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國立臺灣大學 電機工程學系 

 

摘要 

近幾年來，三維人體動作估測一直都是個熱門的研究主題。從電影產業、復健

治療到運動分析，越來越多的應用環境使得人們對三維人體動作估測的精準度與

便利性有了更高的要求。隨者深度學習的興起，漸漸地有許多無標記式的估測方法

被提出。但這些方法通常都會遇到缺乏室外三維標記資料的問題，使得提出的方法

在現實情境中沒有辦法得到如預期的結果。 

為了避開這個問題，一個僅基於二維人體關節偵測的方法在此篇論文中被提

出。考量到直接將二維的偵測結果做三維重建可能會使得三維出測結果出現巨大

的誤差，此三維重建結果還會經過骨架優化的步驟。此骨架優化由兩部分組成。第

一部分為基於骨架模型的關節角度估計。第二部分則為動作平滑化。在關節角度估

計中，除了關節角度的計算，來自三維重建的異常關節也會在被提出的異常分量排
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除無跡卡爾曼濾波器濾除以達到提升估計強韌性的目的。在動作平滑化中，除了位

置之外，速度與加速度準確度這些高階次的指標也會在這一步得到顯著的提升。 

最後，透過模擬與實驗，數據化的驗證所提出方法的效果與性能，以證明其可

行性與精確度。 

 

關鍵字： 

人體動作估測、人體姿態估測、異常分量濾除、動作平滑化 
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ABSTRACT 

In recent years, 3D human motion estimation has been a popular research topic. 

From the film industry, rehabilitation therapy to sports analysis, more and more 

application environments make people require higher accuracy and convenience of 3D 

human motion estimation. With the rise of deep learning, many markless estimation 

methods have been proposed. However, those methods usually encounter the problem of 

a lack of outdoor labeled data so that the estimation results are not as good as expected in 

real-world situations. 

To avoid this problem, a method based only on 2D human keypoint detection is 

proposed in this thesis. Considering that direct 3D reconstruction of the 2D detection 

results may cause huge errors in the 3D estimation results, the 3D reconstruction results 
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will also undergo the 3D skeleton modification process. The 3D skeleton modification 

process consists of two parts. The first part is joint state estimation based on the skeleton 

kinematic model. The second part is motion smoothing. In the joint state estimation, 

besides the calculation of the joint angle, the outlier keypoint from the 3D reconstruction 

will also be filtered out with the proposed outlier-component rejecting UKF (OCR-UKF) 

to improve the robustness of the estimation. In motion smoothing, in addition to position, 

higher-order metrics such as velocity and acceleration accuracy will also be significantly 

improved in this step. 

Finally, through simulation and experiment, the properties and performance of the 

proposed method are verified with data to prove its feasibility and accuracy. 

 

 

Keywords: 

Human motion estimation, human pose estimation, outlier component rejection, motion 

smoothing 
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Chapter 1  

Introduction 

In this chapter, the motivation of this thesis is discussed in Section 1.1. Then the 

problem formulation for this thesis is provided in Section 1.2. Section 1.3 states the 

contributions of this thesis. Finally, the organization for the rest chapters of this thesis is 

provided in Section 1.4. 

1.1 Motivation 

In recent years, 3D human motion estimation is a widely used technology in several 

fields. In the film industry, there have been several movies using optical motion capture 

system to capture the accurate motion of the actors/actresses. With accurate motions and 

computer graphic technology, the filmmakers can make unreal creatures and have them 

act like they are real and emotional. A famous film, “War for the Planet of the Apes”, 

used this technology to do so [75: Bishop 2017]. The apes in this movie were actually 

acted by real actors and actresses in labs with high-precision optical motion capture 

systems as shown in Figure 1.1 (a). 

Not only for films, nowadays, 3D human motion estimation is also used in hospitals, 

as shown in Figure 1.1 (b). The rehabilitation of stroke or traumatic brain injury patients 

is a tough and long process. The treatments highly rely on the experiences of physical 
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therapists. As [76: Hogan 2020] mentioned, with the 3D motion estimation, physical 

therapists can analyze the movements of patients with mobility-limiting conditions such 

as Parkinson’s disease. This would provide the ability to characterize the abnormal 

motion with high accuracy, and it’s necessary for surgical evaluations. 

 
 

(a) (b) 

Figure 1.1: The applications for 3D human motion technology with optical motion 

capture system. 

(a) Motion transferring in film industry [75: Bishop 2017] (b) rehabilitation [76: 

Hogan 2020] 

However, to use the high-accuracy optical motion capture systems, the scenario 

environment should be an indoor and stable environment like labs. Also, the expansive 

cost of the whole optical motion capture system is one of the weaknesses to increase its 

universality. Therefore, there are some wearable devices developed for issues. [77: 

VICON 2022] shows that wearable inertia measurement units (IMUs) can help athletes 

to monitor their motions and furthermore give the clinicians a signal whether the anterior 

cruciate ligament (ACL) injuries occur at both prevention and rehabilitation stages as 

shown in Figure 1.2 (a).  
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Despite the fact that the wearable devices are cheap and don’t need abundant room 

to implement, not all the cases suit the wearable devices. For some sports, like baseball, 

the players can’t wear any devices or sensors during the official games. In these situations, 

some vision-based 3D human motion estimation algorithms are the most suitable methods.  

In the last few years, due to the growth of computational power and the machine 

learning technique, more and more problems that used to be regarded as almost 

unsolvable can be modeled with artificial neural networks. Vision-based human motion 

estimation is one of them. In Figure 1.2 (b), [78: Dutt 2018] shows a good example that 

the dancing motions of humans can be captured and reproduced with only videos. With 

these techniques, 3D human motion estimation becomes a universal and easy-to-

implement technology.  

  

(a) (b) 

Figure 1.2: The applications for 3D human motion technology with other 

measurement techniques. 

(a) IMU-based motion estimation [77: VICON 2022] (b) vision-based motion 

estimation [78: Dutt 2018] 

But there are still some challenges for vision-based human motion estimation. 1) the 

precision of vision-based human motion estimation is lower than the optical motion 
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capture systems. 2) the computational cost for 3D human motion estimation networks is 

still high for personal computers. Usually, the networks run on servers. 3) to lower the 

computational loading, few algorithms consider the motion continuity along the time. It 

also causes bad velocity and acceleration estimation, which we don’t want especially for 

athlete performance monitoring. 4) since the train data for 3D human motion estimation 

models are recorded in a stable environment, the high noise of real-world data often 

causes bad estimation. Sometimes, the estimated results don’t even conform to real 

human-like motions. 

Considering the problems above, we want to propose a method that combines the 

advantages of pattern recognition for machine learning and model-based method for 

signal processing. Therefore, the estimated motions would be robust to the real-world 

noise and also conform to the human motion model. 

1.2 Problem Formulation 

For vision-based multi-view 3D human motion estimation, the estimated target 

would make actions under a multi-camera system, which is illustrated in Figure 1.3 (a). 

