode, those cameras would capture the images only when the trigger

signal is on. Therefore, the maximum frequency of the trigger signal is the same as the

maximum sample rate of the cameras. That’s equal to 300Hz.

44
doi:10.6342/NTU202202468



Figure 4.3: The practical connection of the multi-view system

(a) Connection at the signal generator (b) Connection at the camera

After connecting the whole system, our portable motion capture system is shown in
Figure 4.4. There are four cameras capturing the views from different angles. The target
human would act in the center area of the system so that the whole human body can be

captured in every camera.

Figure 4.4: The multi-view system in practice
The cameras are framed in red rectangles. The computer and signal generator are

framed in green rectangle. The activity range for human motion capture is labeled with
blue rectangle.
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4.2 Camera Calibration and Synchronization

After the multi-view system is built up, camera calibration and synchronization are
needed for accurate motion estimation. The camera calibration process is shown in
Section 4.2.1. Then, the camera synchronization process is presented in Section 4.2.2.
421 Camera Calibration

The camera calibration consists of two parts, intrinsic calibration and extrinsic
calibration. For intrinsic calibration, Zhang’s camera calibration method [54: Zhang 2000]
is adopted. As Figure 4.5 shows, the chessboard is captured from several different angles.
With the OpenCV [83: Bradski 2022] function, the chessboard corners are detected and

would be used to calculate the intrinsic parameters for each camera.

(d)
Figure 4.5: The chessboard images for intrinsic calibration with Zhang’s method [54:
Zhang 2000]

(b)

For extrinsic calibration, since our system is a multi-camera system, every camera
should be calibrated to the same world coordinate. Thus, we deposit eight reference points
to form a cuboid involving the capture space. With knowing the accurate positions of the
reference points, once there are at least six noncoplanar points in the FOV of every camera,
the extrinsic parameters can be regarded as a PnP problem and solved with the OpenCV
functions.
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Another property of this extrinsic calibration method is that the maximum
calibration error would occur at the reference points since the cuboid formed by the
reference points is a convex set. Therefore, the calibration error in the cuboid can be
interpolated with the errors at the reference points. In other words, we can guarantee the
upper bound of the calibration error in the activity space while the nonlinear distortion is

negligible.

(b)

THES

(d)

Figure 4.6: The reference points for camera extrinsic calibration
(a) Rod position 0 (b) Rod position 1 (¢) Rod position 2 (d) Rod position 3

47
doi:10.6342/NTU202202468



4.2.2 Camera Synchronization

To synchronize the captured images from different cameras, the hardware trigger
signal is utilized. Despite that, the captured images are still not fully synchronized. In
Figure 4.7, there are the time stamps of the frames captured by the four cameras. Ideally,
each camera should record 1500 frames in 5 seconds while the trigger single is 300 Hz.
However, due to the environment brightness and other hardware issues, there exist 20 —
50 dropped frames for every camera. If we directly use the frame index as the
synchronizing label, the synchronization error may be high to 78 milliseconds. This
synchronization error may cause huge position errors during the 3D reconstruction for
high-speed motions like pitching and batting.

time stamp in ms . .
time stamp in ms

5000

4980 1 =— cam
caml

— cam2

4000 4960 — cam3

3000 -

2000

time stamp (ms)

1000 -

1430 1440 1450 1460 1470 1480 1490

T T T T T T T T
0 200 400 600 800 1000 1200 1400 frame index

frame index

(a) (b)
Figure 4.7: The recorded time stamps for each camera with synchronized hardware
trigger (300 Hz in 53)

(a) in original scale (b) zoomed in at the end of the recording

48
doi:10.6342/NTU202202468



As the observation in Figure 4.8, the time difference of the time stamps for each
camera didn’t drift synchronously. In addition, the time differences are sometimes lower
than 3 milliseconds, which is not possible for 300-Hz capturing frequency ideally even if
there are dropped frames. Therefore, the problem for hardware triggering is not only the

dropped frame issue but also the other hardware problems.

time difference in ms

— cam0
1 —— caml
— cam2
14 —— cam3

-
o

=
N

=
N
s

=
o
L

0o
f

time difference (ms)

o
L

S
L

L

0 200 400 600 800 1000 1200 1400
frame index

Figure 4.8: The time differences for each camera with synchronized hardware trigger

Not only the synchronization would affect the precision of 3D reconstruction, but
the time difference maintains or not would also influence the estimation after post-
processes. Therefore, to solve the issues above, we use the ideal time stamps as the
benchmark to be matched by the real time stamps from the cameras. The ideal time stamps
are generated with the recording frame per second (FPS) as Equation (4.1) where x is

the frame index for the output synchronized videos, and y is the ideal time stamps.

_ 1000 ms
Y="Fps *
(4.1
vx=123,..
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Find the nearest image for
Time stamp ideal time stamp Ideal time stamp:

(ms) y y = 1000/FPS*x
L
/ I
‘ |
Real time stamp | |
for camX | -
[
: [ Insert a NaN frame if
| : I image is further than
|
| | : | [ thsync
L1 I | ]
1 frame 1 frame Frame index

Figure 4.9: The concept of synchronization with time stamps

With the ideal time stamps, we can pick up the nearest frame in one image sequence
for every ideal time stamp as the synchronized image sequence, as shown in Figure 4.9.
If the nearest frame is further than a threshold ths,,. (usually equal to 2 or 3
milliseconds) from the ideal time stamp, the synchronized image sequence will be
inserted with a NaN frame (fully black image) to prevent the number of frames in the

synchronized image sequences not the same for every camera.

Ideal time stamp

33 66 10 133 166
| .
i >
3.4 6.5 13.0 16.5 Time stamp(ms)

/ 6.8 Real time stamp for camX

Choose the nearest
(in time) image for
the ideal time stamp

For the no matched ideal time
stamp, insert NaN frame

Figure 4.10: An example for synchronization with time stamps (thsy,, = 2ms)
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In Figure 4.10, here is an example to present how to output a synchronized image
sequence with the ideal time stamps and the real time stamps from a camera. As Figure
4.10 shown, the blue graduations are the ideal time stamps with 300 Hz. Then, the green
graduations are the real time stamps captured with a camera “camX”. Similar to the real
situation we meet, the sampled times are not exactly the same as the ideal setting, and the
sampled frequency is also drifting. To generate the synchronized image sequence, the
nearest image would be searched for each ideal time stamp. For the ideal time stamp equal
to 10 ms, since the nearest image is 3 ms far fromitand thg,,. is 2 ms, the synchronized
image sequence would be inserted a NaN frame at 10 ms. Thus, all the images in the
synchronized image sequence are framed with the red rectangles, and the synchronized

image sequence can be generated.
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4.3 3D Reconstruction from AlphaPose

Figure 4.11: 2D target skeleton extraction
(@) Multiple detected 2D skeletons by AlphaPose
(b) Extracted 2D target skeleton

With the camera calibration and the synchronization, the captured multi-view videos
are ready to reconstruct the 3D motions. In this stage, AlphaPose [48: Fang et al. 2017]
is utilized to extract the 2D keypoints from the images of every view. As mentioned in
Section 3.1, AlphaPose is a multi-person 2D human skeleton estimator. During recording,
there may be some pedestrians passing through the camera views and detected by
AlphaPose as Figure 4.11(a) shows. For our algorithm, it’s designed for single-person
skeleton estimation. Therefore, the other non-target 2D skeletons would influence our
results.

To eliminate those 2D skeletons and extract the target automatically, we first
initialize the biggest 2D skeleton in the images as the target skeleton. During the motion,
there are two conditions to determine whether the 2D skeleton is the target or not. The
first one is that the position differences of the main body (the average position of
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shoulders and hips) between any adjacent frames should be under a distance threshold

(50 pixels). Secondly, the ratio of the width and height of the bounding boxes should not

vary over a set threshold (equal to 1.6) with respect to the target skeleton in the previous

frame. The first condition can reject the other skeletons which is far from the target. Then,

the second condition can remove the skeletons which have different poses from the target

at a near distance. After these two extraction conditions, the 2D target skeleton can be

extracted as shown in Figure 4.11(b).

(b)

Figure 4.12: Keypoints on a 2D skeleton
(@) Keypoint positions on human body
(b) Keypoint Indexes

The extracted 2D target skeleton has 17 keypoints as shown in Figure 4.12. There

are 5 keypoints on the head, 3 keypoints on each limb. The precise definitions for every

keypoint are presented in Table 4.2.
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Table 4.2

Keypoint Definition for Microsoft COCO keypoint task from [51: Lin et al. 2015]

Keypoint Index Point Definition in Human Body
0 Nose
1 Left Eye (LEye)
2 Right Eye (REye)
3 Left Ear (LEar)
4 Right Ear (REar)
5 Left Shoulder (LShoulder)
6 Right Shoulder (RShoulder)
7 Left Elbow (LEIbow)
8 Right Elbow (REIbow)
9 Left Wrist (LWrist)
10 Right Wrist (RWrist)
11 Left Hip (LHip)
12 Right Hip (RHip)
13 Left Knee (LKnee)
14 Right Knee (RKnee)
15 Left Ankle (LAnkle)
16 Right Ankle (RAnkle)

After the 2D target skeleton extraction, the next step is to reconstruct the 3D skeleton.

As shown in Figure 4.13, the 3D reconstruction process contains three modules:

triangulation, reprojection, and calculating reprojection error.
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Figure 4.13: Flowchart of 3D Reconstruction from multi-view data
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To build the 3D points from 2D points in different views, the epipolar geometry
mentioned in Section 3.2 is applied in triangulation. With the camera parameters
calibrated in Section 4.2.1 and the 2D skeletons detected by AlphaPose for each view, the
epipolar geometry can reconstruct the 3D keypoints in skeletons by selecting any two
unrepeated cameras C; and C;. However, if the number of cameras is greater than two,
there will be more than one reconstructed 3D skeleton. To determine which reconstructed
3D point is optimum for each keypoint, all the 3D skeletons are re-projected to every
view C; and compared with the 2D skeleton generated in that view. For every 3D point
in every 3D skeleton, their reprojection errors calculated by the 2-norm distance with the
corresponding keypoints in 2D skeletons are accumulated for every camera view. After
the traversal, the 3D keypoints whose accumulated reprojection errors are the lowest
would be selected to build the optimal 3D skeleton. The overall algorithm is written in

Algorithm 4.1.
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Algorithm 4.1: 3D raw skeleton reconstruction

Input: all 2D keypoint positions of the target human skeleton in € camera views P,p;, camera
parameters for each camera M;

Output: a 3D raw skeleton of the target human P;j,

1: K < the number of keypoints for a skeleton
20 Pyppe—¢
3: fork « 11to K do
4 Csum,min < ®
5: for i « 1to C—1do
6 for j « i+1to C do
7 Psprij < triangulation(Pyp ki, Pap,j» Mi, Mj)
8 esum < 0
9 for | « 1 to C do
10: Py 1 < project(Psp . M;)
11: esum < €sum + ||Papis — PZD,k,l”2
12: end for
13: it esum < esymmin dO
14: €sum,min <~ €sum
15: P3px < P3p,i;
16: end if
17: end for
18: end for
19: P3p < P3p U Ps3p
20: end for

21: return P;p

Although the outputted 3D skeleton is optimal among all triangulated skeletons,

there are several shortcomings needed to improve in the reconstructed skeletons. To

emphasize the data roughness, we will call the reconstructed 3D skeleton as RawSK (raw

skeleton).

The first detection of the RawSKs is that it includes lots of missing data and

abnormal keypoint positions (outliers) as Figure 4.14 shown.
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/ /;Enhér-rrTa'l detectiom ————

for Left Leg

Figure 4.14: Missing data and outlier issues of RawSKs
(a) Missing data in the RawSK for B21_406 at frame 633
(b) Outlier data in the RawSK for B20_354 at frame 276

The missing data and outlier issues cause by the occlusion, frame-dropping, and
some imperfect training results of AlphaPose. These problems are common in the

RawsSKs directly reconstructed from multi-view AlphaPose results.

Trajectory of RWrist in B20_354

1_
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Figure 4.15: The trajectory of right wrist in RawSK of the example

Besides, since the RawSKs are reconstructed frame by frame, the reconstructed

positions are independent of the results in other frames. This reason makes the RawSKs
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perform shakily, as shown in Figure 4.15, and usually have bad estimations for the
derivative metrics such as velocity and acceleration.

In addition, the RawSKs are directly reconstructed from the 2D skeletons. Therefore,
some 3D geometry constraints for human skeletons are not concerned. For example, the
length between the right elbow to the right wrist would be constant. However, as the 3D
position for each keypoint is reconstructed on its own, the bone length constraints are not
considered. The distance between the right elbow to the right wrist is varying in the

motion sequence as shown in Figure 4.16.

Segment Length between REIbow & RWrist in B20_354

Segment Length (m)

0 100 200 300 400 500 600 700
frame

Figure 4.16: The distance between REIbow and RWrist of RawSK in B20_354

With these problems, it’s hard to regard the RawSKs as stable and robust motion
estimation results. To overcome them, a method modifying the performance of RawSKs

with only single-track information is proposed in Chapter 5.
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Chapter 5
Single-Track 3D Human Motion
Modification

After showing how to reconstruct the 3D raw human pose and the robustness issue
for RawSKs in Chapter 4, this chapter would show how to estimate a stable and robust
3D human motion with the proposed method. In Section 5.1, the joint space model for
human motion would be described. Secondly, the proposed approach to estimate the body
parameters for the joint-space human motion model would be introduced in Section 5.2.
Thereafter, a modified UKF to increase the robustness with outlier component rejection
and the initialization method would be presented in Section 5.3 and Section 5.4. Finally,
an iterative LQR tracking method would be shown to solve the joint coordination problem

in Section 5.5.
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5.1 Kinematic model of Human Skeleton

Referring to the Microsoft COCO keypoint task [51: Lin et al. 2015], the task
AlphaPose training for, the keypoint definition is shown in Figure 5.1 (a) and Table 4.2.
For a human skeleton, there are 17 keypoints distributd in the whole body, 5 keypoints in
the head and 3 keypoints in each limb. If we estimate these 17 keypoints in 3D space,
there would be high to 51 degrees of freedom (DOF) needed to be estimated. But, since
all the keypoints come from the same human, the motion of every keypoint shouldn’t be
independent. Considering human motions, we proposed the human motion model in joint
space modified from [55: Ude et al. 2004] in Figure 5.1 (b).

There are 22 DOFs to describe the relative motions of the keypoints in a human
skeleton. Since the end keypoints of limbs are the wrists and ankles, the 3 DOFs near the
end of each limb are ignored because they only affect the points on the hands and feet.
Consequentially, the number of DOFs in every limb becomes four from seven for the
keypoint definition from Microsoft COCO task. For the spine rotations, it’s composed of
many small relative motions between the vertebrae. To simplify the kinematic model, we
divide the overall spine motion into two groups: neck rotation and spine rotation. In each
rotation, there are 3 DOFs including the three-rotating axis in different directions to

perform the full rotating DOFs in 3D space.
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Figure 5.1: Comparison of the representation between Cartesian Space and Joint Space
(@) Keypoint Definition in Cartesian Space (b) The Joint Definition for Human Motion

The kinematic model in Figure 5.1 (b) only shows how to describe the relative

motions of each keypoints in a human skeleton. However, in Figure 5.1 (a) and our task,

the absolute positions of keypoints in the world coordinate is the eventual goal we should

estimate. To transform the relative keypoint motions in a human body into the world

coordinate, the 6-DOF transformation between the head and world coordinate should also

be estimated.

To simply define the head coordinate {head}, we set the nose position p, as the

origin in {head}. The vector from REar p, to LEar p5 is parallel to the y-axis of

{head}. The points of the nose and the ears should on the XY-plane of {head}. The
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illustration is shown in Figure 5.2. Therefore, the states to describe the transformation

between the head and world coordinate can be regarded as the position of the nose p,

and the roll «, pitch S, yaw y angles between the head and the world coordinate.

Z REar

Parallel to Y axis

(@) (b)
Figure 5.2: Head coordinate definition
(@) Side view (b) Top view

Adding the DOFs in the human kinematic model and the head-world transformation,
we can reduce the number of the estimated DOFs from 51 to 28, which can dramatically
decrease the difficulty of 3D human motion estimation.