The purpose is to estimate the motions, including position, velocity, and acceleration, of 

each keypoint on a human body. The keypoints for human bodies are shown on Figure 

1.3 (b). There are totally 17 keypoints on a human body, including nose (Nose), left eye 

(LEye), right eye (REye), left ear (LEar), right ear (REar), left shoulder (LShoulder), right 
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shoulder (RShoulder), left elbow (LElbow), right elbow (RElbow), left wrist (LWrist), 

right wrist (RWrist), left hip (LHip), right hip (RHip), left knee (LKnee), right knee 

(RKnee), left ankle (LAnkle), right ankle (RAnkle), which is the same definition in 

Microsoft COCO keypoint detection task [51: Lin et al. 2015]. 

  

(a) (b) 

Figure 1.3: Illustration on the formulated problems.  

(a) the scheme diagram for 3D motion estimation with multi-view systems  

(b) the keypoints to estimate the motion for a human body 

Based on the times of tracking, the 3D human motion estimation can be divided into 

single-track scenarios and multi-track scenarios. 

1.2.1 Single-track 3D human motion estimation 

For single-track 3D human motion estimation, the input data only contain one 

sequence of human motion. Without any additional information, it needs to estimate the 

target’s 3D motion for each keypoint from the videos of the multi-view system and also 

resist the huge noise in the real-world images. 
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1.2.2 Multi-track 3D human motion estimation 

For multi-track 3D human motion estimation, the input data contain multiple 

sequences from the same person with similar motions. This situation is common for 

repeated actions such as pitching, batting, walking… etc. Those actions have a fixed 

pattern and few variations in different tracks. In this task, we can leverage the 

repeatability of motions to improve the robustness of the estimated result and resist the 

captured noise. Moreover, it can increase the precision of the estimated results. 

1.3 Contributions 

The master thesis is devoted to the robustness issue of real-world 3D human motion 

estimation. To fulfill a robust 3D human motion estimation, we divide the whole process 

into two parts: 1) 3D raw skeleton reconstruction and 2) single-track 3D skeleton 

stabilization, which is also illustrated in Figure 1.4. The main contribution of this thesis 

mainly lies in the second part. 

In terms of robustness for 3D human motion estimation, this work provides an outlier 

rejection method to avoid the outliers which cause by the capture noises corrupting the 

estimated outputs in the second part.  

In addition, to consider the estimation of velocity and acceleration, this work 

implements the iterative LQR motion smoother. With this process, the output motions 
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have great improvement in velocity and acceleration improvement, which few methods 

so far consider.  

 

Figure 1.4: Overview of the proposed system. 
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doi:10.6342/NTU202202468

9 

1.4 Organization of the Thesis 

This rest of this thesis is organized as the following statements. Chapter 2 presents 

the background and literature survey of the thesis. Chapter 3 introduces the related 

algorithms of the proposed method. Chapter 4 shows how we build the multi-view system 

and reconstruct the raw skeleton from the system. Chapter 5 describes the proposed 

single-track 3D human motion estimation in detail. Chapter 6 demonstrates the simulation 

and experiment results and analyzes the effects of the proposed methods in advance. 

Chapter 7 summarizes this thesis and points out the future works of this research.  
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Chapter 2  

Background and Literature Survey 

In this chapter, the background and literature survey for this thesis is discussed. 

There are three topics in this chapter. Section 2.1 provides the state-of-the-art motion 

capture systems for sports. Section 2.2 presents how the other works estimate the human 

poses with vision information. 

2.1 Motion Capture Systems 

Motion capture systems are the systems that capture the 3D motion of the targets, 

for humans mainly. Depending on the applied scenarios, various motion capture systems 

have been developed. According to the measurement techniques, those systems can be 

divided into four categories: electromagnetic measurement systems (EMS), image 

processing systems (IMS), optoelectronic measurement systems (OMS), and inertial 

measurement units (IMU) [1: van der Kruk & Reijne 2018], as shown in Figure 2.1. 

 

Figure 2.1: Classification of motion capture systems. 

Motion Capture System
[1: van der Kruk & Reijne 

2018]

Electromagnetic
Measurement System

(EMS)

[3: Stelzer et al. 2004]
[4: Perrat et al. 2015]
[6: Sathyan et al. 2012]

Image Processing 
System
(IMS)

Discussed in Section 2.2

Optoelectronic
Measurement System

(OMS)

VICON
Optotrak 3020
[7: Spörri et al. 2016]
[8: Begon et al. 2009]

Inertial Measurement 
Unit

(IMU)

[9: Joukov et al. 2017]
[10: Chen et al. 2020]
[54: Neuron 2017]
[55: Xsens 2017]
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2.1.1 Electromagnetic Measurement System (EMS) 

The EMSs measure the positions with the time-of-flight of the electromagnetic 

waves – radio waves – traveling from the transponder to the base stations [3: Stelzer et al. 

2004][4: Perrat et al. 2015]. Since the human body is transparent at the wave frequency 

[5: Schepers & Veltink 2010], this measurement technique suits crowded environments, 

such as team sports [6: Sathyan et al. 2012]. However, the accuracy of EMSs is relatively 

low among the four categories. The transponders needed to be installed on the moving 

targets is also another issue for some scenarios, like some official sport games. 

2.1.2 Image Processing System (IMS) 

The IMSs are also called vision-based methods. Rather than sensing the additional 

objects (markers or transponders) on targets, these systems sense the target, usually 

humans, with images or videos by computer vision algorithms directly. Therefore, they 

can fulfill markerless motion capture, which makes it have wider applied scenarios. The 

IMSs generally have better accuracy than the EMSs but worse than the OMSs. Computer 

vision algorithm development is a difficulty for IMSs. But with the growth of machine 

learning techniques, the IMSs become more and more popular in recent years, which 

would be described in detail in Section 2.2.  
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2.1.3 Optoelectronic Measurement System (OMS) 

The OMSs are the most accurate among those four categories and are often regarded 

as the gold standard in the literature. Those systems use infrared light to locate the 

markers on the moving targets with triangulation by multiple cameras. Dependent on 

whether the markers contain the source of light or not, the marker systems can be 

classified into passive, e.g. VICON, or active, e.g. Optotrak 3020. Without the additional 

cable and battery, the former has fewer limited motions. On the other hand, the latter 

performs more robust results than the passive ones. 

To fulfill the high precision, most OMSs utilize several mounted cameras in a fixed 

frame. Consequentially, the accuracy of the systems is highly dependent on the 

experimental setup, such as distances between cameras and markers, calibration between 

cameras, positions and number of markers, and brightness of environment infrared. 

Owing to the sensitivity, the implementation spaces of OMSs are often limited in indoor 

environments, and their range is highly relative to the number of mounted cameras [7: 

Spörri et al. 2016]. To expand the applied range with fewer cameras, [8: Begon et al. 2009] 

used several mounted cameras on a movable frame and made the frame track the target 

with several markers fixed on the ground as the only global information. 
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2.1.4 Inertial Measurement Unit (IMU) 

Instead of installing the sensors away from the targets, the IMUs sense the targets’ 

motions directly mounted on the targets. Thus, the implementation range would not be 

constrained by the equipment. However, the IMUs can’t output the positions directly. 

Besides, the performance is dependent on the fusion filters. [79: Neuron 2022] and [80: 

Xsens 2022] utilize rigid-body models to estimate the positions of human bodies. [9: 

Joukov et al. 2017] uses Lie-group extend Kalman filter to solve the gimbal lock issue 

occurring for sphere joints. [10: Chen et al. 2020] developed a self-aligned algorithm for 

IMUs and solve the drifting problem for the IMUs. 