After knowing how many DOFs we should estimate, how exactly the keypoint
positions are described with the joint states (22 joint angles + 6 head-world transformation
stats) is the next step we concern. To recover the 3D keypoint positions of a human
skeleton from the joint space, a forward kinematic function h(xpos) is developed in
Equation (5.3)-(5.25), where x,,s is the state in joint space containing 26 elements

shown in Equation (5.1).
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Xpos = (@7 TT]T

{9=[91 6, - O3]"
T = [Po,x Po,y pO,Z a .B Y]T

(5.1)

(5.2)

Besides the joint state x,,, the body parameters shown in Figure 5.3 and Table 5.1

should also be known before calculating the forward kinematic function h(xpos).
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Figure 5.3: Body Parameters defined for Human Skeleton Kinematic Model

(@) Limb parameters
(b) Spine parameters

(c) Head parameters (the keypoint positions in {head})
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Table 5.1
The definition of the body parameters in a human skeleton

Symbol Definition
SW Shoulder Width (€ R)
HW Hip Width (€ R)
LUA Length of Left Upper Arm (€ R)
LLA Length of Left Forearm (€ R)
RUA Length of Right Upper Arm (€ R)
RLA Length of Right Forearm (€ R)
LUL Length of Left Thigh (€ R)
LLL Length of Left Calf (€ R)
RUL Length of Right Thigh (€ R)
RLL Length of Right Calf (€ R)
eaa, Position of Neck rotation center
neck in {head} (€ R3)
sh Position of Neck rotation center
Pneck in (sh} (€ R%)
sh Position of Spine rotation center
pspine H 3
in {sh} (€ R°)
hip Position of Spine rotation center
pspine . . 3
in {hip} (€ R°)
neaa, Position of Nose
0 in {head} (€ R3)
heady, Position of LEye
! in {head} (€ R3)
head, Position of REye
2 in {head} (€ R3)
neaa, Position of LEar
3 in {head} (€ R3)
head Position of REar
P4

in {head} (€ R3)
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S

(a) (b)
Figure 5.4: The coordinates defined in the human skeleton
(a) Front view (b) Left side view

For the head keypoints (p, to p,), to transform them from {head} into world

coordinate {world}, the only thing we need is the transformation matrix
can be calculated with Equation (5.1):
Wi?erégR =R,(y)- Ry(ﬁ) ‘Ry(a)

worldt = [Pox Doy Poz]T

WorldR Worldt
worldT — | head head
head® — 0 1
1X3

The rotation matrices R,, R,, R, follow the definition in Section 3.7.
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With the transformation matrix “°7'4T and the positions of head keypoints the neck

rotation center defined in {head}, their 3D positions in {world} can be calculated as:

world, head.
[ pl]zwg’g;gT[ pl], Vi=0,...,4 (5.6)
1 1
world
[ pneck] — WOTldT pneck] (5_7)
1

For the keypoints in the shoulder coordinate {sh} (ps and p,), we can calculate

the transformation matrix "¢%4T:

"°4AR = R,(6:)R,(6,)R,(6,) (5.8)
hec;trilt — headpneck headRshpneCk (5'9)
head headt
"eGRT = [ " (5.10)
01><3

Then, the positions of ps and pg in {world} are calculated with the keypoint
positions defined in {sh}:

world
[ 1Pi]=W,;’;;gT hea T[ Pl] Vi=56
5.11
ps =0 SwW/2 0] G

h
where {S"p6=[o —swy/2 o

For the elbow and wrist keypoints, their positions in {sh} can be calculated as:

0
'p, =R, (05) Ry (6,)| 0 |+ °ps (5.12)
—LUA.
0
S'pg = R, (05) R,(8)| 0 |+ "pg (5.13)
| —RUA
0 0
S"p9=Ry(95)Rx(e4)< 0 |+R,(85)R,(68,)| 0 >+Shp5 (5.14)
—LUA —LLA
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0 0
pio = R, (65) R, (65) ( 0 |[+R;(0:10) Ry(6:1)]| O ) +"p (5.15)
—RUA —RLA

To transform the elbow and wrist keypoints into {world}, they can be calculated as:

world, shy,.
|7 P = vtar e [P, vi= 7,00 (5.16)

For the keypoints in the hip coordinate {hip} (p;; and p,,), we can calculate the

transformation matrix ;ST

p
hsizrolR = R;(614)Ry(613)R,(612) (5.17)
she — sh o S_thip ) (5 18)
hip pspme hip pspme :
sh sh
nnT = l’”pR ’”ptl (5.19)
01><3 1

Then, the positions of p,; and p,, in {world} are calculated with the keypoint
positions defined in {hip}:

world
[ 1 pi] _ worldy: headr.. s.hr[ 1Pi], Vi =11,12

. 5.20
“opy =[0 HW/2 O 20

where {..
{’””pn:[o —HW/2 0]

For the knee and ankle keypoints, their positions in {hip} can be calculated as:

0 .
"Ppis = Ry(016) Re(615)| 0 |+"py, (5.21)
—LUL]
hi 0 hi
lpp14 = Ry(HZO) R, (6,9) 0 + lpp12 (5.22)
| —RUL
N 0 0
Ppis = R, (616) Rx(915)< 0 [+ R,(6,7)R,(0:5) [ 0 D 523
_LUL _LLL (5.23)

+ hlppu
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. 0 0
hlppm = Ry(gzo) R, (019) ( 0 + Rz(921)Ry(922) 0 ) £124
—RUL —RLL 5i24)

+"Pp,,
To transform the knee and ankle keypoints into {world}, they can be calculated as:

world, shy,.
[ ) pl] — Wi?ercigT . hez;ilT[ fl:l , vi=13,...,16 (5.25)

By the combination of Equation (5.3)-(5.25), the forward kinematic function

h(xp0s) can be formed as:

world

Po
world

1|
P | = h(xpos) € R® (5.26)
|

world

r
I
I
I
l P16
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5.2 Body parameter estimation

As defined in Table 5.1, there are 19 body parameters needed to be estimated for a
human skeleton. As shown in Figure 5.5, the body parameters can be divided into three
groups: 1) limb parameters, 2) spine parameters and 3) head parameters. For each group,

the estimation methods for the body parameters from the RawSKs are also different.

.
i
o

head
Po

headplfr\\feadpz

l
head head
P3

Pa

head head
P1 P2

head head

Ps heady, P

(@) (b) (©

Figure 5.5: Body Parameters defined for Human Skeleton Kinematic Model with
keypoints positions

(d) Limb parameters

(e) Spine parameters

(f) Head parameters (the keypoint positions in {head})

521 Limb parameter estimation

For limb parameters, they have some common features. First, they are scalar length.
Second, both endpoints of limb parameters are the keypoints that can be detected in
RawSKs. Because of these two properties, the limb parameters can be estimated easily
by calculating the distances between the corresponding keypoints in the RawSKs.
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However, as shown in Chapter 4, the keypoint positions of RawSKs are noisy and

contains lots of outliers. To simply reduce the influence, we would calculate the means

and standard deviations for the keypoint distances first. Then, with the statistical values,

the outliers can be removed by keeping the distances whose values are nearby the means

in twice the standard deviations. After keeping the inliers, the limb parameters are

estimated by taking the average of the inlier distance. The whole processes are illustrated

in Figure 5.6.

length of R upper arm ([|pg — Psll)

,-—..—.—-www’eﬁ"- !ﬂ' ;‘w" f‘

4 100 200 300 400 500 600 700
frame

Calculate the 2-norm of a
vector between 2 points

Figure 5.6: The processes for limb parameter estimation

5.2.2 Head parameter estimation

length of R upper arm (inliers)

0

00 200 300

400 500 600

frame

Remove outliers

700

[mean — 2*std < inliers < mean + 2*std]

=) RUA:0.2936m

Calculate new mean

Before the spine parameters, the estimation method for head parameters should be

introduced first. The head parameters, in fact, are the head keypoint positions in {head}.

The points on a human’s head can be regarded as the points in a rigid body. Their motions

should obey the rigid body motion ideally. Therefore, the head parameters are supposed
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to be constants. To find these constants, the rigid body transformation

orld
Yeaa I from head

coordinate {head} to world coordinate {world} should be estimated first.

As the definition of {head} in Figure 5.2, we can use Gram-Schmidt process to

extract the x-axis unit vector and the y-axis unit vector of {head} in {world} Then, the

z-axis unit vector of {head} can be calculated with the cross product for the x-axis unit

vector and y-axis unit vector of {head}. Finally, with the position vector p, as the

translation vector, the

worldT can be estimated in Algorithm 5.1.

Algorithm 5.1: ¥ T estimation
Input: The positions of head keypoints p, p,, p,, P, p, € R® in {world}
Output: The transformation matrix "t
11 vy «p;—p,
2: vy < po— (P3s+Pp4)/2
3" Yheaa < vi/llv1ll
4: vy < v, — (V" Yneaa) * Yheaa
5. Xneaa < v3/llvsll
6. Zhead < Xnead X Yhead
7o R — [Xpead Views  Zhead)
8 “heait < P,
o e [N e
0,x3 1
10:  return worldr

The transformation matrix

once the keypoints p,, p3, p, are not missed. With

keypoints p, to p, in {head} can be calculated by pre-multiplying

world
head

worldT can be estimated for every frame in RawSKs

T for every frame, the head

worldp—1
headT

To estimate the head parameters, we have the head keypoint positions in {head}

for every frame in the RawSK. With the implementation of rigid body assumption, the
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vectors between any two keypoints should remain the same in every frame. By
minimizing the sum of the squared 2-norm of the vector difference between the optimal
keypoint vector §; — P, and the keypoint vector "***p,, — "*®p . in every frame ¢,

the optimization problem for head parameter estimation is formed in Equation (5.27):

N-1

3 4
2
s z z (I = ") — (B: ~ 8))],) (5.27)

With the proof shown in Appendix A, the optimal solution for Equation (5.27) is:

N-1
1
B, = P + Nz headpl headp()t, Vi=1,...,4 (5.28)

t=0

Since Pg issetas [0 0 0]7 in {head}, the head parameters can be estimated

as:
1 N-1
head I S E head head ;o
Pi=Di = N pi,t — po‘t , Vi = 1, . .,4‘ (529)
t=0
v s A A F— S
/ \
o N
o wohs o« e
Frame: 0 Frame: 563 Frame: 653 Head parameters

Figure 5.7: The head keypoints in {head} for RawSK and the estimated head
parameters
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5.2.3 Spine parameter estimation

For each spine parameter, one of its endpoints is not included in the RawSKs.
Therefore, the direct estimation method for the limb parameter doesn’t suit the spine
parameter. By the observation of the kinematic model, we can find that both the neck
rotation joint and spine rotation joint are spherical joints. Thus, while observing in a
coordinate fixed in one link of the spherical joint, the motion of the other endpoint should
be on a spherical surface. The center of the spherical surface is the position of the

spherical joint, and its radius shows the length of the second link, illustrated in Figure 5.8.

Fixed one end of
spherical joint

Observing in {Green}

Sampled position
of end point

Workspace

Figure 5.8: The schematic diagram of the motion of the end point while the other end
point is fixed for spherical joint

For the neck spherical joint, we can fix our observation in {head} by transforming
the keypoints in {world} with “2l4T-1 estimated in Section 5.2.2. To estimate

heady, v and *"p...., the middle point of shoulders (ps and p) is chosen as the
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observed point, denoted as "“**p g in {head}. The positions of "€*p ... at

different time are shown in Figure 5.9.

{head}
YA
A
L}
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lleadp > ~010%
X N
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Preck head —0.1 .
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0:2 02 -01 00 o1 02
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f head .
Psamia

Figure 5.9: The schematic and scatter diagram o
(a) the sphere fitting to estimate "*®®p...cc and “"preck
(b) the scatter diagram of "*“p_,41ia

With the positions of the shoulder middle point at different time, we can use sphere

fitting in Section 3.3 to find the rotation center of neck in {head}, i.e. "***p,ck.
Creckr) Tneck < SphereFitting(headpshMid,t) (5-30)
head (531)

Pneck = Cneck

Besides, the estimated radius of the sphere also represents the distance between the
shoulder middle point and the neck rotation center. By defining the z-axis of {sh}

parallel to the vector from the shoulder middle point to the neck rotation center, *"p.,.cx

can be estimated as:

0
Shpneck =[ 0 ] (5-32)
Theck
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Similar to the neck rotation center, the spine parameters Shpspine and hippspine

can also be estimated with the sphere fitting of the middle point of hips (p;; and p;) in
{sh}.
Cspines Tspine < SphereFitting(*"Pripmia ) (5.33)
P spine = Cspine (5.34)
In addition, we set the z-axis of {sh} parallel to the vector from shoulder middle

point the neck rotation center. Therefore, hippspine can be estimated as:

0
hlppspine =[ 0 ] (5.35)

rspine

The example of spine parameters near spine rotation center is shown in Figure 5.10.

{sh} g

sh
PhipMid

Figure 5.10: The schematic and scatter diagram of Shphipmd
(a) the sphere fitting to estimate *"pyime and "PPspine
(b) the scatter diagram of *"ppipmia
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5.3 Modified UKF with Outlier Component
Rejection and State Constraints

5.3.1 UKF implementation for human motion estimation

With the skeleton kinematic model and the body parameter estimation, the 3D
human motion estimation problem becomes a joint stat estimation problem. In control
theory, the observers are common and useful tools for state estimation. Kalman filter is
one of the most famous observers by minimizing the estimated state covariance. However,
since the human skeleton is a highly nonlinear system, a variation of Kalman filter,
unscented Kalman filter (UKF), is more suitable for our problem.

Referring to Section 3.4, the UKF can be formulated as:

x = f(xe_q,u) +wy
5.36
{Zt = h(xt) + ‘Ut ( )
w~N(0, Qukr)
5.37
{vtNN(OtRUKF) ( )
The state transition function f(-) is set as the constant velocity model, i.e.:
f(xe_1,ue) = AygpXe—q + Bygrue (5.38)
The Ayxr and Bygr are:
122 122 022><6 022><6
022><22 122 022><6 022><6 56
Ayxr = € R>6%56 5.39
UKF 06><22 06><22 16 I6 ( )
06><22 06><22 06><6 I6
022><22 022><6
Byxr = T2 O2zx6| o pexas (5.40)
06><22 06><6
06><22 16
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The estimated state x, and the input u, are:
x.=[0] o}, 17 T5,]'eR’, n=56 (5.41)
u, =00, Th, eRv? (5.42)
Not only the position state @, and T,, but the discrete velocity terms @, and
T, are also included in the state x.. Correspondingly, the input u, for the constant
velocity model is the discrete acceleration @,2, and T,z,. However, as there is no
acceleration measurement in our multi-view motion capture system, the state transition
function f(-) for our estimation becomes:
f(xe-1) = AykrXe—q (5.43)
For the observation function h(x;), it has the same output with the forward

kinematic function in Equation (5.26) , while the input is x, rather than x,;.

world
e |
world

P1

Zt = .
world

And the observation z, € R>! is the 3D positions of every keypoint.

=h(x,) ER™,  m=51 (5.44)

Pis

With the equations above, we can implement the UKF for our joint state estimation
with some parameters set by hand. These parameters are: initial state covariance P,
processing noise covariance Quxr, and measurement noise covariance Rygr. Besides,
the initial state X, isalso a parameter we should estimate before running the UKF, which

would be introduced in Section 5.4.
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With the proper setting of these parameters and set the component of the innovation
vector as zero vector for the missed data, the estimation performs well when the

observation from RawSKs is stable as Figure 5.11 shows.

(b)
Figure 5.11: The estimation result with UKF in frame 150-220 for B20_354
(a) the RawSK in frame 150-220 for B20_354
(b) the UKF filtered in frame 150-220 for B20_354
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5.3.2 Outlier Component Rejecting UKF (OCR-UKF)

However, when there are few observation outliers with dramatic errors in the
RawsSKs, the performance would be influenced by the outlier significantly. As shown in
Figure 5.12, the outliers occur on the left leg during the lifting process. Despite the fact
that the outliers only happen in few separate frames, the filtered result will be affected

over a long interval.

(b)
Figure 5.12: The effect of outliers in RawSK to the UKF filtered result
(a) the RawSK in frame 272-279 for B20_354
(b) the UKF filtered in frame 272-279 for B20_354

To avoid this issue, an outlier rejection mechanism is necessary. So far, there are
several outlier rejection methods designed for Kalman filter, such as [56: Agamennoni et
al. 2011], [57: Ting et al. 2007] and [58: Mu & Yuen 2015]. However, for these methods,
the minimum detection size of the outlier detection is a frame, which means that they
would regard the whole skeleton in the frame as an outlier when there is only one large
error keypoint. For our problem in practice, the number of the outlier keypoints is few,
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usually about O to 2. If the outlier rejection for a whole frame is adopted, lots of
information that comes from the other inlier keypoints will be wasted.

To utilize all the inlier keypoints in every frame, we proposed the outlier-
component-rejecting UKF (OCR-UKF) to filter out the outliers with the keypoint as the
unit. The idea comes from the simple linear regression mentioned in Section 3.5.

For every frame before the measurement update, the UKF would predict the one-
step advanced observation covariance P;..—, as Equation (3.26). In Py e—q, it

contains the all predicted observation covariance for each component in innovation vector

[Pm P P1,m] [el]

Poreor =|Poi = P Pl,m|,£t=rl‘ (5.45)

Pm1i = Pmi °° Pmm Em

With the simple linear regression, every innovation component &; can be estimated
with any innovation component &; as:
& = @y + Pt (5.46)
We assume that the probability of innovation vectors is unbiased. Thus, @;; = u,, —

:él.i.usi = 0 with Ue, = Ue, = 0.
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By taking the weighted average of the estimation from all components ¢;, we can

estimate the component of the innovation vector ¢; as:

m
. 1 25
f=cm—3 ) Pui Pt
i=1PLi =1

m
_ ;ZP .2@8. (5.47)
i=1PLi = ST
; 2 pLi® . ;
while p;;* = —— is the weight
! PiiP11

Following the assumption from Kalman filter that the predicted observation
distributions are gaussian with mean 2., and covariance Pj._;, €very innovation
vector & = z, — Z;,—, should also be on the gaussian distribution with zero mean and
covariance Pj, ., if the observation z, follow the same distribution of the predicted
observation.

With this assumption, the covariance between every component & and ¢; in &
is p;;. InSection 3.5 and [73: Chatterjee & Hadi 2006], the slope minimizing the sum of

squared errors of linear regression result is f£;; = %. Therefore, we can use f;; to

Lt

estimate &; with any other component ;. However, the relationship between ¢; and ¢;
may be low or even not relative. It will make the estimated &; not meaningful. Thus, the
estimated result & comes from the weighing average of each estimation with the weights
are the squared correlation coefficients between & and ¢; to emphasize the estimated

results from the highly relative components.

82
doi:10.6342/NTU202202468



Since the estimated component & comes from the estimated observation
covariance and the new observation, it would be strange if the estimated component &;
is far from the real component ¢;. Therefore, a confidence score s; can be calculated in
Equation (5.48) where k,,; is the outlier coefficient set by hand.

o ell2
o Kot (5.48)

The range of s; is (0,1] set by the definition. It can be regarded as an index that
measures how possible the innovation component & is an inlier. If s; < 0.5, the
innovation component &; will be treated as an outlier, vice versa. As &, = z; — Z¢¢—1,
the observation component z,, will be regarded as an outlier component when ¢&; is an
outlier. Additionally, z;, will be regarded as an outlier component when the component
IS missed.

The strictness of the outlier detection can be adjusted by the outlier coefficient k.
When k,,. increases, the observation component would have smaller tolerance to
become an inlier. While k,,; decreases, the observation component would have fewer
chances to become an outlier.

For our problem, as mentioned in Section 4.3, every keypoints in the RawSKs is
reconstructed independently. But the positions in each axis are interrelated for a keypoint.

Therefore, a keypoint should be treated as the minimum unit for the outlier detection. If
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any confidence score of the three axes of the keypoint is smaller than 0.5, the whole

keypoint should be regarded as an outlier, as illustrated in Figure 5.13.

51 components 51 scores Boolean for inlier 51 outlier labels
for 17 keypoints
[ €0,x ] So,x || Oo,
€0,y 00,y
-_go'i B , \ /ﬁ—% =
E1x ‘ True 01
E1y yh F alse 01,y
e, | EEp lov,
T : False :
[Erex | : / 1Prex|
€16,y O16,y
£ . 0
| 716,Z ] False if any scores of 16,2

the keypoints <0.5
51 <0.5
Figure 5.13: The flow to set a keypoint as the minimum unit for outlier detection

Then, an example for outlier detection is shown in Figure 5.14.

Figure 5.14: Outlier component detection with OCR-UKF in frame 272-279 for

B20 354
The outlier keypoints determined by OCR-UKEF are marked with red circles.

After the outlier detection, to eliminate the influence of the outliers, the modified

Kalman gain K¢z, for OCR-UKF is formed:

Kt' = [k1 eee kl eee km] € Rnxm
(5.49)
where k; € R"
_ (Opxn,  if the keypoint is outlier
0= { I, if the keypoint is inlier (5.50)
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Kocre = [01ky - o0ky - 0pkp] € RT™ (5.51)
With the modified Kalman gain, the measurement update for OCR-UKF is turned
into:
X = 5Et|t_1 + KOCR’t(zt - 2t|t_1)

= X¢jt-1 + Kocrc&t (5.52)

m
=X¢e-1 T Z 0.k
=0

With oy, the outlier component & wouldn’t affect the estimated state X, anymore.
However, since the Kalman gain is modified, the covariance update in Equation

(3.58) for UKF would not suit for OCR-UKF anymore.
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With the update equation for estimated state, for an arbitrary Kalman gain K, the
updated state covariance is:
P, = cov(x, — Xyt)
= cov(x; — (/x\t|t—1 + K.&,))

— cov (e — [ + Ke (20— h(Eop)|)
(5.53)
= cov (xt — [’fﬂt_l + K, (h(xt) + v, — h(ft“_l))])
= cov ((xt — Ryjr-1) — Ke[h(x) — R(Rppe-1)] — Ktvt)
= cov (2 = Re1) — Ke[n(@0) = h(Repe-1)]) + KRy K"
Define a matrix H, € R™" such that K.[h(x;) —h(®y-1)] = K:H (% —
Xjc-1), then P, equals:
P, = cov ((x: = Rejemr) — Ke[R(x0) = h(Rege—1)]) + KeRuie K"
= cov ((I = KH) (% = Rejems) ) + KeRuge K,
= (I - K.H)cov(x, — Ryr—1) I — K. H)T + K. RyrK,"
= -KH)P,—(I—KH)" + KRy K, (5.54)
=Py — KHPyy — Py HK,"
+ K (H.Py,—H," + Rygr)K,"

=Py — KHPyy — Py H K, + K.Pyppe 1 K,"
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Recalling the original concept of Kalman filter, minimizing the trace of estimated

state covariance rrll(in tr(P.), the optimal Kalman gain for the standard Kalman filter is
t

formed by:
dtr(P,) T
Tt = _Z(HtPtlt_l) + 2KtP2,t|t—1 = 0 (555)
t
_ T -1
K, = Pt|t—1Ht Pé,t|t—1 (5.56)
Additionally, with the optimal Kalman gain K, the following equation is formed:

KtPZt|t—1KtT = Pt|t—1HtTKtT = KthPt|t—1 (5.57)

Therefore, the state covariance update function for standard Kalman filter and UKF

P, = Ptlt—l - Ktpi,tlt—thT (5.58)
However, for the OCR-UKF, the Kalman gain K,cg. is designed to reject the
effect of the outliers rather than minimize the trace of the state covariance. Thus, its state
covariance should be updated by Equation (5.54) as:

_ T T
Py =Py 1 — KocpeHiPtjt-1 — Prje-1He Kocrye

(5.59)

T
+ Kocr,ePsijt-1Kocrt

To calculate H,, we can utilize the optimal Kalman gain K, for UKF calculated in
Equation (3.29) and the derived relationship for optimal Kalman gain K, and H,; in
Equation (5.57) as:

{Kt = sz’t|t_1pi,t|t—1_1 (5.60)

Ktpi,t|t—1KtT = Pt|t—1HtTKtT
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Therefore, H, can be calculated by:

(Peztje-1Paie—1" )Psje—1 = Peje—1H' (5.61)

— T
H, = (Pt|t—1 1Pi2,t|t—1)
(5.62)
= P’;\?i,t|t—1T Pt|t—1_1 € R™*"
Imaginably, because the OCR Kalman gain Kycr ¢ is not designed to minimize the

state covariance, the state and observation covariance would be widened with the time

update when the outlier components are rejected, as shown in Figure 5.15.

Observation Covariance for LKnee in B20_354 Observation Covariance for LAnkle in B20_354
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Figure 5.15: Observation covariance variation while encountering the outliers
(a) observation covariance variation for LKnee in B20_354
(b) observation covariance variation for LAnkle in B20_354

However, it makes a good property that the OCR-UKF can catch the inliers even

when the inliers are far from the predicted state after a long outlier interval as shown in

Figure 5.16. Since the observation covariance is widened with time, the confidence score

would increase as p;,; isadiagonal element in observation covariance.

Hence, the inlier region would also be expanded while the inlier threshold is fixed at s; =

0.5.
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Noye = 3

Timer: t—11 t | t+1 1 t+2 1 t+3 ] t+4}..
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Predicted state
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\fqt—l 't+1\t 1 ° . |
Xt-1
o
Xt+3

Estimated state
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©°
«

Zt
Zty3

Zt+1

Outlier observation Ziy

Observation

Figure 5.16: The concept of outlier rejection and inlier interpolation for OCR-UKF

Besides rejecting the outliers, it’s also important to trace back the influence of the
observations during the outlier interval once the inlier observations are caught, as shown
in Figure 5.16. Since the outlier component rejection mechanism rejects all the effects of
the observation in the outlier interval, the predicted state may be hugely biased without
the new information from the observation. The measurement update only updates the
estimated state once the inlier is caught at 7., = t + N,,; Where N,,; is the duration
of the outlier interval. To trace the corresponding innovation during the outlier interval,

we calculate the influence of innovation for the [-th component of & on state as:

Tend
Elr'[end = kl:'fendglr'[end (563)
The vector €., can represent the state change after the outlier interval for the

[-th component.
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Difference of state from A
predicted state X;|;_1
(w/o measurement update
for I[-th component in

observation —
) Glﬂ'end kerend Serend

et

t—1 Tend

Those €; ; need to be traced back

Figure 5.17: Illustration of tracing back state change (inlier interpolation)

To trace back the state change €, for every frame in the outlier interval while

considering the system dynamic, a variation of LQR tracking is applied:

Tend—1

: 1 T .
nlll}rnz Z uTTRinuT + E (Elﬂ'end - Elﬂ'end) Qin’Tend (El’Tend - Elﬂ'end)
T=t-1 (5.64)
s.t. él,‘L'+1 = Aél,‘[ + Bu-l-, T=1t— 1, t, v Tond with @l,t—l =0
The variation of LQR tracking only tracks the state change at the end and minimizes
the weighting squared sum of the system input during the interval. Therefore, the state
change during the outlier interval can be traced with the smoothest trajectory. Also, as the

state transition function f(-) is linear the state change can be compensated with addition

directly once the outlier interval ends for the [-th component:

m
Ry = Repeg + Z o (5.65)
=0

For the frames not including any outliers or whose outlier intervals haven’t finished
yet, their & . will be setas 0. After all, the procedures of the OCR-UKF can be illustrated

in Figure 5.18.
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Figure 5.18: Illustration for the processes of OCR-UKF
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5.3.3 KKT condition and joint damper force for joint velocity

Besides the OCR-UKF, there are some other designs to improve the estimation
performance in this work. They are KKT condition for joint velocity and the joint damper
force. The two mechanisms are used to restrict the magnitudes of the joint velocity which
are often huge for the transitional state with poor state initialization.

The KKT condition for joint velocity is to apply the well-known KKT conditions to
restrict the state with lower bound and upper bound by adjusting the Kalman gain before
determining the OCR Kalman gain Kycgr.. The detailed derivative will be shown in
Appendix B.

In conclusion, the Kalman gain with the KKT condition is calculated by Equation
(5.66) with the given state lower bound x;,,,., and state upper bound x,,,per-

Kyggre = Pt|t—1H{P2_,%|t—1 + (u — ”2)£{P£%|t—1 (5.66)

The py, u, are determined with Algorithm 5.2

Algorithm 5.2: determine the Lagrange multiplier u,, u,

Input: state bounds Xx;,yer, Xypper, iNNOVation vector &, in the current frame, and other predicted
information

Output: the value of Lagrange multiplier p,, u,

Note: n is dimension of the state x,, a,; isthe i-th element of a,, and same for b, ;, py;, Hy;

1 ay < Xiower — Xpjp—q — Pt|t—1HZP2_}|t—1£t
2 by « Xyje—1 — Xypper Pt|t—1HZP2_}|t—1£t
3 e S{Pi_}|t—1£t

4. for i< 1,...,n do

5 if a;; =0 do

1

6: Hii < Qi
t
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7 Ui < 0
8: elseif a,; <0 and b,; <0 do
o: Hi; < 0

10: Ui < 0

11: else do

12: M <0

13: Uz < Cltbt,i

14: if end

15: return pq, u,

With it, the state can be bounded in the interval between x4y and Xypper-

However, the joint velocities are not always in the low magnitude intervals.
Especially for intense exercise, the joint velocity may raise dramatically for a short time,
then, drop down suddenly. Therefore, the state bounds are only used for the unhuman
motion with a relatively wide restricted state interval.

For real human motion, it’s hard to maintain a high joint velocity for a long time.
Besides the stopping consciousness of humans, we think that there are some other
impedances coming from the human body. We regard the impedance as the damper force
to generate the resistive force when the joint velocity is large. Thus, the state transition
function is rewritten as:

Xt = f(xe—1) = AygrXe—1 + Bykrlagmp,e—1 (5.67)
Uggmp,t-1 = Cdamp * [@X,t—l TX,H]T (5.68)
The joint velocity and head-world transformation velocity come from x;_4:

T
xt—1=[9?—1 9£,t—1 T?—1 TZ,H] (5.69)
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After the OCR-UKF and the velocity constraints, the estimated trajectory is shown

in Figure 5.19. Compared with the RawSK, most of the outliers are rejected successfully.

However, the trajectory still looks rough and shaky, which makes it unlike a perfect

estimation result. To handle this problem, an iterative LQR motion smoother will be

proposed in Section 5.5.

Trajectory of LAnkle for B20_354

—_ 1 7
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Figure 5.19: The estimated trajectory of LAnkle for B20_354 with OCR-UKF
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5.4  Initial Inversed Kinematic Estimation

As mentioned in Section 5.3, the proposed OCR-UKF needs a guess initial state X,
in the first frame before the filtering process. With the converge property of Kalman filter,
the initial guess for the state is able to accept some tolerance. However, if the guessed
initial state has too large errors so that the estimated state is out of the convergence region,
the filter process may work improperly. Thus, a good estimation of the initial state is
important. The proposed procedure here is similar to the solving of inversed kinematic
of the human skeleton with the RawSK in the first frame.

The initial parameters that need to be estimated are:

Xposinit = [Ofnir  Tiniel” € R?® (5.70)
{@init = [Orinit O2inie = O2zimit]” ) (5.71)
Tinit = [Poxinit Doyinit Pozinit Xinic Binit Vinit]
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These parameters are used as the state describing human pose as Figure 5.20.
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Figure 5.20: lllustration for the initial estimated states

(b)

(@) the initial pose and skeleton joint angle @ (b) the initial head pose and head-world

transformation parameters T

The estimated parameters can be divided into five parts: 1) Head coordinate

estimation (T;,;.), 2) Shoulder coordinate estimation (6 init, 02 init» 03,ini¢), 3) HIp

coordinate estimation (61 ini¢, 013,init> 14,init), 4) EIbow and knee angle estimation

(07 init» 011,init» O18,init> O22,init )» and 5) Shoulder and hip joint angle estimation

(B4,init» Os,init» 06 inits O,init> 09 init» 010,init 015,init» O16,initr 017,init» 019,init» 020,init» 021,init)-
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1). Head coordinate estimation (T ;)

As mentioned in Section 5.1, the forward kinematic of the proposed human
kinematic model starts from the head. Therefore, the first step is to estimate the head-
world transformation parameters T;,;; in Figure 5.20 (b).

The first three elements of T, [Poxinit Poy,init Pozinit]?, are estimated as
the position of the nose keypoint p, in the first frame directly. To estimate the roll-pitch-
yaw angles of the transformation between world coordinate and head coordinate, the head
keypoint positions in {head} and the positions of the head keypoints in {world} are
utilized.

Since there are 5 points in the head, the 3D transformation matrix estimation method
presented in Section 3.6 can be used to find the relative transformation %"!4T. Taking
advantage of the rotation matrix WorldR in WorldT the roll-pitch-yaw angles i,
Binit» Yinic Can be obtained with the ZYX rotation matrix decomposition method
mentioned in Algorithm 3.1.

Qinits Binie» Vinit < ZYX_Rotation_Decomposition(“/R) (5.72)
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2). Shoulder coordinate estimation (61 ;,i¢, 0 init) 03,init)

head head
sth sht

{heqy,

- A Z
XL =y {sh}
{ h}\ﬁ é.zl le: 92)/! 932 Shpneck y
8 C gy
L/%L . —»Jy{g@ s
/'(15 Shps‘(:b.‘ sh, > X
v ) Psnmpta
¥ &
(a) (b)

Figure 5.21: lllustration for head-shoulder transformation
(a) head-shoulder transformation (b) shoulder coordinate definition

To estimate the initial values of 6 inir, 02 inits 03,mic, the rotation matrix "¢%¢R
from head coordinate {head} to shoulder coordinate {sh} should be estimated first.
The head coordinate {head} for the initial frame has been estimated in the 1) Head
coordinate estimation (T;,;;). For the shoulder coordinate {sh}, its definition is shown
in Figure 5.21(b). The middle point of the shoulder points psupia = (ps + pﬁ)/z is set
as the origin of {sh}. The left shoulder keypoint p; is set lying on the positive y-axis of
{sh}. Then, the neck rotation center p,..., calculated with the spine parameter
heady, .. and world-head transformation “°rl4T s set lying on the YZ-plane of {sh}
with positive z-value. With these three conditions, the shoulder frame {sh} and its
transformation matrix “°"9T from {world} can estimated easily. To obtain the
rotation matrix "¢%R affected by 0y init, 02inie» 03,inic » EQuation (5.73)-(5.74) are

applied:
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restr = Mzl T (579

headR headt
sh sh™| = heedT (5.74)
03x1 1

Thus, the 04 init, 02 inie» 03,inie Can be estimated as:

01 init» 02,init» 03,mic — ZYX_Rotation_Decomposition("°%¢R) (5.75)

3). Hip coordinate estimation (012,init> 013,init» O14,init)

{sh} 4z
I A
x| Y Qo A
‘f:b.l Pspine o
0125, 01y, 0142 y
R o {hlp} hip
P11
hi > X
\ {hlp}‘ [ Z thPll mphipMid
l\'\\ \(_'n*—‘—>‘ A
e
e’c'rl’? <]
(@) (b)

Figure 5.22: lllustration for shoulder-hip transformation
(@) shoulder-hip transformation (b) hip coordinate definition

Similar to the shoulder coordinate {sh}, the hip coordinate {hip} is defined with

three conditions as Figure 5.25(b) shows. The middle point of the hip points ppi,mia =

(P11 + P1z)/2 is set as the origin of {hip}. The left hip keypoint p,, is set lying on the

positive y-axis of {hip}. Then, the spine rotation center pgy;n., calculated with the spine

S

parameter hpspine and world-shoulder transformation W°"X4T, is set lying on the YZ-

plane of {hip} with a positive z-value. Utilized the three conditions, the transformation

matrix “°HieT can be calculated.
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Since the relative rotation ,figR from {sh} to {hip} is only influenced by

012,613,014, 012,init» 013 init» B14,inie Can be estimated with ,fi’gR directly. Applying the
same method in 2) Shoulder coordinate estimation:
R (.76
h h
nipR  nipt| _ snp (5.77)
03, 1 ®
Thus, the 013 init) 013 inits O1a,inic CanN be estimated as:
012 init» 013,init> O14.init < ZYX_R0tation_Decomposition(hS;ZR) (5.78)
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4). Elbow and knee angle estimation (6; ;,i¢, 011 init, O18,init» 022,init)

= (Limb3 Zlimb
{rootﬁ72 z Y J?li‘mb
v 9 ,0
x| 7 a‘x o
:’3' 92
SN
+ "
~ \\\ |0flexion|
@ \\\\
(a) (b)

Figure 5.23: Illustration for limb joint angle estimation
(@) limb coordinate {limb} and its parent coordinate {root} (b) XY-plane definition
of {limb} and the flexion angle

After part 1) to part 3), the initial states affecting the main body pose have been
estimated. The remaining states influence the poses of each limb. For the four limbs in a
human skeleton, their state initialization methods are the same.

As Figure 5.23(a) shows, from the keypoint close to the main body to the endpoint
of the limb, the three keypoints are denoted as “a (shoulder or hip)”, “b (elbow or knee)”,
and “c (wrist or ankle)”’. In this part, the initial elbow and knee angles
(07,init» 011,init> 018 init» 022,init), Which are the flexion angle 6fexj0n, Shown in Figure
5.23(b), will be estimated.