2.2 3D Human Pose Estimation (HPE) with Vision 

In recent years, human pose estimation has become more and more popular [11: 

Sarafianos et al. 2016]. The main reason causes from the increasing of new applications 

[12: Wang et al. 2021], such as human-robot interaction [13: Zhang 2012], autonomous 

driving [14: Kim et al. 2019][15: Du et al. 2019], sport performance analysis [16: Hwang 

et al. 2017][17: Rematas et al. 2018], etc. The vision-based human pose estimation has 

the advantage for wide application scenarios. Since these methods don’t need any devices 

attached to human bodies, they are compatible with our daily usage. 

In this field, the algorithms can be divided into two periods. From 2008 to 2015, 

most works developed several classical methods and few deep-learning-based methods 
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[11: Sarafianos et al. 2016]. After 2016, the deep-learning-based methods for 3D human 

pose estimation progressed rapidly [12: Wang et al. 2021]. In this section, the works of 

literature would be introduced in the two periods respectively.  

2.2.1 3D Human Pose Estimation in 2008-2015 

 

Figure 2.2: Classification of 3D human pose estimation methods from 2008 to 2015. 

According to the algorithm, the vision-based methods for human pose estimation 

can be categorized as model-based, model-free and hybrid methods, as shown in Figure 

2.2.  

For the model-based methods, they are also referred as generative model approach 

in [11: Sarafianos et al. 2016]. These methods employ a known model based on prior  

information such as specific motion [18: Daubney et al. 2012] and context [19: Ning et 

al. 2008]. Another category of model-based methods is called part-based or bottom-up 

methods. Those methods regard the representation of human skeletons as a collection of 

body parts [20: Belagiannis et al. 2014][21: Burenius et al. 2013][22: Zuffi et al. 2012]. 

3D Human Pose Estimation
(2008-2015)

[11: Sarafianos et al. 2016]

Model-based
(Generative)

[18: Daubney et al. 2012]
[19: Ning et al. 2008]
[20: Belagiannis et al. 2014]
[21: Burenius et al. 2013]
[22: Zuffi et al. 2012]

Model-free
(Discriminative)

Hybrid

[27: Rosales & Sclaroff
2006]
[28: Sedai et al. 2013]

Learning-based

[23: Huang & Yang 2010]
[24: Sedai et al. 2010]

Example-based

[25: Grauman et al. 2003]
[26: Bergh et al. 2009]
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For model-free methods, also known as discriminative approaches, they can be 

divided into learning-based and example-based. The learning-based methods learn the 

mapping function from the input images to the estimated 3D poses [23: Huang & Yang 

2010][24: Sedai et al. 2010]. The example-based methods output the interpolation of 

candidates as the estimated poses [25: Grauman et al. 2003][26: Bergh et al. 2009], which 

can increase the robustness and speed for the estimation. 

Finally, for the hybrid methods, they combine the generative and discriminative 

approaches to predict the pose more accurately. As the combination of two approaches, 

the observation of discriminative approaches would be verified with the generative 

approaches. [27: Rosales & Sclaroff 2006] and [28: Sedai et al. 2013] are examples of 

hybrid approaches. Besides, our proposed framework in this thesis can also be regarded 

as a hybrid approach. 

2.2.2 3D Human Pose Estimation after 2016 

With the growth of machine learning techniques and the large 3D human pose 

datasets, such as Human3.6M [29: Ionescu et al. 2014], CMU Panoptic [31: Joo et al. 

2018], … etc., deep-learning-based methods become the mainstream for 3D human 

motion estimation in last few years.  

There are three common human body models for those deep 3D human pose 

estimation approaches: skeleton-based model, SMPL (skinned multi-person linear) model, 
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and surface-based model. The skeleton-based model is the first and foremost model. It’s 

commonly used in 2D human motion estimation and extended to 3D naturally. The human 

skeleton is represented as a tree where the vertices are the keypoints of the human body 

and the edges are formed by connecting the adjacent joints. The keypoint definitions are 

different in different datasets. For the SMPL model [32: Loper et al. 2015], it is a 

triangulated mesh with 6890 vertices to represent the human skin. The mesh of SMPL 

models is parameterized by the shape and pose parameters. The 3D pose positions can be 

estimated by learning those parameters. For the last one, surface-based model, the most 

famous one is DensePose [33: Güler et al. 2018]. Considering the fact that the sparse 

correspondence of the image and keypoints may not be enough to capture the status of 

the human body for some applications, this model established the correspondences 

between the 3D positions of the human surfaces and the image pixels. 

Based on the input data are a single frame or a sequence, monocular or multi-views, 

there are four types of 3D human pose estimation. The classification is illustrated in 

Figure 2.3. 
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Figure 2.3: Classification of deep-learning-based 3D human pose estimation methods 

after 2016. 

For the single-frame monocular type, the fact that a 2D pose may correspond to 

several different 3D poses is often regarded as an ill-defined problem. But due to the 

appealing low requirement of the image, there are still several methods have been 

developed. [34: Luvizon et al. 2018] and [35: Pavlakos et al. 2017] estimate the 3D human 

poses through an end-to-end network directly. [33: Güler et al. 2018] and [36: Nie et al. 

2017] lift the 2D keypoints to form the corresponding 3D poses. [37: Bogo et al. 2016] 

and [38: Kanazawa et al. 2018] use the SMPL model to match the SMPL parameters and 

the images so that the keypoints on SMPL models can be projected to the corresponding 

2D positions. 

With the multi-view images, the single-frame multi-view type 3D HPE can reduce 

the ambiguity of depth significantly. On the other hand, the challenge for this type is how 

to fuse the information from multiple views. [39: Pavlakos et al. 2017] fused the multi-

3D Human Pose Estimation
(after 2016, learning-based)

[12: Wang et al. 2021]

Monocular

[33: Güler et al. 2018]
[34: Luvizon et al. 2018]
[35: Pavlakos et al. 2017]
[36: Nie et al. 2017]
[37: Bogo et al. 2016]
[38: Kanazawa et al. 2018]

Frame Sequence

Multi-view

[39: Pavlakos et al. 2017]
[40: Rhodin et al. 2018]
[41: Iskakov et al. 2019]
[42: He et al. 2020]

Monocular

[43: Coskun et al. 2017]
[44: Katircioglu et al. 2018]
[45: Tekin et al. 2016
[46: Cai et al. 2019]

Multi-view

[31: Joo et al. 2018]
[47: Huang et al. 2017]
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view 2D heatmaps by back-projecting to a common discretized 3D space with 3D 

pictorial structures models. The multi-view consistency is used in [40: Rhodin et al. 2018] 

as weak supervision, by forcing the network to predict the same pose from all views 

during training. Triangulation is one of the fundamental and popular techniques for 3D 

HPE. Some state-of-the-art methods in Human3.6M used this technique, such as [41: 

Iskakov et al. 2019] and [42: He et al. 2020]. 