As shown in Figure 5.23(b), the magnitude of the flexion angle |6fexion| can be
calculated with the vector @b from “a” to “b” and the vector bc from “b” to “c” as:

|9ﬂexl-on| =1 - arctanZ(”ZLB X E”, |E . ED (5.79)
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The angle arctan2(||ab x be||, |ab - be|) is the included angle between ab and
be. Since ||lab x bel| = 0, the included angle must be smaller than .

After acquiring the magnitude of the flexion angle |9flexl-on|, the sign of Ofjexion
is dependent on what the angle is. Referring to [84: DSHS.WA 2022] and the proposed
human skeleton kinematic model in Section 5.1, the flexion angles of elbows should

always be negative, and the ones of knees should always be positive, i.e.:

{97,init = _|97,init| (5.80)

Hll,init = —|911,init| .
{918,init = |918,init| (5.81)
922,init = |922,init| .

5). Shoulder and hip joint angle estimation
(Ba,inits Os,inits Os,init> O8,init> 09,inits 010,inits O15,init» O16,init» 017,inits 019,init» 020,init» 021,init)
Continuing the denotation in part 4) Elbow and knee angle estimation,
subsequently, we defined two coordinates {root} and {limb} as shown in Figure
5.23(a). {root} is the parent coordinate of the limb, {sh} for the arms, {hip} for the
legs. {limb} isthe coordinate of the limb, which is defined with the following conditions
as shown in Figure 5.23(b). The origin of {limb} is defined at the point “a”. The z-axis
of {limb} is parallel and has the same direction as the vector ba from “b” to “a”. While
the points “a”, “b” and “c” are not colinear, the point “c” is set lying on the XZ-plane of
{limb} so that there are two possible unit x-vector x;;,,, of {limb}. To make the
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solution unique, another constrain is that the angle between the unit x-vector x;;,,,, of
{limb} and the unit x-vector X,,,; of {root} should be equal or smaller than 7/, i.e.:
Xlimp " Froor > 0 (5.82)
After that, the limb coordinate {limb} is defined and “2IlT can be obtained.

To estimate the corresponding jointangles 6,, 8,, 8, of the limb, the rotation matrix

roolR from {root} to {limb} is received with:

limb
rootp _ worldp—1 , world
imbl = "vootT limbl (5.83)
rootR roott
limb limb*| — rootT (5 84)

— limb
03, 1

With the kinematic structure in Figure 5.23(a), we can know the rotation matrix

T2°LR can be represented as:
iR = Ry, (6, )R (6,)R,(6,) (5.85)
To acquire the rotation angles, the YXZ rotation decomposition described in
Algorithm 3.2 would be applied:

0y, 0y, 0, « YXZ_Rotation_Decomposition(j5e;R) (5.86)

The rotation angles 6,,6,, 68, correspond to the rotation angles in the shoulders and

hips as Table 5.2.

Table 5.2
Rotation joint angle correspondences for limbs
Joint Angle in a Limb Joint Angle in Human Skeleton
O, O4,init) 08 init) 015 init) 019,init
by 05,init 09,init) 016,init) 020,init
0, O6,init 010,init> 017,init» 021,init
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As mentioned in part 5) Shoulder and hip joint angle estimation, the initialization

only works when the points of the limbs are not colinear. While the keypoints are colinear

for one of the limbs, the initialization would output the initial state including NaNs (not

a number). The situation would also happen when one of the limb keypoints is missed or

there are more than one head keypoints missed. To reduce the probability of failure and

also increase its stability, the state initialization would be run for the first 10 frames and

average the estimated states excluding the NaNs.
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5.5 Iterative LQR Motion Smoother

After the OCR-UKF filtering, we can see there are still some small noise in the joint
states so that the filtered skeleton looks shaky. The reason comes from that the Kalman
filter is a stochastic filter. As the assumption in Equation (5.36)-(5.37), there are process
noises when the state is updating. It’s reasonable that the filtered results are shaky.

However, for human motion estimation, not only the position but also the higher
order terms, like velocity and acceleration, should be estimated accurately. The shaky
motion of the skeleton would lead to huge errors in the discrete derivation of the positions.
To reduce the noises while considering the system dynamic, i.e. constant velocity model
in Equation (5.43), the linear quadratic tracking (LQR tracking) mentioned in Section 3.8
is applied.

The denoise smoothing process can be formed as an optimization problem as:

N—-1

1
Hlllltnz Z (x¢ — xt)Tqurl(xt —X) + utTqurlut
t=0

1 . ~ (5.87)
+ > (xy —Xn)" Qugrin(xy — Xy)

s.t. x; = AygpXi—1 + Bygru:, t =0,1,...,N — 1 given x,
The reference trajectory X, to track is the output of the OCR-UKF, and Q4/1,
Rigr1, Qigrin are the handcrafted weights set as Qqr1 = Qigrin = Ise and Rygpq =
103 - 1,5 . The optimal solution of x, introduced in Section 3.8 is the smoothed

trajectory by the LQR tracking.
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The concept of using LQR tracking as a smoothing filter is that the denoise process

is like a trade-off between the position accuracy and the smoothness of the estimated

trajectory. When the smooth state dynamic is fit, the constant velocity model for example,

noise term is supposed to come from the input signals. For LQR tracking, it’s also a trade-

off between the state tracking errors and the magnitude of input when the tracking input

is zero. In the constant velocity model, the roughness of the trajectories causes by the

additional acceleration u;. Using the LQR tracking as a smoothing filter can effectively

reduce the roughness and keep the small tracking errors for state x, while considering

the given system dynamic.

After applying the smoothing technique, the overall roughness of the joint state

seems to decrease while the overall trajectory is close to the output of OCR-UKEF, as

shown in Figure 5.24.

Theta 10 (RSh Rotz) for B20_354

—— OCR-UKF
2 |/ —— OCR-UKF + LQR tracking

1.

0-

The roughnessl|is reduced
after LQR tracking

Joint Angle (rad)
AN

0 100 200 300 400 500 600 700
frame

Figure 5.24: The comparison of the smoothness before and after the LQR tracking
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Nonetheless, it seems to cause small additional errors for the keypoint trajectory, as

shown in Figure 5.25.

Trajectory of LAnkle for B20_354

—_ 1 7
E
x
0 -
0 100 200 300 400 500 600 700
0.5
E
> | - -
0.0 1 Additional ripple white the
| ] . |OCR-UKF outputlis almoslt static |
0 100 200 300 400 500 600 700
0.0 —— OCR-UKF
E —— OCR-UKF+LQR
< -05
_10 -

0 100 200 300 400 500 600 700
frame

Figure 5.25: The additional error comes from the directly LQR tracking

The reason for these additional errors causes by the independent tracking for each
joint angle. The accuracy of output of OCR-UKF is based on the forward kinematic
function h(x;) which takes the effect from all joint states to every keypoint position. In
the LQR tracking, since the weights are set as Q4 = Qiqrny = Is¢ and R4 = 103 -
I,g, every joint track their own trajectories independently. Due to this reason, the
keypoint position calculated with the forward kinematic function may generate some
additional errors because the coordinate among the joints is ignored. As the result, for the
keypoints far from the head, the start of the body chain in the forward kinematic function,
the additional error would be greater since there are more uncooperative joints affecting

the positions of the keypoints.
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Start of the body chains

Figure 5.26: Body chains of the proposed kinematic model for human skeleton

To solve this issue, instead of the joint state x;, the target we need to track is the

keypoint positions z; = h(X;):

N-1
1
n’lllltnz [z (h(x,) — 21:)Tqur2 (h(xy) —2,) + utTquTZut
t=0

- 2 5 (5.88)
+ 5 (h(xw) = 2)" Qugran (h(xy) — 2y)

s.t. X = AUKFxt_1 + BUKFut, t = 0,1, ,N -1 glven Xo
However, after adjusting the chasing target as Equation (5.88), the optimization

problem is turned into a nonlinear problem and takes a huge time to solve.
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To speed up the processing time with the analytic solution of LQR tracking, we use

the linearization technique as:
1 -1
= P [Z (h(x,) — 21:)Tqur2 (h(xy) —2,) + utTqurZut]
t=0

1
+ > (xy — /x\N)TqurZ,N (xy —Xy)
(5.89)

[Z (xe — %) Cxt qurzcxt(xt X) +u, qurzut]

1
+ 2 (xy — xN)TCfNTqurz,NCxN (xy —Xy)

X, is the tracked state generated in the previous iteration, Cx, is the Jacobian

matrix of h(x;) at x; = X;:

oh

Cx :—| _%
Xt axt Xt=Xt

(5.90)
X, isthe new tracked state in this iteration calculated as Equation where pinv(Cs,)
is the pseudo inversed matrix of Cx,:

X = X + pinv(Cx,) - (2; — (X)) (5.91)

Therefore, the linearized keypoint tracking problem can be formulated as:

mln— [z (x¢ — xt) Qugr2, xt(xt X)) +u, qurzut

1 . _ (5.92)
+ 5 (xy = Xn)" Qugraxy (Xny — Xy)

s.t. X = AUKFxt_l + BUKFut, t = 0,1, ,N -1 glven Xo
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The only difference to the classical LQR tracking is the Q4,,%, is time-varying.
Despite that, the analytic solution derived in Equation (3.86) still works for the time-
varying weights.

However, since the Jacobian matrix of the forward kinematic function Cx, is
always zero for the velocity state, Q2% = C;tTleCft has zero weighting for the
velocity tracking. To make up for this issue, Q4,2%, Would be added with other weights:

Qugr2x, = Cx, QugraCx, + Qugraver (5.93)

The Qgr2ver s @ diagonal weight for the velocity state as Equation (5.94) where

Gy 1S a constant gain for the velocity weights.

022><22 022><22 022><6 022><6

022522 Guer " T2z 03246 022x6
= 5.94
qurzml 06522 06522 O6x6 O6x6 ( )
06522 06522 Ooxe  Guer 16

In addition, because the trajectory filtered after the OCR-UKF is shaky, the velocity
state filtered after the direct LQR tracking would be more accurate. Therefore, the

tracking target x, after adding the velocity weight would be calculated by Equation

(5.95):
%.=[6] o T[ T%] (5.95)
87 8%, T7 Th] =% (5.96)
67 o, T 15| =% (5.97)
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The state X, is the filtered state after the direct LQR tracking. As shown in Equation
(5.95), the tracked state target x; is composed of the position terms estimated from the
OCR-UKF and the velocity terms filtered by the direct LQR tracking. Afterward, the

accurate smoothed result can be regarded as the solution of Equation (5.98):

mln— [z (x¢ — xt) Qugr2% xt(xt xtt) + U, qurzut

1 _ _ (5.98)
+ 5 (xy = Xn)" Qugrazy (Xn — Xy)

s.t. Xt = AUKFxt_l + BUKFut, t = 0,1, ,N -1 glven Xo
To ensure the accuracy of the linearization, X, should be close to the real joint state

which we can’t access for estimation. To overcome it, the iterative LQR motion smoother

is proposed as shown in Algorithm 5.3.

Algorithm 5.3: Iterative LQR motion smoothing
Input: a rough reference state x,, forward kinematic function h(x;), number of iterations Nj;,,
Output: the refined state X,
1. 2z, < h(x)
2. X, < Joint_Independent_Tracking (X;) — solve (5.87)
3 X <X
4: fori « 1 to Ny, do
5: Cz, < ;: | =%
6: X, < X + pinv(Cy,) - (2, — h(X,))
7 X < [@Z Z"jg,t T¢ Tg,t]T
8: X, < Joint_Dependent_keypoint_Tracking(x;) — solve (5.98)
9: X, < X,
10: end for
11: return %,
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Toguide X, close to the real state, the joint-dependent state tracking with Equation
(5.87) is set as X, for the initial guess first. Since X, is close to the real state with the
initial guess, Cx, would also be close to the Jacobian at the real state. Therefore, the
updated state X, solved with Equation (5.98) can approach the real state. As X, reach
the real state, x; would equal to X; and not be changed anymore. To limit the operation
time, the number of iterations is limited at Nj.,. Usually, N, = 3 is enough, as
shown in Figure 5.27. The estimation result after OCR-UKF and iterative LQR motion

smoother would be called as PostSK.

Trajectory of LAnkle for B20_354 Trajectory of LAnkle for B20_354

0 100 200 300 400 500 700 _ 450 500 550 600 650 700 750

600
—— OCR-UKF —— OCR-UKF
0.0 4 LQR initial guess _ -0.8 LQR initial
—— liter LQR £ i e
—0.5 —— 2 iter LQR ~ (g !ter lor
T irdie ) . —— 2iter LQR

-1.01 —— 3iter LQR
T T T T T T T T T T T -
0 100 200 300 400 500 600 700 450 500 550 600 650 700 750

z (m)

(@) (b)
Figure 5.27: The result of iterative LQR motion smoother
(@) the overview of the trajectory of LAnkle for B20_354
(b) the zoomed in trajectory of LAnkle for B20_354
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Chapter 6
Simulation and Experimental Results
and Analysis

In this chapter, the simulations and experiments are conducted to demonstrate and
verify the applicability of the proposed system. In Section 6.1, the overview of the
processes in simulations and experiments is reviewed. To evaluate the proposed method,
error metrics to measure the performance of motion estimation are described in Section
6.2. The setups and results of the simulation to evaluate the skeleton motion modification
method proposed in Chapter 5 are presented in Section 6.3 and Section 6.4 individually.
To show the overall human motion estimation in the real-world, the experiment setups
and results are shown in Section 6.5 and Section 6.6. Moreover, to compare with deep-
learning-based methods popular in recent years, an evaluation tested on Human3.6M is

demonstrated in Section 6.7.
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6.1 Overview of the Procedures of the Simulations

and Experiments

To demonstrate the proposed method, both simulation and experiment will be shown

in this chapter. In the simulation, the full processes to obtain the estimation motion from

the rough and noisy skeleton mentioned in Chapter 5 will be evaluated as shown in Figure

6.1.

Body Parameter
Estimation

Joint State
Initialization

RawSK
A

il

Joint State Estimator

Figure 6.1: Flow chart for simulations

Initial LQR
tracking

gtSK
SN

Forward
Kinematic

I

’
PostSK

P2

Motion Smoother

/)

4

The rough skeleton (RawSK) will first pass through the body parameter estimation

described in Section 5.2 to estimate the link parameters of a human skeleton. Next, the

proposed method will use the estimated body parameters and the first few frames of the

RawSK to reckon an approximate joint state for the initialization of the joint state

estimator as Section 5.4 said.
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After the joint state initialization, the joint state estimator proposed in Section 5.3

will reduce the noise and even reject the outlier with the outlier-component rejecting

mechanism. Hereafter, since the output of the joint state estimator still contains some

detectable high-frequency noises, the proposed motion smoother with iterative LQR

tracking mentioned in Section 5.5 will be applied to reduce the velocity and acceleration

errors further. Finally, after the motion smoothing, the forward kinematic function will

transform the estimation results from the joint space into the skeleton keypoint positions.

The estimation results (PostSK) can be compared with the ground truth (gtSK) and

evaluated its performance.

For the experiment, the whole procedures to obtain the estimated motion in real-

world will be examined as shown in Figure 6.2. Not only the processes to modify the 3D

raw skeletons but the processes to acquire the RawSKs from the multi-view system

mentioned in Chapter 4 will also be investigated. The target human motion will be

captured as videos with the proposed multi-view system presented in Section 4.1. The

well-known 2D skeleton detection model, AlphaPose, will extract the 2D target skeletons

in every view. With the 3D reconstruction method shown in Section 4.3, the RawSKs will

be formed as the input of the 3D skeleton modification module which is the same

processes as the simulation procedures.
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Besides the reconstructed results, in the experiment, the influence of the properties

of the 3D reconstructed AlphaPose skeletons is also one of the points needed to be

analyzed. The influence will directly determine the practical values of the proposed

method.

v

Multi-view System

Multi-view

Videos

3D Skeleton Acquirement

—| AlphaPose

M

fil

Multi-view
2D Skeletons

Calculating
Reprojection Error

&

,%\ |
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o

Y

Triangulation

3D Reconstruction

RawSK
S

Outlier
Component Measurement
~
Detection ek

Time
Update

Joint State Estimator

Initial LQR Iterative LQR

tracking tracking

Figure 6.2: Flow chart for experiments
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6.2 Evaluation Metrics

Referringto [12: Wang et al. 2021], acommon metric to quantify the 3D human pose

estimation error is MPJPE (Mean Per Joint Position Error), which is calculated by:

Ns—1

1
N Z |pi,s(t) — pi,gt(t)llz (6.1)
i=0

N
1

EMP]PE(S) =Nz N

t=1] °

where S denotes the corresponding skeleton to evaluate, p;s(t) € R® and p; 4. (t) €
R3 are the positions of i-th keypoint in S and ground truth skeleton at frame ¢, N is
the frame number of the motion sequence, N, is the keypoint number to compare.
Apart from the position errors, the higher-order metrics for velocity and acceleration
are used in this thesis as well since human motions are not only determined by its pose.
To acquire the higher-order information, the discrete derivative is applied as Equation
(6.9) and Equation (6.10):
v s(t) =pis(t) —pis(t—1), setp;s(0)=p;s(1) (6.2)
Vi gt(t) = Dige(t) —Pige(t —1), set p;:(0) = p; (1) (6.3)
where v;5(t) € R® and v; 4 (t) € R® are the velocities of i-th keypoint in § and

ground truth skeleton at frame t.
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According to the quantification method of MPJPE, a metric to evaluate the velocity

error of a skeleton §, MPJVE (Mean Per Joint Velocity Error), is shown as:

Ns—l

Eypve(S) = NZ z ”vlS(t) vlgt(t)” (6.4)

Similar to MPJVE, the acceleration metric, MPJAE (Mean Per Joint Acceleration

Error), can be calculated by:

Ns—l

Empjae(S) = Nz Z ||alS(t) algt(t)” (6.5)

where a;s(t) € R® and a; 4. (t) € R® are the accelerations of i-th keypointin S and
ground truth skeleton at frame t which can be calculated as:
a;s(t) =v;s(t) —v;s(t—1) , setv;s(0)=v;5(1) (6.6)
i ge(t) =V, () —v;5(t = 1) , set v;4(0) =v;4.(1) (6.7)
These three metrics are the main metrics to evaluate the performance of the proposed
method from the views of positions (MPJPE), velocity (MPJVE) and acceleration

(MPJAE).
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6.3  Simulation Setups

In the simulation, the main purpose is to investigate the properties of the proposed
skeleton modifying method from different views. The ground truth motions will be
generated with hand-craft ideal joint state and body parameters. Then, the ground truth
keypoint positions will be obtained by passing through the forward kinematic function.
To produce the RawSKs as the inputs, additional noises will be added to the ground truth
keypoint position. These noises are used to simulate the real noise caused by occlusion,
frame dropping and imperfect detection from the keypoint detector. Therefore, the noises
will contain basic noises, outliers and some missing data to reproduce the real situation.
6.3.1 Kinematic model Setups

In the simulation, to reduce the factors influencing the estimation result, a simplified
skeleton (SimSK) is proposed to analogize the human skeleton, as shown in Figure 6.3.
There are 6 keypoints and 4 joints in a SimSK. The numbers of estimated body parameters
are 4 for the head and 2 for the limb shown in Table 6.1.