For the sequential monocular 3D HPE, the inherent depth ambiguity also causes 

ill-defined problems like single-frame monocular 3D HPE. To reduce the ambiguity, 

temporal information, like invariant body shapes and motion continuity, is often used. To 

utilize them on artificial neural networks, various model architectures are implemented, 

such as long short-term memory (LSTM) [43: Coskun et al. 2017][44: Katircioglu et al. 

2018], convolutional neural networks (CNN) [45: Tekin et al. 2016], and graph 

convolutional networks (GCN) [46: Cai et al. 2019]. [43: Coskun et al. 2017] proposed 

LSTM-KF and tried to learn the motion and noise model of Kalman filter from LSTM. 

[44: Katircioglu et al. 2018] used LSTM to impose the temporal constraint on the early 

features. [45: Tekin et al. 2016] concatenated the input sequences to form the spatial-

temporal volume and extract the feature from the volume. With the skeleton model, [46: 

Cai et al. 2019] formed the spatial graph of a human skeleton and further connected the 
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keypoints along the time axis to build a spatial-temporal graph. With the GCNs, the 

estimated poses are refined with spatial and temporal information. 

For the sequential multi-view 3D HPE, it has better performance than single-view 

methods with the richness of the information. [31: Joo et al. 2018] used 480 synchronized 

VGA views to calculate the 3D position likelihood with the projection of the center voxel 

to all 2D views. [47: Huang et al. 2017] proposed SMPLify which fits SMPL model for 

all views independently and regularizes the motion in time. 

Nonetheless, although the deep-learning-based methods have become the 

mainstream methods in the last few years. The in-the-wild scenarios are always a 

bottleneck for learning-based methods inherently. Not like 2D annotations, it’s hard to 

construct large datasets for 3D annotations without marker-based vision systems. As 

mentioned in Section 2.1.3, those optoelectronic measurement systems are sensitive to 

the experiment setup. Therefore, a large accurate outdoor 3D dataset for human pose 

estimation is almost impossible. To overcome this problem, we proposed a non-learning 

3D lifting and refining framework with the real-world well-perform 2D pose estimator, 

AlphaPose [48: Fang et al. 2017], to get rid of 3D annotation data. 
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Chapter 3  

Related Algorithms 

In this chapter, the related algorithms used in this thesis would be introduced. To 

reconstruct the 3D raw skeleton from multi-view images, AlphaPose and epipolar 

geometry are presented in Section 3.1 and Section 3.2 respectively. The sphere fitting 

useful to estimate the unknown joint position is described in Section 3.3. Applied to the 

outlier component rejecting mechanism, the simple linear regression is mentioned in 

Section 3.5. To solve the state initialization with inversed kinematics, the 3D 

transformation estimation and rotation matrix decomposition are shown in Section 3.6 

and Section 3.7. Finally, the unscented Kalman filter (UKF) and linear quadratic regulator 

are the main algorithms helping to filter the rough raw skeletons into smooth post 

skeletons and would be explained in Section 3.4 and Section 3.8.  
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3.1 AlphaPose 

AlphaPose [48: Fang et al. 2017] is the state-of-the-art algorithm for 2D multi-

person pose estimation. As a two-step top-down method, the framework of AlphaPose 

combined YOLOv3 [49: Redmon & Farhadi 2018] as the region of interest (ROI) 

proposer for human detection and the symmetric spatial transformer network (SSTN) + 

single-person pose estimator (SPPE) to propose the corresponding poses of humans. 

Using SPPE to estimate the human poses directly is a straightforward idea. However, 

the performances of the SPPE are sensitive to the bounding box of the proposed ROI. 

Since this issue, [48: Fang et al. 2017] proposed the spatial transformer network (STN) 

to adjust the proposed ROI from the input ROI image. The SPPE performs better with the 

adjusted ROI. To find estimated poses in the original ROI coordinates, the authors used 

the spatial de-transformer network (SDTN) to recover the original pose coordinates with 

the parameters in STN. With the STN and SDTN, the symmetric STN (SSTN) is formed.  

Besides, to increase the robustness of AlphaPose for wild images, the authors 

introduce the pose-guided proposals generator (PGPG) to augment the imperfect human 

ROI proposals and set a fixed parallel SPPE module to penalize distance errors between 

the center of the ground truth bounding boxes and the estimated poses after STN during 

training. This process can make the STN try to propose the ROI around the human centers. 

Finally, because the human ROI proposer may generate highly overlapped ROIs for the 
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same person, the authors proposed a parametric pose non-maximum-suppression (p-Pose 

NMS) to remove the lower-confidence poses overlapped with the other higher-confidence 

poses. The overall pipeline of AlphaPose is shown in Figure 3.1.  

 

Figure 3.1: The Pipeline of AlphaPose 

 

3.2 Epipolar Geometry 

 

Figure 3.2: The Pinhole Camera Model 

Refer to chapter 6 in [71: Hartley & Zisserman 2004], the projection from a point in 

the world to an image point can be formulated with Equation (3.1), where 𝑲 ∈ ℝ3×3 is 
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the intrinsic parameters including the focal lengths 𝑓𝑥, 𝑓𝑦 and lens center 𝑢 ,    in the 

image coordinate, and the extrinsic parameters  𝒘
𝒄 ∈ ℝ3×3 and  𝒘

𝒄 ∈ ℝ3 represent the 

rotation and translation transformation from the world coordinate to camera coordinate. 

[𝑢  ]𝑇  is the 2D image position of the projected point in the image coordinate. 

[  𝑤  𝑤  𝑤 ]𝑇  and [  𝑐  𝑐  𝑐 ]𝑇  represent the 3D point position in world 

coordinate and camera coordinate respectively. 
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(3.1) 

With the pinhole camera model in Figure 3.2, we can realize that the 3D position of 

a point projected on a camera may come from any points in the corresponding ray. 

Therefore, it’s not possible to reconstruct the 3D points with only one camera. 

To find the 3D positions, a multi-camera system is needed. The technique to 

reconstruct the 3D points with two cameras is called “epipolar geometry,” shown in 

Figure 3.3. 
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Figure 3.3: The Schematic Diagram of Epipolar Geometry 

Since a camera can generate a ray as the candidates of a 3D point position, with two 

cameras whose rays are not parallel to each other, the 3D position of the point can be 

estimated at the intersection or the middle point of the common perpendicular of the two 

rays. 