The simplified skeleton would be applied to replace the human skeleton in this

simulation to reduce the considered variables.
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Figure 6.3: Analogy of SimSK and human skeleton
(@) The kinematic model of SImSK
(b) The kinematic model of human skeleton

In Figure 6.3 (a), the head part of SImSK labeled in yellow is a rigid-body structure
and is used to analogize the head part of the human skeleton in Figure 6.3 (b). There are
4 points in the head part, which is the minimum number of the points to apply the 3D
transformation estimation described in Section 3.6. The transformation state between the
head part and the world coordinate will also be estimated as the head-world
transformation in the human skeleton.

For the limb part labeled in blue in Figure 6.3 (a), it’s used to analogize the limb
structure in the human skeleton. From p; to ps, the three keypoints are used to
represent the root point (shoulder or hip), middle point (elbow or knee) and endpoint
(wrist or ankle) in a limb of a human skeleton. They have corresponding kinematic

structure for the joint state.
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Consequentially, there are six body parameters to describe the SImSK. As Table 6.1
shown, ¢; and ¢, are the parameters represent the lengths of both sections in the limb

part. For the head part, ("¢*p,, "***py, "**p,, "**p,) are the parameters to represent

the keypoint positions in the rigid-body coordinate {head}.

Table 6.1
The definition of the body parameters in a SImSK
Symbol Definition
£, Length of Upper section of Limb (€ R)
£, Length of Lower section of Limb (€ R)
head, Position of p,
0 in {head} (€ R3)
head, Position of p,
! in {head} (€ R3)
head, Position of p,
2 in {head} (€ R3)
head, Position of p;
3 in {head} (€ R3)

In the simulation, the ideal body parameters are set as:

2, = 0.4 (m)

{i’l — 03 (m) (6.8)
("“po=[0 0 0]" (m)
!"”dm:[o.z 0 0]" (m)
headp, =0 0.2 0]" (m)
L"e“dm:[o 0 0.2]7 (m)

(6.9)
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When the state is equal to a zero vector, the keypoints of ideal SImSK'is visualized

as Figure 6.4 shown.

SimSK

¥ (m) 05 05 x(m)

Figure 6.4: The SimSK with given ideal body parameters

6.3.2 Tested Motions

In the simulation, the ideal state x;4.4; . for the SImSK is defined with following

variables:

( Dox = COS wt

Do,y = Sin wt a=0
’ , =0 (6.10)
\Po,z = siniwt y =0

( O1x=T/5 sinwt
6,y ="/, sinwt
V' 032,="/ysin2wt (6.11)

3
kH‘W = ”/4 s sinzwt + ”/2
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The trajectories of the state values are illustrated in Figure 6.5:

Ideal States
2.5 1
— p0_x
2.0 A — pO_y
— p0_z
154 — roll
' —— pitch

1077 theta_1
—— theta_2
051 theta 3
—— theta_4

State Value (m or rad)

Frame

Figure 6.5: The ideal state of SImSK in simulation

(PoxPoy,Poz) is the position of p,. (a,B,y) are the roll-pitch-yaw angle of the
head. 6, to 6,, are the joint angle in the SImSK. w is the motion speed factor and
set as 0.03.

Therefore, the ideal state x;ge4; ¢ IS:

T
Xigear: = [TT O T%, 0%, €R", n=20 (6.12)

Qt = [Bl,x 92,y 63,2 94-,y]T
TA,t =T:—T:4
k@A,t =0;—0;_,

Tt = [pO,x Poy Doz « .8 y]T
(6.13)

With the defined ideal joint state x;geq; . In Equation (6.10)-(6.11), the ideal
motion can be generated with forward kinematic function h(-) as:
Zigeare = PG P1 P PE Pi PEIT = h(Xidear t) (6.14)
Therefore, the ideal motion of the SImSK can be illustrated in Figure 6.6.
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Ideal Skeleton Motion in Simulation

-0.5

S /</" ) 1
y (m) 15 ~~_— 15

x(m)
2 i3

Figure 6.6: The ideal motion (gtSK) of SimSK in simulation
The ideal motion will be regarded as the ground truth (gtSK) in the simulation, i.e:

Zgtt = Zigealt € R*® (6.15)
To demonstrate the proposed estimation method, the RawSK will be generated with

the ground truth. Since the RawSK is used to simulate the raw noisy motion sampled from

the real world, it should contain the three defects like the real raw data: basic noises,

outliers and missing data.

124

doi:10.6342/NTU202202468



For the basic noises, we use a white noise w, multiplied with a gain Gy, to

simulate the small observation noise as Equation (6.16).

Zpnt = Zgtt + Gpne Wt € R'® (6.16)
w, ~N(0,1) (6.17)
Gpne = 0.03 (6.18)

Then, for the outliers caused by the imperfect detection of AlphaPose and the 3D
reconstruction, we first design a probability P,yier stare fOr every keypoint at each
frame as the start of the outlier intervals.

Poutiier start = 0.025 (6.19)

Once an outlier interval is chosen to start in the i-th keypoint at the frame ¢, a length
will be sampled as the duration of the outlier interval from Poisson distribution:

Nout,ie ~ Pois(Aour) (6.20)
Aout = 2 (6.21)
In the outlier interval, the raw motion will be added to the same random vector in

the whole interval where the random vector is calculated by:

Vie = Goyeie " MNiy € R (6.22)
ny = (6.23)
T el |

where Goye ;¢ is sampled from a uniform distribution in [0.3,0.8], and u;, € R® isa

random vector whose elements are all sampled from a uniform distribution in [—1, 1].
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For the outlier part, since the detection results of AlphaPose are highly pose-
dependent, the outliers usually sustain in a few frames because the human pose is highly
similar in the interval. Likewise, the outlier values in the outlier interval are also similar.
Thus, the outlier situations can be simulated with the approach above.

With this approach, the overall outlier probability P,,:;. Can be calculated as
Equation since E[Pois(Ayyt)] = Aout-
Poutiier = Pouttier start * Aour = 0.05 (6.24)

Then, for the missing data, similar to outliers, the missing data usually sustain a few
frames but longer. Therefore, we can use the same approach. First, set the probability
Ppiss stare Of the start of the missing interval as:

Priss_stare = 0.005 (6.25)

The duration of the missing interval in the i-th keypoint at the frame t is also
sampled from Poisson distribution:

Niissie ~ Pois(Amiss) (6.26)
Amiss = 10 (6.27)

All the keypoint values in the missing interval will be removed to simulate the
missing data situation in the real data. Finally, the overall missing probability is calculated
as:

Pmiss = Pmiss_start * Amiss = 0.05 (6.28)
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The stages of generating RawSKs are illustrated in Figure 6.7. After obtaining the
ideal motion, the basic noises are added. The outlier intervals with their additional outlier
vectors v; . are joined. Last, to simulate the missing data problem, the missing interval

are sampled and wiped out the values.

Generation Stages of RawSK

y of ps(m)

° o ©°
n o u

T T T T T T
Q 200 400 600 800 1000

y of ps(m)

© o ©
w o wn

Add White Noises Ideal Motion

Q 200 400 600 800 1000

y of ps(m)
o

Add Missing Data  Add Outliers
y of ps(m)
»I- o -
| - ]

Figure 6.7: Generation stages of RawSK
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Eventually, the RawSK motion in the simulation is illustrated in Figure 6.8.

Raw Skeleton Motion in Simulation

-0.5

05

y (m) = x (m)
2 2

Figure 6.8: The raw motion of SImSK in simulation
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6.3.3 Parameter Settings

In the simulation, the parameters set for the proposed estimation method are shown

as Table 6.2 and Table 6.3:

Table 6.2
The Parameter Settings for the Joint State Estimator in the Proposed Method
in the Simulation

Joint State Estimator:
Symbol Value Meaning
P, 10711, Initial state covariance
010)(10 010)(10 . .
Qukr e Process noise covariance
010x10 107714
Ryxr 1075 14 Measurement noise covariance
kout 0.008 Outlier rejecting coefficient
QinNgy: 1010 -1,, State weights for inlier interpolation
R, I, Input weights for inlier interpolation
Xiower —0-1,, State lower bound with KKT condition
Xupper -1, State upper bound with KKT condition
Cdamp -0.1 Damper coefficient for body force
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Table 6.3
The Parameter Settings for the Motion Smoother in the Proposed Method
in the Simulation

Motion Smoother:

Symbol Value Meaning
Qugr1 I, State weights for initial LQR tracking
R 103 - I, Input weights for initial LQR tracking
I 0 . . . .
Qigr2 0 & 012XI6] State weights for iterative LQR tracking
6X12 6

Velocity state weights for iterative LQR

0 010x10  O1ox10 ]
tarzet 019x10 10*-1 .
tracking
103 -1 . . . .
Ry [ 0 Is OZ‘?X“ ] Input weights for iterative LQR tracking
04X6 10 '14
Number of iterations for iterative LQR
Niter 3

tracking

130
doi:10.6342/NTU202202468



6.4  Simulation Results and Analysis

6.4.1 Performance Analysis of Motion Estimation

As the proposed method shown in Figure 6.1, the first step of the skeleton

modification is to estimate the body parameters of the skeleton (SimSK). The estimated

results and the ground truth values of the body parameters are listed in Table 6.4. The

maximum estimation error of the body parameters is in

head

p. and high to 46 mm. The

overall body parameter estimation errors are from 0 to 46 mm. These errors are acceptable,

however, may influence the motion estimation.

Table 6.4

The Estimated Body Parameters in the Simulation

Body Parameter

Ground Truth (m)

Estimated Value (m)

’, 0.4 0.409

0, 0.3 0.317

head, [0 o o] [0 o off
head,, [02 0 o0]” [0.246 0 0]
heady, [0 0.2 o0]" [0.041 0.212 0]
head,, [0 0 0.2]" [0.038 0.011 0.177]"

The estimated trajectories and errors of all keypoints in the SimSK are illustrated in

Figure 6.9 and Figure 6.10.
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Figure 6.9: The estimated trajectory for p,, p; and p, in Simulation

(a) Trajectory of p, (b) Position Error of p,
(c) Trajectory of p; (d) Position Error of p,
(e) Trajectory of p, (f) Position Error of p,
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Figure 6.10: The estimated trajectory for ps;, p,
(a) Trajectory of p3 (b) Position Error of p3
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In Figure 6.9 and Figure 6.10, we can notice that the errors for most keypoints in

PostSK are much lower than those in RawSK. It’s because the outlicr-component-

rejecting mechanism we design in Section 5.3 works properly. In most frames, the errors

are less relative to the outliers from the RawSK, which increases the robustness of the

estimation results.

However, for the keypoint ps, there are huge errors occurring in few frames with

the outliers. As ps is the end point of the SimSK, there is lower correlations between

ps and other keypoints. In other words, there is more freedom and higher uncertainty for

pPs given the information on the other keypoints. Therefore, it’s harder to determine the

outliers when the outliers occur in ps. It’s the reason caused by the kinematic structure.

For the overall estimation errors, the average errors of the six keypoints are

illustrated in Figure 6.11. There are three stages of the estimation in the proposed method:

1) RawSK, 2) the estimated skeleton after the joint state estimator (KF-SK), and 3)

PostSK. As mentioned in Chapter 5, the task of the joint state estimator is to reject the

outliers, fill the missing data and propose the joint state with better position performance.

Then, the task of motion smoother is to reduce the high-order errors and further refine the

skeleton position by considering the trade-off between state tracking and joint

acceleration.

134
doi:10.6342/NTU202202468



In Figure 6.11 (a), it’s easy to observe that the KF-SK rejects the missing data and
most of the outliers and then performs much better position errors. For the PostSK, the
motion smoother lowers the position errors again in Figure 6.11 (a) and enhances the

velocity and acceleration performance in Figure 6.11 (b) and (c).

Average Position Error of all Keypoints

0.4
~ 03 ‘
£
S —— RawSK
o KF-SK
5021 —— PostSK
E
0.1 |
I '. q ' \" '*H \“v 'L]l“ Ir",r' J l ”l
\ X N \

0.0 1
0 200 400 600 800 1000
frame
(a)
Average Velocity Error of all Keypoints Average Acceleration Error of all Keypoints
124
—— RawSK —— RawSK
07 KF-SK KF-SK
—— PostSK 1.0 4 —— PostSK
0.6 _
% 05 § 081
= £
E 0.4 4 5 0.6
“:;0.3 4 s
S £o44
02 H
AL . | Wl !
’ Bl \ gL }"Hm‘i F"“ | ’:"l" i AW ’ ‘ ”mﬁ ! ) [N |“»
L | TN I Lol b L i A
0.0 1 LN 0.0 4 - !
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(b) (c)

Figure 6.11: The average error of all keypoints in simulation

(a) average position error (b) average velocity error (¢) average acceleration error
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The precise improvement of MPJPE, MPJVE and MPJAE in different stages are

listed in Table 6.5.

Table 6.5
Estimation Performance in the Simulation
Skeleton S Eypjpe(S) Eypjve(S) Eympjap(S)
Unit: (mm) Unit: (mm/frame) | Unit:(mm/frame?)
RawSK 75.93 90.47 159.91
KF-SK 52.27 52.36 87.44
PostSK 35.37 2.27 0.56

The MPJPEs in each stage keep dropping in the whole estimation flow. The MPJVESs
and MPJAEs decrease dramatically in proportion after the motion smoothing stage.

The estimated trajectories in each stage are displayed in Figure 6.12. In RawSK,
there are lots of outliers and missing data. The overall trajectories are chaotic. In KF-SK,
all the missing intervals are filled. Most of the outliers are rejected. But the trajectories
are still rough and shaky. After the motion smoother, the trajectories of the PostSK are

much smoother and look like the ground truth skeleton in Figure 6.12 (d).
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(c) (d)
Figure 6.12: The estimated trajectories of every keypoint in different estimation stages
(a) Raw skeleton (b) KF skeleton after the joint estimator (c) Post skeleton (d)
Ground truth skeleton
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6.4.2 Effectiveness of OCR Joint State Estimator

In this section, the effectiveness of the outlier-component-rejecting joint state

estimator will be discussed. The discussed topic is composed of two parts: 1) the

effectiveness of OCR (outlier component rejection) and 2) the performance with different

joint state estimators. There are four independent variables to investigate the performance

under different RawSK properties: 1) probability of outliers P, e, 2) €xpected outlier

interval duration A,,;, 3) probability of missing data P,,;ss, and 4) expected missing

interval duration A,,;ss. Since the RawSKs contain random variables, they will be run 10

times and be taken the average errors for each parameter setting. For the other parameters

not set as the independent variable, they will remain in the same settings in Section 6.3.2.

1) Different probability of outliers P, iier:

To test the effectiveness of outlier component rejection (OCR), there are two joint

state estimators to be compared. The first one is the proposed method. The other one is

the same as the proposed one but its outlier component rejecting mechanism is turned off,

which means that the outlier rejecting coefficient k,,; issetasO.

As shown in Figure 6.13, the performance errors increase as the probability of

outliers P,,tier 9rows no matter with or without OCR. For the estimator without OCR,

there are more false detections being regarded as the normal observation so that the
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estimation errors will raise. For the estimator with OCR, since the observation covariance
will go up when the outliers are rejected, there is higher opportunities to regard the
outliers as inliers when P, tjier Qrows.

However, as Figure 6.13 (a) and (b) shown, the improvements by the OCR
mechanism in MPJPE and MPJVE also increase when P, grows, which means that

outlier resistance ability of the estimator with OCR is greater than the one without OCR.

MPJPE - Probability of Outliers Poygier
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Figure 6.13: The performance with or without OCR (outlier component rejection) in

different probability of outliers P,,jier
(a) Position Error (b) Velocity Error (c) Acceleration Error
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For MPJAE in Figure 6.13 (c), there is no obvious trend for the improvements by
the OCR mechanism. One of the inferences is that acceleration is pretty close to the
ground truth after the motion smoother. Therefore, there is no apparent difference for
MPJAE.