To formulate it, assuming the camera sensing is ideal, Equation (3.1) is re-written as 

Equation (3.2) and Equation (3.3) for camera  1 and camera  2: 

[
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−𝟏 ∙  

 1 [
𝑢1
 1
1
] =  

 1 ∙ 𝒂⃑⃑  (3.2) 

[

 
 2

 
 2

 
 2

] = 𝑲𝟐
−𝟏 ∙  

 2 [
𝑢2
 2
1
] =  

 2 ∙ 𝒃⃑⃑  (3.3) 

With the known rigid body transformation [   2
 1 |   2

 1 ] from  2 to  1, Equation (3.4) 

is formed: 

 1  2

𝑢1  1 𝑢2  2

 

 
 1   

 1   
 1  

 2   
 2   

 2

𝒂   2
 1 𝒃

  2
 1    2

 1

  2
 1

 
 2 ∙   2

 1 𝒃
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 1 ∙ 𝒂⃑⃑ = [

 
 1

 
 1

 
 1

] 

=   2
 1 [

 
 2

 
 2

 
 2

] +   2
 1  

=   2
 1 (  

 2 ∙ 𝒃⃑⃑ ) +   2
 1  

=  
 2   2

 1 𝒃⃑⃑ +   2
 1  

(3.4) 

Since  
 1  is a scalar, we can find that 𝒂⃑⃑  is parallel to  

 2 ∙   2
 1 𝒃⃑⃑ +   2

 1 , which 

forms Equation (3.5): 

𝒂⃑⃑ × (  
 2 ∙   2

 1 𝒃⃑⃑ +   2
 1 ) = 𝟎 (3.5) 

Therefore, the depth from  2 can be calculated as the Equation (3.6): 

 
 2 =

‖𝒂⃑⃑ ×   2
 1 ‖

‖𝒂⃑⃑ ×   2
 1 𝒃⃑⃑ ‖

 
(3.6) 

 
 2 ≥ 0 since the projected point must be in the front of camera. Then, the 3D point 

position in  1 and  2 can be calculated by Equation (3.4) and Equation (3.3) with the 

calculated  
 2 . 
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3.3 Sphere fitting 

Referring to [85: Jekel 2022], a sphere can be formulated as:  

𝑟2 = (𝑥 − 𝑥 )
2 + (𝑦 − 𝑦 )

2 + (𝑧 − 𝑧 )
2 (3.7) 

where [𝑥 𝑦 𝑧 ]𝑇 is the sphere center and 𝑟 is the radius of the sphere. 

By arranging the terms in Equation (3.7): 

𝑟2 = 𝑥2 − 2𝑥 𝑥 + 𝑥 
2 + 𝑦2 − 2𝑦 𝑦 + 𝑦 

2 + 𝑧2 − 2𝑧 𝑧 + 𝑧 
2 (3.8) 

2𝑥 𝑥 + 2𝑦 𝑦 + 2𝑧 𝑧 + 𝑟
2 − 𝑥 

2 − 𝑦 
2 − 𝑧 

2 = 𝑥2 + 𝑦2 + 𝑧2 (3.9) 

[2𝑥 2𝑦 2𝑧 1] [

𝑥 
𝑦 
𝑧 

𝑟2 − 𝑥 
2 − 𝑦 

2 − 𝑧 
2

] = 𝑥2 + 𝑦2 + 𝑧2 (3.10) 

Every point on the sphere should follow the relation in Equation (3.10). Therefore, 

when there are 𝑛 points sampled on a sphere: 

[

2𝑥1 2𝑦1 2𝑧1 1
2𝑥2 2𝑦2 2𝑧2 1
⋮ ⋮ ⋮ ⋮
2𝑥𝑛 2𝑦𝑛 2𝑧𝑛 1

] [

𝑥 
𝑦 
𝑧 

𝑟2 − 𝑥 
2 − 𝑦 

2 − 𝑧 
2

] =

[
 
 
 
𝑥1
2 + 𝑦1

2 + 𝑧1
2

𝑥2
2 + 𝑦2

2 + 𝑧2
2

⋮
𝑥𝑛
2 + 𝑦𝑛

2 + 𝑧𝑛
2]
 
 
 
 (3.11) 

Let 

𝑨 = [

2𝑥1 2𝑦1 2𝑧1 1
2𝑥2 2𝑦2 2𝑧2 1
⋮ ⋮ ⋮ ⋮
2𝑥𝑛 2𝑦𝑛 2𝑧𝑛 1

] 

𝒔⃑ = [

𝑥 
𝑦 
𝑧 

𝑟2 − 𝑥 
2 − 𝑦 

2 − 𝑧 
2

] 

(3.12) 
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𝒇⃑ =

[
 
 
 
𝑥1
2 + 𝑦1

2 + 𝑧1
2

𝑥2
2 + 𝑦2

2 + 𝑧2
2

⋮
𝑥𝑛
2 + 𝑦𝑛

2 + 𝑧𝑛
2]
 
 
 
 

𝑨𝒔⃑ = 𝒇⃑  (3.13) 

𝒔⃑ = 𝑝𝑖𝑛 (𝑨) ∙ 𝒇⃑  (3.14) 

where 𝑝𝑖𝑛 (∙) is the pseudo inverse function. 

Therefore, the center 𝒄 ∈ ℝ3 and the radius 𝑟 ∈ ℝ of the sphere can be estimated 

with 𝒔⃑ ∈ ℝ4: 

[
𝒄

𝑟𝟐 − ‖𝒄‖𝟐] = 𝒔⃑  (3.15) 
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3.4 Unscented Kalman Filter 

Unscented Kalman filter (UKF) [50: Julier & Uhlmann 2004] is a variation of 

Kalman filter for the nonlinear systems in Equation (3.16) and Equation (3.17). 

{
𝒙𝑡 = 𝑓(𝒙𝑡−1  𝑡) + 𝒘𝑡
𝒛𝑡 = ℎ(𝒙𝑡) +  𝑡

 (3.16) 

{
𝒘𝑡~𝒩(𝟎 𝑸)

 𝑡~𝒩(𝟎  )
 (3.17) 

𝒙𝑡 ∈ ℝ
𝑛 and 𝒛𝑡 ∈ ℝ

𝑚 are the system states and observations at the time 𝑡. 𝒘𝑡 ∈

ℝ𝑛  is the process noise sampled from a zero-mean Gaussian distribution with the 

nonnegative definite covariance 𝑸 at the time 𝑡.  𝑡 ∈ ℝ
𝑚 is the measurement noise 

sampled from a zero-mean Gaussian distribution with the positive definite covariance   

at the time 𝑡.  𝑡 is the system input at the time 𝑡. 𝑓(∙) is the state transition function, 

and ℎ(∙) is the observation function. Both 𝑓(∙) and ℎ(∙) can be nonlinear. 

In the UKF, the processes are composed of three steps: 1) initialization, 2) time 

update, and 3) measurement update. 

1). Initialization: 

During the time update, the previous estimated state 𝒙̂𝑡−1 and state covariance 

𝑷𝑡−1|𝑡−1  are needed. However, the 𝒙̂   and 𝑷 |   aren’t estimated before the 

filtering process. Thus, they should be initialized as Equation (3.18) and Equation 

(3.19): 

𝒙 = 𝐸[𝒙 ] (3.18) 
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𝑷 = 𝐸[(𝒙 − 𝒙̂ )(𝒙 − 𝒙̂ )
𝑇] (3.19) 

2). Time update: 

Unlike the extended Kalman filter (EKF), the UKF uses unscented transform 

to linearize the nonlinear system without calculating the Jacobian of 𝑓(∙) and ℎ(∙). 

An example of the unscented transform for state transition is illustrated in Figure 3.4. 