In Figure 6.14, there are three joint state estimators. One is the proposed estimator.
Another one is extended Kalman filter (EKF). The other one is unscented Kalman filter
(UKF). Since the EKF and the UKF don’t have the ability to handle the missing data, they
would replace the missing data with the predicted observation as Equation (6.29):

21 tle—1r if z;, missed
{zxn v iy . vi=1,...m (6.29)

Zit) else

where z;, isthe [-thelementin z, € R™ and Z;;,_, isthe [-th elementin Z,,_, €
R™,

The performance errors of the three joint state estimators in different P, ;. are
shown in Figure 6.14. All the performance errors grow up when P, e INCreases.
Besides, the proposed one always performs the best among the three joint state estimators.
UKEF is the second, and EKF is the worst. In the comparison between UKF and EKF,
since the skeleton model is a highly nonlinear system. The sampling method adopted by
UKF would perform better than the linearization method of partial derivatives adopted

by EKF.
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2) Different expected outlier interval duration 4,,;

In this part, the expected outlier interval duration 4,,; will the independent variable.
As shown in Figure 6.15, MPJPE and MPJVE increase slightly as A,,; grows. Since
P,.:1ier YeMains the same, the expected ratio of outliers is still the same. However, when
Aout grows, the outliers will trend to gather as fewer and longer outlier intervals. With
longer outlier intervals, the state covariance P, and the bias of the predicted state X,
in the proposed method will become higher since there is a longer time without
measurement update. For the joint state estimator without OCR, the longer outlier
intervals are more influential than the shorter but more outlier intervals as shown in Figure
6.15.

In Figure 6.15 (c), the influence of A,,; looks subtle. However, when A,,; = 7,10,
there are two obvious peaks for the joint state estimator with OCR. It seems caused by

other factors unrelative to A,,;. 10-time of re-test is not enough to wipe out the factors.
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Compared with EKF and UKF, the proposed method still prevails with different

Aout- IN Figure 6.16, we can notice that both EKF and UKF seem not to have an obvious

trend in A,y;.

MPJPE - Aout
160 —&— Proposed
—>— EKF
—+— UKF
140 A
120 A

MPJPE (mm)
g

©
o
s

(=)}
o
s

%

MPJVE - Aoyt MPJAE - Aoyt

—e— Proposed
20.0 1 == EKF 6
—— UKF
17.54
5

—&— Proposed

IS

3 %
g E
& &
§ 1251 g — EKF
E £ —— UKF
g Y 3
21001 <
a
= =
7.5 N
5.0
./o\.___,/“c/‘\o\./. 11
251 T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10
Aout Aout

Figure 6.16: The performance with different joint state estimators in different expected

outlier interval duration A,,;
(a) Position Error (b) Velocity Error (c) Acceleration Error
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3) Different probability of missing data P,,;ss

Besides the outliers, the missing data is also one of the important defects in RawSKs.
However, with the observation in Figure 6.17, there is no obvious trend in P,,;.,. One of
the inferences is that missing data are perfectly labeled outliers for the proposed method
with OCR. Unlike the real outliers, they won’t be regarded as the inliers and influence
the estimation results. Therefore, there is no obvious trend for the proposed method with
OCR in P,,;s. For the proposed method without OCR, the missing data are directly
replaced with the predicted state as Equation (6.29). Thus, there is also no obvious trend

for the proposed method without OCR.
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Figure 6.17: The performance with or without OCR (outlier component rejection) in
different probability of missing data P,
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The results are similar in Figure 6.18. There is no obvious trend in P,,;s; for the

three joint state estimators. The proposed method prevails over the others in most cases.
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Figure 6.18: The performance with different joint state estimators in different

probability of missing data P,,;ss

(a) Position Error (b) Velocity Error (c) Acceleration Error
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4) Different expected missing interval duration A,,;s

The last part is for A,,;s. AS the results in part 3), there is no obvious trend in Figure
6.19 and Figure 6.20. Despite that there is a go-down trend in MPJAE for the proposed
method with OCR, it seems caused by the fined smoothing results and the few sample

times.
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Figure 6.19: The performance with or without OCR (outlier component rejection) in
different expected missing interval duration A,,;
(a) Position Error (b) Velocity Error (c) Acceleration Error
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Figure 6.20: The performance with different joint state estimators in different expected

missing interval duration A,,;¢
(a) Position Error (b) Velocity Error (c) Acceleration Error

In summary, the proposed method shows the best performance in different P, e
and A,,; compared with EKF and UKF. The effectiveness of outlier component
rejection is also verified. When P,,:ier grows higher, the improvement of the OCR

mechanism is more obvious.

For the missing data, there is no apparent trend no matter for P,;;ss or for A,,;s-
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6.4.3 Effectiveness of Iterative LQR Motion Smoother

In this section, we will compare the proposed motion smoother -- iterative LQR
tracking (iterLQR) with other motion smoother: the proposed initial LQR tracking
(initLQR), state low pass filter (stateLP), and keypoint low pass filter (kyptLP).

The initLQR is the initialization part of iterLQR mentioned in Equation (5.87). the
stateLP is to filter the joint state with a low pass filter directly. Last, the kyptLP is to filter
the keypoint positions of KF-SK with a low pass filter.

The low pass filter here is composed of the well-known Butterworth filter with fifth
order and the zero-phase digital filtering described in [59: Gustafsson 1996] to avoid the
phase delay in low pass filters. The cutoff frequency for the Butterworth filter is set as
0.025 times the sampled frequency (FPS).

The random properties of RawSK are set the same as the one mentioned in Section
6.3.2 while repeating the test with 10 different samples. The overall performance is shown
in Figure 6.21. Among the four motion smoothers, initLQR has the best performance in
MPJPE and MPJVE for this motion. However, the statistical dispersions of the LQR-
based methods are higher than the low-pass-filter-based methods. Besides, the differences

among the motion smoothers are relatively small to their dispersions.
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Figure 6.21: The performance with different motion smoother in the simulation

As the design concept of iterLQR is to improve the end point position error caused

by the joint coordination problem, the performance of the endpoint ps of SimSK is

shown in Figure 6.22. Statistically, the proposed iterLQR has the minimum median values

for position and velocity error. For the acceleration, the iterLQR, initLQR and stateLP

have similar performance while the kyptLP has much less dispersion. It’s because the

kyptLP is the only one smoother that directly smooths the keypoint positions without
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considering the joint state. Since the nonlinear system f(-) and h(:) of a human
skeleton is not fully observable, the joint state may vary hugely even when the keypoint
positions in RawSKs are similar. Therefore, the kyptLP without considering the joint state
has a much smaller variation compared with the others.
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Figure 6.22: The end point performance with different motion smoother in the
simulation

(a) Position Error (b) Velocity Error (c) Acceleration Error
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Nevertheless, also caused by the direct keypoint smoothing, the skeleton kinematic
model is not considered for the kyptLP. The segment lengths smoothed by the kyptLP
would not be constant. To evaluate the variation of segment lengths, we define a metric-
varying ratio n,(¢) as:

(€)= bmax = tmin (6.30)
He
where ¢ is the varying segment length, £,,,, is the maximum value of ¢, #,,;, isthe
minimum value of ¢, and u, isthe mean value of #.

The varying ratios of the two segment length in SimSK are plotted in Figure 6.23.
The state-filtering-based motion smoothers (iterLQR, initLQR, stateLP) have zero-value
varying ratios due to the skeleton kinematic model. However, for kyptLP, its varying
ratios are considerable.

Varying Ratio of the Segment Length £; Varying Ratio of the Segment Length £,
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Figure 6.23: Segment length varying ratio in the simulation
(a) length of upper section ¢; (b) length of lower section £,
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To demonstrate the advantage of the proposed iterLQR further, a special but
common motion in real life is investigated. The motion is a fix-end-point motion
illustrated in Figure 6.24. The relative pose of the skeleton remains the same as the tested
motion in Section 6.3.2 while the end point ps is fixed at the origin. Analogizing to a
human skeleton, the motion is common when one of the feet is fixed on the ground. The

other keypoints can do the relative motion while the endpoint is fixed.

Ideal Skeleton motion for Fixed End Point Simulation

z(m)

08 1

04 n2

x (m)
y(m)

Figure 6.24: The ideal motion (gtSK) of SimSK in fixed-end-point simulation
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In the fixed-end-point motion, the average performances with different motion

smoother are shown in Figure 6.25. The average errors of iterLQR are lower than others’

in MPJPE and MPJVE.

MPJPE with Different Motion Smoother in the Fixed End Point Simulation
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Figure 6.25: The performance with different motion smoother in fixed-end-point

simulation
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For the endpoint performance in Figure 6.26, the iterLQR also performs the best

among the state-filtering-based motion smoother (iterLQR, initLQR, stateL.P). For the

kyptLP, since the endpoint position is fixed, the endpoint performance is much better than

the others.
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Figure 6.26: The end point performance with different motion smoother in fixed-end-
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However, since the kyptLP doesn’t consider the skeleton kinematic model, the

varying ratios of the segment lengths with the kyptLP are also great in this motion.

Varying Ratio of the Segment Length £; Varying Ratio of the Segment Length £,

with Different Motion Smoother in the Fixed End Point Simulation with Different Motion Smoother in the Fixed End Point Simulation
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Figure 6.27: Segment length varying ratio in fixed-end-point simulation
(a) length of upper section ¢; (b) length of lower section £,
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6.4.4 Influence of the Motion Speed

In the last section of the simulation, the influence of the motion speed will be the
independent variable.

As the ideal motion mentioned in Equation (6.10)-(6.11), the motion speed would
be affected by w whose default value is 0.03. With higher w, the motion speed becomes
higher. Then, the performance with different w is shown in Figure 6.28.

As w grows, both MPJPE and MPJVE have apparent increasing trends. The reason
caused from that the state transition function f(-) for the joint state estimator described
in Equation (5.43) is the constant velocity model. When the joint acceleration input is
unknown, the estimation error will increase as the joint acceleration becomes more and
more unignorable.

On the other hand, increasing the sampling frequency also means reducing the
motion speed between the frames. Therefore, it’s potential to enhance the performance of

the real-world experiment by increasing the FPS of the capture system.
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6.5 Experiment Setups

To evaluate the estimation error, a commercial optoelectronic motion capture system,
VICON, is utilized as the ground truth provider in this experiment. The VICON markers
are attached to the skin and leggings of the target to acquire the ground truth of the
keypoints positions.

However, since we can’t attach the VICON markers on the target’s face which would
affect the detection of AlphaPose, the ground truth positions of head keypoints are not
accessible. Therefore, in the experiment, we only compare the 12 keypoints on the body.

The details of the multi-view system construction will be presented in Section 6.5.1.
The tested motions in the experiment are shown in Section 6.5.2. Then, the parameter

settings for the proposed motion estimation method will be listed in Section 6.5.3.
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6.5.1 Multi-view system setups

To fulfill the proposed vision-based motion estimation method, the multi-view
system mentioned in Chapter 4 should be installed. As Section 4.1 said, the proposed
multi-view system is composed of four synchronized cameras capturing the target videos
from different views. The positions of these four cameras in the experiment are shown in
Figure 6.29 marked with red circles. In the experiment, the multi-view system and

VICON will record simultaneously.

cam3

caml

cam?2

Figure 6.29: The camera positions set for VICON evaluation

To define the world coordinate {world}, the calibration process mentioned in
Section 4.2 is applied. There are four rod positions with eight reference points illustrated
in Figure 6.30 for the extrinsic calibration. After the calibration, the world coordinate
{world} for the experiment is defined by the positions of the reference points. Besides,

to transform the ground truth position of the keypoints to {world}, the transformation
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matrix from VICON to {world} are also calculated with the VICON markers attached

to the reference points.

Rod 3 Rod "0

0.394 m 1.800 m B 'l |

|4—><—>|
Rod_3 _! | Rod_0 _

ol 8

! ! Rod /2
, | | 2.402 m Rod_1
! ! 0.095 A}
| X \K Rod 1
| Rod_2 B Z0: 0.020 m
Z1:1.904 m
(a) (b)

Figure 6.30: The positions of reference points for VICON evaluation
(a) XY-positions (b) Z-positions

Going through the calibration process, the camera parameters for the multi-view

system are estimated as Table 6.6 and Table 6.7 show.
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Table 6.6
Intrinsic and Extrinsic Camera Parameters for Multi-view System in VICON Evaluation

Intrinsic Parameter K Extrinsic Parameter WorldT
51328 0 363.39 0.620 0.784 0.015 =0.164
Camo 0 5151530141 0.085 —0.049 -0.995 0.595
0 0' 1' —-0.780 0.619 —0.097 5.192
0 0 0 1
51126 0 336751 0.373 —0.928 0.004 —0.999
Cami 0 514.04 26123 —0.085 —0.038 —-0.996 1.015
0 0. 1‘ 0924 0371 -0.093 3.137
0 0 0 1
51011 0 378.041 —-0.241 -0.970 0.015 —-0.110
Cam? 0 511.65275.79 0.015 -0.019 -1.000 1.092
0 0. 1' 0970 —0.241 0.019 2.245
0 0 0 1
51125 0 357651 —-0.764 0.645 0.014 1.600
Cam3 0 513.45 240722 0.190 0.246 —0.950 1.088
0 O. 1‘ —-0.616 —0.724 -0.310 3.283
0 0 0 1
Table 6.7
Distortion Coefficients of Cameras for Multi-view System in VICON Evaluation
Distortion Coefficients [k1 k, p1 D2 ks
Cam0 [-0.180 0.262 —0.001 —0.002 —0.286]
Caml [-0.164 0.194 —0.002 —0.003 —-0.176]
Cam2 [-0.144 0.046 0.001 -0.003 0.077]
Cam3 [-0.132 —0.005 0.000 —0.002 0.167]
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With the calibrated extrinsic parameters, the positions and the orientations of the
cameras can be illustrated in Figure 6.31. The axis marked with the black point for each
camera shows its facing direction (z-axis). As Figure 6.31 shown, all the cameras
approximately face the origin of {world}, which is around the position of the target. The

camera positions are also similar to the relative positions shown in Figure 6.29.
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Back View Right View

Figure 6.31: The camera positions calculated with the calibrated extrinsic parameters
(the axis with black points are the z-axis of cameras)

In addition, to make it easier to find the correspondence between the estimated
results and the ground truth provided by VICON, the recording FPS of the multi-view

system is the same as VICON’s FPS at 120 Hz.
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6.5.2 Tested Motions

In this experiment, we present three actions with the same subject (target person).

These three actions are two common motions during baseball games (hitting and pitching)

and one motion (punching) similar to pitching but with different trajectories in right arms.

For each action, there are five cases to evaluate the reproducibility of the proposed

method. All the cases are listed in Table 6.8 and labeled with the case index from 0 to 14.

Table 6.8
Testing Cases with VICON Evaluation

Subject Action Case Name Case Index
Hitting_01 0
Hitting_02
Hitting Hitting_03
Hitting_04
Hitting_05
Pitching_01
Pitching_02
S1 Pitching Pitching_03
Pitching_04
Pitching_05
Punching_01
Punching_02
Punching Punching_03
Punching_04
Punching_05 14

OO |IN|OO|O B |W|IN|F

[EEN
o

[EEY
[EEY

[EEY
N

[EEY
w

The motion sequence of each action is illustrated in Figure 6.32. Hitting is acted as

a batter hits the ball in a baseball game. Pitching is a motion of a pitcher throwing a ball.

Then, punching is a motion similar to pitching, but the right arm is punching forward.
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Hitting Sequence

TRETRAAA
MIKEARS

Pitching Sequence

53' H Y¥FI R
RRELLS §

Punchnng Sequence

BRARRNE
RARRALLAA

(c)

Figure 6.32: The motion sequence of the testing actions in VICON evaluation plotted
with estimated positions by proposed method

(a) Hitting (b) Pitching (c) Punching
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6.5.3

Parameter Settings

In the experiment, the parameters set for the proposed estimation method are shown

in Table 6.9 and Table 6.10:

Table 6.9

The Parameter Settings for the Joint State Estimator in the Proposed Method

in the Experiment

Joint State Estimator:
Symbol Value Meaning
P, 1071 I Initial state covariance
[022><22 05222 022x6 022x6 ]
0 10751 0 0 . .
Qukr I 022><zz 0 22 022X6 OZZX6 | Process noise covariance
6X22 6X22 6X6 6X6
06x22 06522 Ogxs 107°- IGJ
Measurement noise
Ryxr 107 Iy
covariance
kout 0.05 Outlier rejecting coefficient
State weights for inlier
QiTL,Nout 1010 ) 156
interpolation
Input weights for inlier
Rin 128
interpolation
State lower bound with
Xiower —[00:15, 01-1y, o0-1g oo-14]"
KKT condition
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Xupper

[00 - 15,

01 - 122 0 - 16

- 14]"

State upper bound with

KKT condition

Cdamp

-0.1

Damper  coefficient  for

body force
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Table 6.10

The Parameter Settings for the Motion Smoother in the Proposed Method

in the Experiment

Motion Smoother:

Symbol Value Meaning
State weights for initial LQR
qurl 156
tracking
Input weights for initial LQR
qurl 103'128
tracking
I, 024x6  O24x15  024xe State weights for iterative
Qurs Osx24 10-Ig  Ogxss 066
v 015><24 015><6 115 015><6 .
06524 O6x6 Ogx15  10-1¢ LQR tracking
022x22 012“2 022x6 022X6] Velocity state weights for
Quors vel 022x22 10715, 0O3zx6 022x6
areve 0622 0622 066 O6x6 iterative LOR tracki
0g. 20 gy 20 0o 10%-1,]|terative QR tracking
5 Input weights for iterative
R 10 -1, 022x6
tarz 0622 10° I
LQR tracking
Number of iterations for
Niter 3
iterative LQR tracking
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6.6 Experiment Results and Analysis

6.6.1 Result of 3D Reconstruction

In the simulation, the RawSKs have already been given by the ideal motions with
additional noise. However, in the experiment, we need to capture the RawSKs from the
real human motions to form the RawSKs. With the 3D reconstruction method mentioned
in Chapter 4, the RawSKs are built as Figure 6.33 shown.