 

(a) 

 

(b) 

Figure 3.4: The illustration of the unscented transform for state transition function  

(a) the block diagram (b) illustration for the relationship between sigma points and the 

predicted state and covariance 

𝑛 + 𝜆   𝑓  

  = 𝒙̂𝑡−1 𝒙̂𝑡−1 + 𝑛 + 𝜆 𝑷𝑡−1 𝒙̂𝑡−1 − 𝑛 + 𝜆 𝑷𝑡−1

𝒙̂𝑡−1

𝑷𝑡−1

Weighted 
sample 
mean

Weighted 
sample 

covariance

𝒙̂𝑡|𝑡−1

𝑷𝑡|𝑡−1

𝑓   𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑓𝑜𝑟𝑚

   𝑡−1/𝒙̂𝑡−1

 1 𝑡−1

 2 𝑡−1

 3 𝑡−1

 4 𝑡−1

   𝑡|𝑡−1

 4 𝑡|𝑡−1  2 𝑡|𝑡−1

 3 𝑡|𝑡−1

 1 𝑡|𝑡−1

𝑷𝑡−1
𝑷𝑡|𝑡−1

𝒙̂𝑡|𝑡−1
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Refer to [72: Wan et al. 2004], the first step of the unscented transform is to 

generate the sigma points    𝑡−1 with Equation (3.20) while (√(∙))
 
 is the 𝑖 −th 

column of the matrix square root calculated by Cholesky decomposition. 

{
 
 

 
 

   𝑡−1 = 𝒙̂𝑡−1

   𝑡−1 = 𝒙̂𝑡−1 + (√(𝑛 + 𝜆)𝑷𝑡−1|𝑡−1)
 

 𝑖 = 1 2 . . .  𝑛

   𝑡−1 = 𝒙̂𝑡−1 − (√(𝑛 + 𝜆)𝑷𝑡−1|𝑡−1)
 

  𝑖 = 𝑛 + 1 𝑛 + 2 . . .  2𝑛

 (3.20) 

The second step is to do the state transition for every sigma point like Equation 

(3.21): 

   𝑡|𝑡−1 = 𝑓(   𝑡−1  𝑡) 𝑖 = 0 1 2 …  2𝑛 (3.21) 

Then, the one-step predicted state 𝒙̂𝑡|𝑡−1  and covariance 𝑷𝑡|𝑡−1  can be 

calculated by weighted average with 𝜔 
𝑚 and 𝜔 

𝑐 as Equation (3.22) and Equation 

(3.23). 

𝒙̂𝑡|𝑡−1 =∑𝜔 
𝑚   𝑡|𝑡−1

2𝑛

 = 

 (3.22) 

𝑷𝑡|𝑡−1 = [∑𝜔 
𝑐(   𝑡|𝑡−1 − 𝒙̂𝑡|𝑡−1)(   𝑡|𝑡−1 − 𝒙̂𝑡|𝑡−1)

𝑇
2𝑛

 = 

] + 𝑸 (3.23) 

Next, the predicted observation 𝒛̂𝑡|𝑡−1  and observation covariance 𝑷𝒛̂ 𝑡|𝑡−1 

can also be calculated as Equation (3.25) and Equation (3.26) from the unscented 

transform for observation function as Equation (3.24) 

𝜸  𝑡|𝑡−1 = ℎ(   𝑡|𝑡−1) 𝑖 = 0 1 2 …  2𝑛 (3.24) 
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𝒛̂𝑡|𝑡−1 =∑𝜔 
𝑚𝜸  𝑡|𝑡−1

2𝑛

 = 

 (3.25) 

𝑷𝒛̂ 𝑡|𝑡−1 = [∑𝜔 
𝑐(𝜸  𝑡|𝑡−1 − 𝒛̂𝑡|𝑡−1)(𝜸  𝑡|𝑡−1 − 𝒛̂𝑡|𝑡−1)

𝑇
2𝑛

 = 

] +   (3.26) 

For the parameters occurring in Equation (3.20) - (3.26), they are defined as: 

{
 
 
 

 
 
 𝜔 

𝑚 =
𝜆

𝑛 + 𝜆

𝜔 
𝑐 =

𝜆

𝑛 + 𝜆
+ (1 − 𝛼2 + 𝛽)

𝜔 
𝑚 = 𝜔 

𝑐 =
1

2(𝑛 + 𝜆)
 𝑖 = 1 2 . . .  2𝑛

𝜆 = 𝛼2(𝑛 + 𝜅) − 𝑛

 (3.27) 

The parameters 𝛼 , 𝛽 , and 𝜅  are the handcrafted parameters. For Gaussian 

distribution, 𝛽 = 2  is optimal. Therefore, in this thesis, these handcrafted 

parameters for UKF are set as 𝛼 = 0.2, 𝛽 = 2, and 𝜅 = 3 − 𝑛. 

3). Measurement update: 

In the measurement update, the UKF will use the current observation 𝒛𝑡 to 

correct the predicted estimation. However, the covariance between the state and 

observation 𝑷𝒙̂𝒛̂ 𝑡|𝑡−1 should be calculated first as: 

𝑷𝒙̂𝒛̂ 𝑡|𝑡−1 =∑𝜔 
𝑐(   𝑡|𝑡−1 − 𝒙̂𝑡|𝑡−1)(𝜸  𝑡|𝑡−1 − 𝒛̂𝑡|𝑡−1)

𝑇
2𝑛

 = 

∈ ℝ𝑛×𝑚 (3.28) 

Then, the Kalman gain 𝑲𝑡 would be calculated as: 

𝑲𝑡 = 𝑷𝒙̂𝒛̂ 𝑡|𝑡−1𝑷𝒛̂ 𝑡|𝑡−1
−1 ∈ ℝ𝑛×𝑚 (3.29) 

Eventually, the corrected state 𝒙̂𝑡  and covariance 𝑷𝑡  with the current 

observation 𝒛𝑡 would be calculated as: 
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𝒙̂𝑡 = 𝒙̂𝑡|𝑡−1 +𝑲𝑡(𝒛𝑡 − 𝒛̂𝑡|𝑡−1) (3.30) 

𝑷𝑡 = 𝑷𝑡|𝑡−1 −𝑲𝑡𝑷𝒛̂ 𝑡|𝑡−1𝑲𝑡
𝑇 (3.31) 

 

3.5 Simple Linear Regression 

Refer to [73: Chatterjee & Hadi 2006], for a set of points {(𝑥  𝑦 )|  𝑖 = 1 …  𝑛} 

where the means of 𝑥  and 𝑦  are 𝜇𝑥 and 𝜇𝑦, we can find a line to fit the relationship 

between 𝑥 and 𝑦 among those points as Equation (3.32), where 𝑝𝑥 𝑥 is the variance of 

𝑥  and 𝑝𝑦 𝑥 is the covariance between 𝑥  and 𝑦 . 