Trajectory of RWrist in pitching 03

2 .
E
x 11
0 - T T T T T T
0 200 400 600 800 1000
0.0 +
E
g —0.5 A
—1.0 A
0 200 400 600 800 1000
1.5 4 RawSK
E
N 10 T
0 200 400 600 800 1000
frame

Figure 6.33: Example of keypoint trajectory in RawSKs in experiment

As we expected, the RawSKs are pretty rough and have some detects influencing

the estimation results potentially, such as outliers and missed data. To quantify the

defects of RawSK as in the simulation, the outlier ratio and average outlier interval
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duration will be used to analogize the outlier probability P, andthe expected outlier

interval duration A4,,; inthe simulation. For the missing data, the missing data ratio and

the average missing interval duration are used to analogize the probability of missing data

P,.iss and the expected missing interval duration A,,;s.

For the missing data, it’s easy to calculate their properties in RawSKs since they are

labeled with NaNs directly. However, the outliers don’t have a natural definition to mark.

For that reason, we simply define the outliers in RawSK as:

T
outtier: |(P1ran(® ~ Pige®)' S5 (Pura(® ~ Pige(®) 2 Koy 63D

where p; ,qy (t) is the keypoint position for the i-th keypoint in frame t in RawSK,
Pige(t) is the keypoint position for the i-th keypoint in frame ¢ in ground truth
skeleton, and §,,; is the covariance of P;,q(t) —Pig:(t) for all t in the i-th
keypoint.

While plotting the position error vectors p; ,qu (t) — p; 4:(t) forall ¢ asshownin
Figure 6.34, there are some points far from the group around the origin. To pick those
points out as outliers, we use the outlier definition as Equation (6.31) imitating the
Mahalanobis distance while setting k¢ qw = 5. Then, the outlier vectors are labeled

with red color, and the inliers are labeled with blue color in Figure 6.34.
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Position Error of REIbow in punching_ 05
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Figure 6.34: Outlier Labeled result for REIbow of RawSK in punching_05

With the labeled outliers and missing data, we can calculate the outlier and missing
data properties as shown in Figure 6.35.

For the AlphaPose, proposed multi-view system and 3D reconstruction method, the
outlier ratios are between 1.0% to 2.2%, and the average outlier interval durations are
between 1.15 to 1.45 frames.

For missing data, the missing data ratios are between 0% to 14%. Finally, the average

missing interval durations are between 1.00 to 1.35 frames.
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Outlier Properties of RawSK in Experiment
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Missing Data Properties of RawSK in Experiment
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Figure 6.35: Outlier and missing data properties of RawSK
(a) Outlier properties (b) Missing data properties
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Besides the properties of the potential influencing factors, the position errors MPJPE

of the RawSKs in the experiment are illustrated in Figure 6.36.

MPJPE of RawSK for All Case in Experiment
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42.5 1
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Case Index

Figure 6.36: MPJPE of RawSKs in experiment

The overall position error of RawSKs is about 30mm to 40mm except Hitting_01.
In Figure 6.37, we can find that AlphaPose is bad at arm keypoint detection with the bat-
lifting pose. Particularly, the keypoint of LWrist is marked out of the arm at the frame. In
Hitting_01, the target remained the bat-lifting pose for a much longer time than in the

other hitting cases. Therefore, the MPJPE is especially great in Hitting_01.
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Figure 6.37: AlphaPose detection result for Cam1 in Hitting_01
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6.6.2 Performance Analysis of Motion Estimation

After the 3D reconstruction for the RawSKs, the 3D skeleton modification method
presented in Chapter 5 is applied. The estimated trajectories in the three estimation stages
(RawSK, KF-SK, PostSK) and the ground truth trajectory are plotted in Figure 6.38.

After the joint state estimator with the outlier component rejection mechanism, most
of the outliers in the KF-SK are rejected successfully. Then, after the motion smoother,
the residual outliers are wiped out, and the trajectory becomes smoother in PostSK. In
addition, the PostSK is also close to the ground truth after the proposed 3D skeleton
modification method.

Trajectory of RWrist in pitching 03

2 .
E
x 11
0 - T T T T T T T
0 200 400 600 800 1000 1200
0.0 +
E
g —0.5 A
—1.0 A
0 200 400 600 800 1000 1200
1.5 A RawSK
E —A— KF-SK
et i —f— PostSK
~ 1.0
—6— gtSK
0 200 400 600 800 1000 1200
frame

Figure 6.38: Example of keypoint trajectory in different estimation stages
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The numerical errors are illustrated in Figure 6.39. No matter in MPJPE, MPJVE, or

MPJAE, the numerical errors decrease gradually for all the cases in the experiment.

However, the final performances are still affected by the RawSKs. As shown in Figure

6.39 (a), the MPJPE is still high in Hitting_01 after the modification. Also, the MPJPEs

for KF-SK and PostSK look highly relative to the MPJPE for RawSKs.
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Figure 6.39: Estimation error in different estimation stages

(2) MPJPE (b) MPJVE (c) MPJAE
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The average errors for every case in different estimation stages are listed in Table

6.11. For the MPJPE, the errors decrease gradually in the three estimation stages. For

MPJVE and MPJAE, the errors drop dramatically in proportion between the KF-SK and

the PostSK, which shows that the motion smoother works.

Table 6.11
Average Estimation Performance in the Experiment
Skeleton § Empype(S) Evpyve(S) Evpjap(S)
Unit: (mm) Unit: (mm/frame) | Unit:(mm/frame?)
RawSK 35.75 28.37 49.91
KF-SK 33.86 16.17 26.17
PostSK 30.74 1.21 0.44
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6.6.3 Effectiveness of OCR Joint State Estimator

Same as the simulation, the proposed joint state estimator is going to be compared

with the other joint state estimators: extended Kalman filter (EKF), unscented Kalman

filter (UKF), and the outlier-robust Kalman filter (ORKF) proposed in Algorithm 1 in

[56: Agamennoni et al. 2011]. The concept of the ORKF is that it assumes the covariance

of measurement noise is time-varying. Then, the time-varying measurement noise

covariance T is estimated with an iterative method at each frame. With the mechanism,

the outliers can be assigned with higher T. Therefore, the influence of outliers would be

reduced. However, since the ORKEF is designed for linear systems, the human kinematic

model doesn’t fit it. To fulfill the implementation, the linearization method same as EKF

is applied to ORKF to avoid this problem.

In Figure 6.40, the estimated errors of the proposed method with different joint state

estimators are shown. The proposed OCR joint state estimator outperforms the other three

joint state estimators in most cases except Hitting_01. In Hitting_01, lots of the keypoint

positions are incorrect and far from the ground truth as mentioned in Section 6.6.1.

Because of this reason, the outlier component detection mechanism may not work

properly and cause the results. For ORKF, there are some missed data because T'; didn’t

converge during the iterative T; estimation. Therefore, the ORKF can’t work for the

cases.
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MPJPE with Different Joint State Estimators
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Figure 6.40: The performance different joint state estimator in experiment
(a) MPJPE (b) MPJVE (c) MPJAE
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6.6.4 Effectiveness of Iterative LQR Motion Smoother

The comparison of different motion smoothers will be discussed in this section. The
compared motion smoothers are the same as those in the simulation: the proposed iterative
LQR tracking method (iterLQR), the initial smoothing method of iterLQR (initLQR), the
smoothing method with low pass filter on joint state (stateLP), and the smoothing method
with low pass filter on keypoint positions (kyptLP).

The performances are shown in Figure 6.41. For MPJPE, the differences among the
four motion smoothers are not obvious. For MPJVE, the performance of kyptLP is
slightly better than the others. The stateLP is the worst. The iterLQR and initLQR perform
similarly. Finally, for MPJAE, the proposed iterLQR has the worst performance among
the motion smoothers.

But, in fact, the differences between these motion smoothers are subtle. It’s more
important to ensure whether the proposed iterLQR works for the designed purpose, such
as increasing the endpoint position accuracy and maintaining the segment lengths.
Therefore, the position errors for the endpoints in the human skeleton are illustrated in

Figure 6.42.
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Figure 6.41: The performance different motion smoothers in experiment
(a) MPJPE (b) MPJVE (c) MPJAE
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Average Position Error of End Points with Different Motion Smoothers
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Figure 6.42: The end point position errors with different state-filtering based motion
smoothers

(a) Average position error of four end points (b) Position error of LWrist (¢) Position
error of RWrist (d) Position error of LAnkle (e) Position error of RAnkle
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As Figure 6.42 shown, the proposed iterLQR outperforms the other state-filtering-

based methods in most cases, especially in LAnkle which usually is the fixed anchor

during the high-speed motion in the experiment.

In Figure 6.43, we take the eight segments on the four limbs, as Figure 6.43 (a) shows,

to calculate the average varying ratio of the segment lengths in the experiment. As shown

in Figure 6.43 (b), the varying ratios of kyptLP can be high over 0.4 and at least 0.1 in

the experiment. At the same time, the other motion smoothers maintain 0 varying ratios

for the segment lengths since they consider the human skeleton kinematic model.
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R /é\ with Different Motion Smoothers
0.5
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Figure 6.43: Varying Ratios with different motion smoothers in experiment
(a) The segment lengths used to take the average (b) The average varying ratios with
different motion smoothers in the experiment
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6.6.5 Influence of the Motion Speed

In this section, the influence of the motion speed will be discussed. However, unlike
the simulation, we can’t adjust the motion speed of the target with one variable directly.
Instead, we will analyze the performance with the instantaneous velocity and acceleration
magnitudes for every keypoint in each frame.

The scatter plots of the position, velocity, and acceleration estimation errors with
respect to the keypoint instantaneous velocity and acceleration magnitudes are illustrated
in Figure 6.44, Figure 6.45, and Figure 6.46. We can observe that there seem to be some
relationships, but some other factors, such as poor skeleton initialization, have significant
impacts on a small number of keypoints.

To get rid of these impacts, we divide the keypoints into ten intervals with velocity
magnitudes and acceleration magnitudes, as shown in Figure 6.47. In the experiment,
most keypoints are concentrated around the low-velocity intervals and the low
acceleration intervals. The numbers of the keypoints in the intervals are annotated in
Figure 6.47. There are 17973 frames in the 15 cases totally. Since there are 12 body
keypoints to be compared, the total number of the keypoints is 215676. The vast majority

of the data came from the first intervals of velocity and acceleration magnitude.
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Figure 6.44: Position Estimation Error Distribution with Velocity/Acceleration
Magnitude of Keypoints
(a) Position Estimation Error with Velocity Magnitude (b) Position Estimation Error

with Acceleration Magnitude
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Distribution of Velocity Estimation Error with Velocity Magnitude
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Figure 6.45: Velocity Estimation Error Distribution with Velocity/Acceleration
Magnitude of Keypoints
(a) Velocity Estimation Error with Velocity Magnitude (b) Velocity Estimation Error

with Acceleration Magnitude
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Distribution of Acceleration Estimation Error with Velocity Magnitude
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Figure 6.46: Acceleration Estimation Error Distribution with Velocity/Acceleration

Magnitude of Keypoints

(a) Acceleration Estimation Error with Velocity Magnitude (b) Acceleration
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Keypoint Velocity Distribution
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Figure 6.47: Dynamic distribution of the keypoints
(a) Velocity distribution (b) Acceleration distribution

189
doi:10.6342/NTU202202468



Trend of Position Estimation Error with Velocity Magnitude
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Figure 6.48: Position Estimation Error with Velocity/Acceleration Magnitude of
Keypoints
(a) Position Estimation Error with Velocity Magnitude (b) Position Estimation Error

with Acceleration Magnitude
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Trend of Velocity Estimation Error with Velocity Magnitude
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Figure 6.49: Velocity Estimation Error with Velocity/Acceleration Magnitude of
Keypoints
(a) Velocity Estimation Error with Velocity Magnitude (b) Velocity Estimation Error

with Acceleration Magnitude
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Trend of Acceleration Estimation Error with Velocity Magnitude
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Figure 6.50: Acceleration Estimation Error with Velocity/Acceleration Magnitude of
Keypoints
(a) Acceleration Estimation Error with Velocity Magnitude (b) Acceleration
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Taking the average errors for each interval, we can get the trends of average
performances with respect to the velocity magnitudes and acceleration magnitudes as
shown in Figure 6.48, Figure 6.49, and Figure 6.50.

Except for the acceleration intervals whose values are greater 30 mm/frame?, the
estimation errors show obvious trends to increase with the dynamic magnitudes, no matter
for velocity or acceleration. It appears the high relationships between the estimation errors
and the motion dynamic. The relationships can also correspond to the weakness of the
constant velocity model in joint space. The ignored joint accelerations may be
unignorable when the motion dynamic increases.

For the acceleration intervals whose values are greater 30 mm/frame?, the
numbers of sampled keypoints are too small. Therefore, the results are vulnerable and not

informative.
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6.6.6 Processing Time for Proposed Method

After the performance analysis, the consumed time is also a consideration for
practice. The number of processed frames for a case is from 1186 to 1311 frames in the
experiments. The processing times for each stage are illustrated in Figure 6.51 (a). The
average processing times are 6.30 seconds for 3D reconstruction, 0.56 seconds for body
parameter estimation, 9.88 seconds for joint state estimation, and 5.86 seconds for motion
smoothing. The processing FPS without the running time of AlphaPose in the experiment
is plotted in Figure 6.51 (b). The average FPS is 57.47 Hz. All the estimated results were

processed with Intel Core 19-10900 CPU @ 2.8GHz.
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Figure 6.51: Processing time for proposed method

(a) processing time for each stage (b) FPS without AlphaPose
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6.7 Compare with Deep learning-based methods

As mentioned in Section 2.2.2, the works for 3D human motion estimation in recent
years are mainly based on deep learning. To present a more complete comparison, the
performance difference between the proposed method and other deep learning approaches
will be shown in this section. Before the numerical results, how to evaluate the proposed
method with those methods on an approximate benchmark will be explained in Section
6.7.1. Finally, the specific performances for different actions will be listed in Section
6.7.2.

6.7.1 Human3.6M Evaluation Setups

To compare the performance of 3D human motion estimation or 3D human pose
estimation for single-person, the most famous dataset is Human3.6M [29: Tonescu et al.
2014]. The most commonly used comparison benchmark is Protocol 1 for multi-view
estimation mentioned in [70: Fang et al. 2018], which is to use subjects 1,5,6,7,8 for
training and subjects 9 and 11 for evaluation. There are 17 keypoints used to evaluate as
shown in Figure 6.52. Naturally, the proposed method can’t be implemented on the
protocol since the keypoint definition in Human3.6M doesn’t fit the skeleton kinematic
model illustrated in Figure 5.1. In addition, the positions of the keypoints on the limbs are
slightly different from AlphaPose skeleton. For example, p, and ps are labeled on
heels not ankles.
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Figure 6.52: Human skeleton defined in Human3.6M

To handle the keypoint defining issue, we use another 3D human pose estimation

model, Learnable Triangulation [41: Iskakov et al. 2019], trained on Human3.6M to

reconstruct the RawSKs instead of AlphaPose.

Learnable Triangulation, like AlphaPose, is a model that only cares about position

errors and didn’t consider the temporal information in the motion sequences. Therefore,

it’s potential to increase the velocity and acceleration performance with the proposed

method.

As shown in Figure 6.53, for the implementation, the RawSKs are composed of the

keypoints marked with blue circles. Since there is no corresponding keypoint for the same

head structure, we use the reconstructed head keypoints from AlphaPose in Figure 6.53

(@) to build the head part of the RawSKs. Then, for the body part, we use the keypoints
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on the limbs from Learnable Triangulation to construct the rest parts of RawSKs. The

slight differences in keypoint definition are regarded as the differences in body

parameters. Eventually, the proposed method can be used on Human3.6M with the same

parameter settings in Section 6.5.3.

Right Side Pz P

Ps

P12

P1o

z P14 (@)

Pic @

(a)
Figure 6.53: The keypoint definition for RawSK for Human3.6M

0

P11

Left Side

Do

Pis

(@) The keypoints of head come from the reconstructed 3D AlphaPose (b) The
keypoints of body come from the output of Learnable Triangulation trained on

Human3.6M

For the evaluation, since there is no corresponding ground truth for the head

keypoints, the evaluated results will only compare the 12 keypoints errors on the four

limbs as shown in Figure 6.53 (b), which makes the benchmark slightly different than the

benchmarks in other works. Besides, because the evaluated keypoints in RawSKs are all

from Learnable Triangulation, the evaluated errors of the RawSK can be regarded as the

performance of Learnable Triangulation.
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Table 6.12

Tested Cases with Human3.6M

Subject Action Case Name
o Directions
Directions —%
Directions_1
. . Discussion_1
Discussion - -
Discussion_2
i Eating
Eating -
Eating_1
. Greeting
Greeting -
Greeting_1
. Phoning
Phoning -
Phoning_1
) Posing
Posing 5
Posing_1
Purchases
Purchases
Purchases_1
e Sitting
S9/S11 Sitting —
Sitting_1
" SittingDown
SittingDown —
SittingDown_1
i Smoking
Smoking -
Smoking_1
Photo
Photo
Photo 1
. Waiting
Waiting .
Waiting_1
. Walking
Walking -
Walking_1
WalkDog
WalkDog
WalkDog_1
WalkTogether
WalkTogether
WalkTogether_1
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In Protocol 1, the tested cases are listed in Table 6.12. However, as the camera

parameters in S9_Greeting_1, S9_SittingDown_1, and S9_ Waiting are incorrect, the

three cases will be eliminated for evaluation. The projected ground truth skeletons with

the wrong camera parameters in the three cases are shown in Figure 6.54.

(b) (©
Figure 6.54: Projected ground truth skeleton in the eliminated cases on Human3.6M
(@) S9_Greeting_1 (b) S9_SittingDown_1 (c) S9_Waiting

The rest of the cases will be used to evaluate the estimation performance numerically.
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6.7.2 Performance Analysis of Motion Estimation

In this section, the numerical errors will be displayed. For position evaluation
(MPJPE), the works are divided into two groups: considering velocity errors or not
considering velocity errors.

Many works put a lot of effort and focus on MPJPE results during the development
because the original evaluation metrics for Human3.6M only consider the position
performance. However, in recent years, more and more papers claimed that position is
not the only thing determining the estimation performance by humans. Therefore, the
MPJVE had come out to provide a higher-order metric for human motion estimation.