𝑦 = 𝛼̂ + 𝛽̂𝑥 (3.32) 

𝛽̂ =
∑ (𝑥 − 𝜇𝑥)(𝑦 − 𝜇𝑦)
𝑛
 =1

∑ (𝑥 − 𝜇𝑥)2
𝑛
 =1

 

=
𝑝𝑦 𝑥

𝑝𝑥 𝑥
 

(3.33) 

𝛼̂ = 𝜇𝑦 − 𝛽̂𝜇𝑥 (3.34) 

Besides, we can calculate the correlation coefficient 𝜌𝑥𝑦 between 𝑥  and 𝑦  as: 

𝜌𝑥𝑦 =
∑ (𝑥 − 𝜇𝑥)(𝑦 − 𝜇𝑦)
𝑛
 =1

√∑ (𝑥 − 𝜇𝑥)2
𝑛
 =1 ∑ (𝑦 − 𝜇𝑦)

2𝑛
 =1

 

=
𝑝𝑦 𝑥

√𝑝𝑥 𝑥𝑝𝑦 𝑦
 

(3.35) 

Therefore, once we have the means 𝜇𝑥 , 𝜇𝑦  and the variances 𝑝𝑥 𝑥, 𝑝𝑦 𝑦 for 𝑥  

and 𝑦  and their covariance 𝑝𝑦 𝑥,  every 𝑦  can be estimated with 𝑥  as: 

𝑦̂ = 𝛼̂ + 𝛽̂𝑥  (3.36) 
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3.6 3D Transformation Matrix Estimation 

Refer to [52: Gan & Dai 2011], a 3D transformation matrix 𝑻𝐵
𝐴  between two 

coordinates {𝐴}  and {𝐵}  can be estimated with 𝑛 ≥ 4  points (𝒑  𝒑1 . . .  𝒑𝑛−1) 

whose positions are known in the both coordinates. 

The 3D transformation matrix is composed of the rotation matrix  𝐵
𝐴 ∈ ℝ3×3, the 

translation vector  𝐵
𝐴 ∈ ℝ3 and some constants as: 

𝑻𝐵
𝐴 = [

 𝐵
𝐴  𝐵

𝐴

𝟎3×1 1
] (3.37) 

For every point 𝒑 
𝐵  in {𝐵}, its position in {𝐴} can be written as: 

𝒑 
𝐴 =  𝐵

𝐴 𝒑 
𝐵 +  𝐵

𝐴       ∀𝑖 = 0 1 2 . . .  𝑛 − 1 (3.38) 

The relative vectors from 𝒑  to 𝒑1 𝒑2 . . .  𝒑𝑛−1 can be written as: 

( 𝒑 
𝐴 − 𝒑 

𝐴 ) =  𝐵
𝐴 ( 𝒑 

𝐵 − 𝒑 
𝐵 ) + (  𝐵

𝐴 −  𝐵
𝐴 ) 

=  𝐵
𝐴 ( 𝒑 

𝐵 − 𝒑 
𝐵 ) 

∀𝑖 = 1 2 . . .  𝑛 − 1            

(3.39) 

Concatenating every relative vector, we can obtain the relative vector matrixes: 

{
𝑷𝐴 = [( 𝒑1

𝐴 − 𝒑 
𝐴 ) ( 𝒑2

𝐴 − 𝒑 
𝐴 ) ⋯ ( 𝒑3

𝐴 − 𝒑 
𝐴 )] ∈ ℝ3×(𝑛−1)

𝑷𝐵 = [( 𝒑1
𝐵 − 𝒑 

𝐵 ) ( 𝒑2
𝐵 − 𝒑 

𝐵 ) ⋯ ( 𝒑3
𝐵 − 𝒑 

𝐵 )] ∈ ℝ3×(𝑛−1)
 (3.40) 

And their transformation equation is: 

𝑷𝐴 =  𝐵
𝐴 𝑷𝐵  (3.41) 

To estimate the rotation matrix  ̂𝐵
𝐴 , it’s equal: 

 ̂𝐵
𝐴 = 𝑷𝐴 ∙ 𝑝𝑖𝑛 ( 𝑷𝐵 ) (3.42) 
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𝑝𝑖𝑛 (∙) is the pseudo inverse function for the matrixes. 

Then, the translation vector  ̂𝐵
𝐴  can be estimated by: 

 ̂𝐵
𝐴 =

𝟏

𝑛
∑ 𝒑 

𝐴 −  ̂𝐵
𝐴 𝒑 

𝐵

𝑛−1

 =𝟎

 (3.43) 

Therefore, the transformation matrix 𝑻𝐵
𝐴  between {𝐴} and {𝐵} can be estimated 

as: 

𝑻̂𝐵
𝐴 = [

 ̂𝐵
𝐴  ̂𝐵

𝐴

𝟎3×1 1
] (3.44) 
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3.7 Rotation Matrix Decomposition 

Refer to [53: Eberly 2008], for a rotation matrix  , it can be decomposed as three 

rotation matrixes along the repeated or different axis  𝑥(𝜃),  𝑦(𝜃), or  𝑧(𝜃). 

The rotation matrix along the x-axis with the angle 𝜃 is: 

 𝑥(𝜃) = [
1 0 0
0 𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛 𝜃
0 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

] (3.45) 

The rotation matrix along the y-axis with the angle 𝜃 is: 

 𝑦(𝜃) = [
𝑐𝑜𝑠 𝜃 0 𝑠𝑖𝑛 𝜃
0 1 0

−𝑠𝑖𝑛 𝜃 0 𝑐𝑜𝑠 𝜃
] (3.46) 

The rotation matrix along the z-axis with the angle 𝜃 is: 

 𝑧(𝜃) = [
𝑐𝑜𝑠 𝜃 − 𝑠𝑖𝑛 𝜃 0
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0
0 0 1

] (3.47) 

For roll-pitch-yaw representation, the rotation matrix   should be decomposed as: 

 =  𝑧(𝛾) 𝑦(𝛽) 𝑥(𝛼) (3.48) 

while 𝛼, 𝛽, 𝛾 are calculated with: 

Algorithm 3.1: ZYX Rotation Decomposition 

Input: rotation matrix   

Output: the rotation angle 𝛼, 𝛽, 𝛾 while  =  𝑧(𝛾) 𝑦(𝛽) 𝑥(𝛼) 

Note: 𝑟 𝑗  is the element of   in the 𝑖-th row and the 𝑗-th column 

1: if 𝑟31 < 1 do 

2:    if 𝑟31 > −1 do 

3:       𝛽 ← arcsin(−𝑟31) 

4:       𝛾 ← arctan2(𝑟21 𝑟11) 

5:       𝛼 ← arctan2(𝑟32 𝑟33) 

6:    else do 



doi:10.6342/NTU202202468

36 

7:       𝛽 ←  2⁄  

8:       𝛾 ← −arctan2(−𝑟23 𝑟22) 

9:       𝛼 ← 0 

10:    if end 

11: else do 

12:    𝛽 ← − 2⁄  

13:    𝛾 ← arctan2(−𝑟23 𝑟22) 

14:    𝛼 ← 0 

15: if end 

16: return 𝛼, 𝛽, 𝛾 

For another representation used in this thesis  =  𝑦(𝛽) 𝑥(𝛼) 𝑧(𝛾) , the 

decomposition algorithm is: 

Algorithm 3.2: YXZ Rotation Decomposition 

Input: rotation matrix   

Output: the rotation angle 𝛼, 𝛽, 𝛾 while  =  𝑦(𝛽) 𝑥(𝛼) 𝑧(𝛾) 

Note: 𝑟 𝑗  is the element of   in the 𝑖-th row and the 𝑗-th column 

1: if 𝑟23 < 1 do 

2:    if 𝑟23 > −1 do 

3:       𝛼 ← arcsin(−𝑟23) 

4:       𝛽 ← arctan2(𝑟13 𝑟33) 

5:       𝛾 ← arctan2(𝑟21 𝑟22) 

6:    else do 

7:       𝛼 ←  2⁄  

8:       𝛽 ← −arctan2(−𝑟12 𝑟11) 