The works considering velocity errors are the papers presenting their MPJPE and
MPJVE at the same time and are listed in Table 6.13. For the works focusing on the

position performance, their MPJPEs are listed in Table 6.14.
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Table 6.13
Comparison for Position Error (MPJPE) in mm
with method considering velocity errors on Human3.6M

= z| | B8 =

§ g’: Py S = % N | : ) ; Ny i

ss~ | T RE TS e T e

= = g e, =3 ;

Directions 18.5 29.6 452 | 425 | 414 | 40.2 | 40.3
Discussion 19.1 24.5 46.7 | 448 | 435 | 425 | 433
Eating 19.8 25.0 433 | 426 | 40.1 | 426 | 40.2
Greeting 18.8 25.7 456 | 442 | 429 | 411 | 423
Phoning 21.2 28.7 48.1 48.5 46.6 46.7 45.6
Posing 18.5 25.2 44.6 42.6 41.7 41.4 41.8
Purchases 18.6 31.1 443 | 414 | 423 | 423 | 405
Sitting 22.0 27.7 57.3 | 56,5 | 539 | 56.2 | 559
SittingDown 20.6 28.0 65.8 | 645 | 60.2 | 604 | 60.6
Smoking 211 26.6 47.1 47.4 45.4 46.3 44.2
Photo 22.1 27.0 55.1 | 57.1 | 519 | 56.7 | 523
Waiting 18.3 26.7 440 | 43.0 | 41.7 | 422 | 430
Walking 21.5 35.8 328 | 330 | 315 | 317 | 30.0
WalkDog 20.0 31.2 49.0 | 48.1 | 46.0 | 46.2 | 442
WalkTogether 21.9 35.6 33.9 | 351 | 327 | 310 | 302
Mean 20.1 28.6 46.8 | 46.6 | 44.1 | 445 | 437

As shown in Table 6.13, the proposed method with Learnable Triangulation

performs the best position estimation with other velocity considering methods except the

action Walking and WalkTogether. One of the reasons for the great performance comes

from the fine detection of Learnable Triangulation. But, as with the other velocity

considering methods, the combination of the proposed method and Learnable

Triangulation harms the position performance because of the trade-off between position

and velocity.
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Table 6.14
Comparison for Position Error (MPJPE) in mm
with method not considering velocity errors Human3.6M
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Directions 18.5 206 | 482 | 289 | 220 | 257 | 175
Discussion 19.1 245 | 493 | 325 | 236 | 27.7 | 196
Eating 19.8 250 | 465 | 266 | 249 | 237 | 172
Greeting 18.8 257 | 484 | 281 | 267 | 248 | 183
Phoning 21.2 287 | 524 | 283 | 306 | 269 | 182
Posing 18.5 252 | 464 | 280 | 251 | 249 | 180
Purchases 18.6 311 | 614 | 368 | 329 | 265 | 180
Sitting 22.0 277 | 723 | 420 | 205 | 288 | 205
SittingDown 20.6 280 | 510 | 305 | 325 | 317 | 203
Smoking 21.1 266 | 598 | 356 | 32.6 | 282 | 19.4
Photo 22.1 270 | 465 | 293 | 357 | 314 | 177
Waiting 18.3 26.7 | 467 | 300 | 265 | 264 | 17.2
Walking 215 358 | 521 | 300 | 260 | 283 | 189
WalkDog 20.0 312 | 375 | 283 | 347 | 236 | 19.0
WalkTogether 21.9 356 | 391 | 305 | 27.7 | 235 | 1738
Mean 20.1 286 | 506 | 31.2 | 302 | 269 | 187

Compared with the works focusing on position performance shown in Table 6.14,

the proposed method still has room to improve.
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Table 6.15
Velocity Error (MPJVE) in mm/frame on Human3.6M

S = 2 2 = Y =

| R I B [ [ [l o S
Action S 35 =2 2 Bg 25 |8Q2IBZISE
ZBR | R s 2R |B¢E[BE M

s° | g | ®| =| F

Directions 2.4 2.3 3.0 2.7 2.7 2.3 2.4
Discussion 2.6 2.2 3.1 2.8 2.8 2.5 2.5
Eating 2.2 1.9 2.2 2.1 2.0 2.0 1.8
Greeting 2.8 2.5 34 3.1 3.1 2.7 2.8
Phoning 2.2 1.7 2.3 2.0 2.0 2.0 1.8
Posing 2.1 2.1 2.7 25 24 2.2 2.2
Purchases 2.5 2.9 3.1 2.9 2.8 2.5 2.5
Sitting 24 1.2 2.1 1.8 1.8 1.8 15
SittingDown 2.9 1.4 2.9 2.6 2.4 2.7 2.0
Smoking 2.1 1.5 2.3 2.1 2.0 1.9 1.8
Photo 2.5 2.1 2.7 25 2.4 2.3 2.2
Waiting 2.0 1.6 2.4 2.3 2.1 2.0 1.9
Walking 3.0 4.0 3.1 2.7 2.7 2.2 2.5
WalkDog 3.0 35 3.7 3.7 34 3.1 3.2
WalkTogether 2.7 3.0 2.8 3.1 24 2.5 2.1
Mean 2.5 2.3 2.8 2.7 2.5 2.3 2.2

For MPJVEs shown in Table 6.15, the proposed method has the best performance
for most of the cases. However, its MPJVE is relatively high for some actions, such as
Walking, WalkDog, and WalkTogether. In the three actions, the trajectories of the targets
are continuously circling. The keypoints are also doing the accelerated movement, which
is detrimental to the proposed method during the actions. As the result, it seems to be the

reason for the poor performance in those actions.
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Table 6.16

Acceleration Error (MPJAE) in mm/frame? on Human3.6M

3 - = .
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Action QCZ g’_ é ‘é % ﬁé S é}
S @ = (‘i g

Directions 3.3 0.8 2.3 2.1
Discussion 3.6 0.9 2.6 2.4
Eating 3.1 0.7 1.8 1.7
Greeting 3.9 0.9 2.7 2.4
Phoning 3.1 0.7 2.0 1.9
Posing 2.8 0.8 2.1 1.9
Purchases 3.5 1.2 2.5 2.3
Sitting 3.6 0.5 2.1 1.9
SittingDown 4.3 0.8 2.1 2.5
Smoking 3.0 0.6 2.3 1.9
Photo 3.6 0.9 2.3 2.0
Waiting 2.8 0.6 2.1 1.9
Walking 4.0 1.5 2.8 2.4
WalkDog 4.1 1.4 2.1 2.6
WalkTogether 3.7 1.0 2.6 2.2
Mean 3.5 0.9 24 2.1

Last, the acceleration errors for different methods are listed in Table 6.16. Compared

to MPJVE, there are fewer papers that discussed acceleration errors (MPJAE). Among

the four estimation results, the proposed method outperforms all the others in every action.

It also demonstrates the advantage of the motion smoother.

205

doi:10.6342/NTU202202468



Chapter 7
Conclusions and Future Works

7.1 Conclusions

People have been researching how to capture 3D human motion accurately for the
past two decades. With the advancement of sensing technology, more and more high-
accuracy motion capture equipment, such as VICON, has been invented. However, the
high accurate equipment often encounters high costs and few applicable environments.
In recent years, though many vision-based 3D human motion estimation methods have
been developed with deep learning techniques, they still can’t get rid of the demand for
the 3D labeled data which are hard to access in outdoor environments.

In this thesis, a portable multi-view motion capture system is proposed to overcome
the environment constraints with the light capture devices and the simple calibration
method. The 3D keypoint detection is achieved without 3D labeled data while using the
2D keypoint detection by AlphaPose and the 3D reconstruction method. Since the loss of
3D labeled data, the reconstructed results are usually worse than the pure deep learning-
based methods. Therefore, a 3D skeleton modification method is proposed as a solution
to this problem. By considering the skeleton kinematics and the proposed outlier
component rejecting mechanism, the position estimation has significant improvement.
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Besides, the iterative LQR motion smoother is also presented in this thesis to further
enhance the velocity and acceleration performance.

With the proposed method, the performance has significant improvement in both
simulation and experiment. Furthermore, to compare with the pure deep learning-based
works in recent years, Learnable Triangulation is regarded as the detector for the proposed
method on Human3.6M. The results also show the outstanding performance among the

dynamic considering methods in the low-speed actions.

7.2  Future Works

Although the proposed work demonstrates great performance for the single-person
single-track 3D human motion estimation, there are still some opportunities to improve
the current method.

For increasing the performance, the information of the subject IDs may be useful to
estimate the more accurate body parameters when there are many tested cases for the
same persons. Furthermore, while the tested motions are highly repeated and have few
modes, such as pitching, the dynamic probability model may fit to estimate the current
motion with the information in previous cases.

For the application, online implementation is a potential topic. Since the proposed
method is offline due to the iterative LQR motion smoother and body parameter
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estimation, the user may not get the most immediate information. The proposed method

has the potential to be turned into an online method using the model-predictive approach.

Last, as the proposed method is designed for single-person scenarios, the estimation

result may be poor when the target is not isolated from other persons. However, with high

discernment of human-1D models, the proposed method can work even in a crowded area.

Moreover, since the proposed method has the ability to handle the missing data problem

coming from occlusion, multi-person 3D human motion estimation is also a feasible topic

with the proposed method.
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Appendix A
Optimal rigid body point solution

Assume there are N frames, n points in a rigid body static in {world}. The
position of the i-th point with noise is denoted as p;. The vector from p; to p; at
frame t is denoted as (pl- - pj)t. The optimal rigid body point estimation of the i-th
point position is denoted as p;.

For a rigid body, the vector between any two points in it should be constant.
Therefore, we define the optimization problem to estimate the point positions except p,
on the rigid body with minimizing squared sum of the vector differences in different

frames as:

-1n-2

pmin (||@: =2, - pj)||) (A1)

t=0 i j=i+1

3
S
Jay

I
o
+

Define a cost function as J:

2

-1n-2 n-1

J= z (||@: = »p), - pj)||) (A2)

0 i=0 j=i+1

L
1]

While setting d;;, and d;; as:

I.j t — (pl pj)t (A.3)
d;j = p; — P; (A.4)
221

doi:10.6342/NTU202202468



Pk,

The cost J; attime tisequal:

Je = z (”(pl p]) pj)“)

i=0 j=i+1
n-2 n—1
2
= (ldijc = diill)
i=0 j=i+1
n-2 n—1
—_ T —_
= (dije — dij) (dije — dij)
i=0 j=i+1
n-2 n—1
~ T~ —~
= dj dj—2d;, dj+d, dij;
i=0 j=i+1
n-2 n—1

= (p: — ﬁj)T(ﬁi —-p;)—2d;, (P

Z Z (ﬁiTﬁj) + dij,tT(ﬁi - ﬁj)

i=0 j=i+1

n-—1 n-2 n-1

= T/\
=(n—1)z i Pi—2

i=0 i=0 j=i+1

n-2 n-1
T

i=0 j=i+1

(A5)

A T
- Pj) +dij. dij;

Then, take the partial derivative for J, with respect to the estimated point position

vk=1,...,n—1:

k-1
a] o o
——=2(n— 1P, — 2 Z(Pz -
9P i=0
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n-—1
dik,t) + Z (’P\i + dki,t)

i=k+1

(A.6)
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Next, get the partial derivative for J with summation:

k-1 n-1
]  0Xer) . = S ©
— = =2 N{2(n - 1Py — 2 Z(Pi_dik)+ z (P: + dy;) (A7)
9Px 9P i=0 i=k+1
1 N—-1
aik = NZ dik,t = _aki (A-8)
t=0
To get the optimal Py, a% = 0 should be satisfied. Therefore,
k-1 n—1
Ni2(n—1)py — 2 Z(ﬁi —dy) + Z (P +dw) } =0 (A.9)
i=0 i=k+1
k-1 n-1
= (n— 1Py — [Z(ﬁi —dy) + z (Pi+diw)|[=0 (A.10)
i=0 i=k+1
n—1 k-1 n-1
= npy — . D+ (Z aik) - (Z aki) +dy =0 (A1)
=0 i=0 i=k+1
Where akk = 0
n-1 n—1
=S>np,— ) Pi+ ( Eik> =0 (A.12)
i=0 i=0
n-1 n-1
>nPr— ) Pi=— ) dy (A.13)
i=0 i=0
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Take the summation of Equation (A.13) for k =1,...,n—1:

n-—1 n-—1 n—-1n-1
n Pz—(n—l)zpi=— di
i=1 i=0 k=1 1i=0
n—-1n-1 n-1 n-1
= - dj — dj+ d;
k=1 i=0 i=0 i=0
(A.14)
n—-1n-1 n-1
= - dy+ ) dy
k=0 i=0 =0
n-1 n-—1
== 0 + diO == dlo
=0 =0

The equation YRZi¥™1d, = 0 is because both d,, and d,, would be added

and canceled in the summation. Then, it can be derived as following equation.

n-1 n—-1

= P, —npo = aio (A.15)
i=1 i=0
n-1 n—-1

= Y Ppi=npy+ ) dj (A.16)
i=1 i=0

With Equation (A.13) and Equation (A.16), we get obtain the optimal rigid body

point solution as:

=0 i=0
1 n-1 (A.17)
=p0+£<. dlo_dlk>
=0
= Po + dio

while p, is defined as the anchor of the rigid body and can be set arbitrarily.
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Appendix B
KKT condition for state constraints
with Kalman gain

As the original Kalman gain K, is determined to minimize the trace of state
covariance P... Considering the state constraints with lower bound x,,,, and upper
bound x,,,., the Kalman gain can be obtained by solving Equation (B.1).

Trll(ltn tr(Pﬂt)
(B.1)
s.t. Xlower < ftr ft < xupper
With the state measurement update equation X; = X .—1 + K&, the inequality

constraints can be rewritten as:

{xlower - /x\t|t—1 - Ktst <0 (B 2)

xt|t—1 + Ktst - xupper <0

Then, the Lagrangian L is calculated by Equation (B.3) with Lagrange multipliers
py and py:

L= tT(Pt|t) + ”{(xlower — X1 — Ktst) + lﬂzw(yqt—l + K. g — xupper) (B.3)
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With the update equation of P, with arbitrary Kalman gain K; mentioned in
Equation (5.59), L is rewritten as:
L= tr(Pye-1 — KcHePrje—s — Pre—1He Ki' + KoPyyea K,
+ ”I(xlower — X1 — Ktet) (B.4)
+ ”g(:’zﬂt—l + K. g — xupper)
Taking the partial derivative with respect to K, equal to zero matrix:
oL T r
K.~ 0= —2(HPyi—1) + 2K Prpje—1 + (1, — el =0 (B.5)
t

Then, the Kalman gain with KKT condition is calculated as Equation (B.6) with the

condition in Equation (B.7) and Equation (B.8):

K, = Ptlt—lH{ atjt-1 T (uy — Ilz)fzpi_,at—l (B.6)
{”1 >0 Xiower — /ft|t—1 - tht <0 (B 7)
py =0’ /x\t|t—1 + K& — Xupper <0 '

.“1,i(xlower - 2t|t—1 - Ktet)i =0 ]
N Vi (B.8)
ﬂz,i(xt|t—1 + K& — xupper)l- =0

where pu,; isthe i-th elementin py, u,; isthe i-thelementin u,,and (-); isthe i-

th element in the vector.
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With Equation (B.6), we can write the following equation:

a; = Xiower — §t|t—1 - Pt|t—1HgP2_,g|t—1£t (B.9)
b, = §t|t—1 — Xypper T Pt|t—1HgP§,%|t—1£t (B.10)
C't ES Ezpi_}lt_lgt 2 0 € R (Bll)
Xiower — /x\t|t—1 —K.e =a; —c(uy — pz)
~ (B.12)
Xpje-1 + K& — Xypper = be + (g — p2)
Therefore, Equation (B.8) can be rewritten as:
pyi@s — ey —p2)), =0
1@ = e =), vi (B.13)
liz,i(bt + ce(py — ﬂz))i =0
N {:ul,l[ t,i t(.ul,L HZ,L)] Vi (B.14)
foilbei + ce(pe; — p2:)] = 0
;=0 or aj—c i —Uzi) =0
N {.ul,L t,i t(.ul,L .uz,l) Vi (B.15)
Hai =0 or b+ ci(py;—pai) =0

There are 4 situations determined by if p,; equal 0 or notand u,; equal O or not.
First, we consider the situation a,; — c;(11; — p2:) = 0, pz; = 0. Inthe situation,

there are two condition to check for Equation (B.7):

1
Ui =—0a;; =0
e (B.16)

(xt|t—1 + K & — xupper)l- = bt,i + Ctll1,i = Xiower,i — Xupper,i <0

The second condition is trivial. Since ¢, is always nonnegative, the situation is

satisfied if a,; = 0.
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Next, we consider the situation p;; = 0, u,; = 0. In the situation, there are two

condition to check for Equation (B.7):

(xlower - /x\t|t—1 - tht)i =a;,; <0
R (B.17)
(xt|t—1 + K& — xupper)i =b,; <0

Therefore, if a;; <0 and b.; < 0, the situation will be satisfied.
Third, we consider the situation w;; = 0, b,; + c;(p1; — tz;) = 0. In the situation,

there are two condition to check for Equation (B.7):

(xlower — Xt|e-1 — Ktst)i = Q¢+ Celhoi = Xiower,i — Xupper,i <0

1 (B.18)
Uzi=—br; =0
Ct

Because the first condition is trivial, if b.; > 0, this situation can be satisfied.
Last, for the situation a,; — c;(u1,; — ta:) =0, bei + co(p1; — ta;) =0, the
upper bound and lower bound coincide as Equation (B.19) shown:
0= ay; —c(pi— tai) + bey + ce(pa; — Hayi)

=a; + by (B.19)

= (xlower - xupper)i
For the situation, the element (u,; — u,); used to calculate Kalman gain is:

(= M2)i = Ui — P
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