9:       𝛾 ← 0 

10:    if end 

11: else do 

12:    𝛼 ← − 2⁄  

13:    𝛽 ← arctan2(−𝑟12 𝑟11) 

14:    𝛾 ← 0 

15: if end 

16: return 𝛼, 𝛽, 𝛾 

  



doi:10.6342/NTU202202468

37 

3.8 Linear Quadratic Regulator 

Refer to [74: Anderson & Moore 2007], discrete linear quadratic regulator (LQR) is 

an optimization problem formulated in Equation (3.49): 

min
 𝑡

1

2
[∑ 𝒙𝑡

𝑇𝑸𝒙𝑡 +  𝑡
𝑇  𝑡

𝑁−1

𝑡= 

] +
1

2
𝒙𝑁

𝑇𝑸𝑁𝒙𝑁 

s. t.   𝒙𝑡+1 = 𝑨𝒙𝑡 +𝑩 𝑡 𝑡 = 0 1 …  𝑁 − 1 given 𝒙  

(3.49) 

By minimizing the quadratic form of the state 𝒙𝑡  and control input  𝑡  for 𝑡 =

0 1 …  𝑁 − 1 plus the terminal state cost 𝒙𝑁
𝑇𝑸𝑁𝒙𝑁, LQR finds the optimal solution 

while the state dynamic is fit. 

To solve this optimization problem, we can easily implement Lagrange multiplier: 

𝐿 =
1

2
[∑ 𝒙𝑡

𝑇𝑸𝒙𝑡 +  𝑡
𝑇  𝑡

𝑁−1

𝑡= 

] +
1

2
𝒙𝑁

𝑇𝑸𝑁𝒙𝑁

+ [∑ 𝝀𝑡+1
𝑇(𝑨𝒙𝑡 + 𝑩 𝑡 − 𝒙𝑡+1)

𝑁−1

𝑡= 

] 

(3.50) 

Thus, the constrained optimization problem becomes into an unconstrained 

optimization problem: 

min
𝒙𝑡 𝒙𝑁  𝑡 𝝀𝑡+1

𝐿 = min
𝒙𝑡 𝒙𝑁  𝑡 𝝀𝑡+1

1

2
[∑ 𝒙𝑡

𝑇𝑸𝒙𝑡 +  𝑡
𝑇  𝑡

𝑁−1

𝑡= 

] +
1

2
𝒙𝑁

𝑇𝑸𝑁𝒙𝑁

+ [∑ 𝝀𝑡+1
𝑇(𝑨𝒙𝑡 + 𝑩 𝑡 − 𝒙𝑡+1)

𝑁−1

𝑡= 

] 

(3.51) 

For Equation (3.51), the minimal point of 𝐿 can be found by taking the partial 

derivative for 𝒙𝑡, 𝒙𝑁,  𝑡 and 𝝀𝑡 equal to 𝟎. 
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𝜕𝐿

𝜕𝒙𝑡
= 𝑸𝒙𝑡 + 𝑨

𝑇𝝀𝑡+1 − 𝝀𝑡 = 𝟎 𝑡 = 0 1 …  𝑁 − 1 (3.52) 

𝜕𝐿

𝜕𝒙𝑁
= 𝑸𝑁𝒙𝑁 − 𝝀𝑁 = 𝟎 (3.53) 

𝜕𝐿

𝜕 𝑡
=   𝑡 + 𝑩

𝑇𝝀𝑡+1 = 𝟎 𝑡 = 0 1 …  𝑁 − 1 (3.54) 

𝜕𝐿

𝜕𝝀𝑡+1
= 𝑨𝒙𝑡 + 𝑩 𝑡 − 𝒙𝑡+1 = 𝟎 𝑡 = 0 1 …  𝑁 − 1 (3.55) 

With Equation (3.54), the optimal control is: 

 𝑡 = − 
−𝟏𝑩𝑇𝝀𝑡+1 (3.56) 

After arranging Equation (3.52) - (3.56) and the given 𝒙 , we can get the dynamic 

and the boundary conditions of the state 𝒙𝑡 and the co-state 𝝀𝑡: 

{
𝑸𝒙𝑡 + 𝑨

𝑇𝝀𝑡+1 = 𝝀𝑡  𝝀𝑁 = 𝑸𝑁𝒙𝑁
𝑨𝒙𝑡 −𝑩 

−𝟏𝑩𝑇𝝀𝑡+1 = 𝒙𝑡+1 given 𝒙 
 

  ∀𝑡 = 0 1 …  𝑁 − 1 

(3.57) 

Assume 𝝀𝑡 = 𝑷𝑡𝒙𝑡, 𝑷𝑡 ∈ ℝ
𝑛×𝑛  

𝑷𝑁 = 𝑸𝑁  𝑓𝑜𝑟  𝑡 = 𝑁 (3.58) 

For 𝑡 = 0 1 …  𝑁 − 1 

𝝀𝑡+1 = 𝑷𝑡+1𝒙𝑡+1 

= 𝑷𝑡+1(𝑨𝒙𝑡 − 𝑩 
−𝟏𝑩𝑇𝝀𝑡+1) 

= 𝑷𝑡+1𝑨𝒙𝑡 − 𝑷𝑡+1𝑩 
−𝟏𝑩𝑇𝝀𝑡+1 

(3.59) 

(𝑰 + 𝑷𝑡+1𝑩 
−𝟏𝑩𝑇)𝝀𝑡+1 = 𝑷𝑡+1𝑨𝒙𝑡 (3.60) 

𝝀𝑡+1 = (𝑰 + 𝑷𝑡+1𝑩 
−𝟏𝑩𝑇)−1𝑷𝑡+1𝑨𝒙𝑡 (3.61) 

With the co-state dynamic in Equation (3.57), 

𝝀𝑡 = 𝑸𝒙𝑡 + 𝑨
𝑇𝝀𝑡+1 

= 𝑸𝒙𝑡 + 𝑨
𝑇(𝑰 + 𝑷𝑡+1𝑩 

−𝟏𝑩𝑇)−1𝑷𝑡+1𝑨𝒙𝑡 

= [𝑸 + 𝑨𝑇(𝑰 + 𝑷𝑡+1𝑩 
−𝟏𝑩𝑇)−1𝑷𝑡+1𝑨]𝒙𝑡 

= 𝑷𝑡𝒙𝑡 

(3.62) 
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Therefore, 𝝀𝑡 = 𝑷𝑡𝒙𝑡 is proved where 𝑷𝑡 is: 

𝑷𝑡 = {
𝑸𝑁  𝑡 = 𝑁

𝑸 + 𝑨𝑇(𝑰 + 𝑷𝑡+1𝑩 
−𝟏𝑩𝑇)−1𝑷𝑡+1𝑨 𝑡 = 0 1 …  𝑁 − 1

 (3.63) 

Then, the optimal state and co-state can be solved after solving 𝑷𝑡 and the given 

𝒙 : 

𝒙𝑡+1 = 𝑨𝒙𝑡 − 𝑩 
−𝟏𝑩𝑇𝝀𝑡+1 

= 𝑨𝒙𝑡 − 𝑩 
−𝟏𝑩𝑇𝑷𝑡+1𝒙𝑡+1 

(3.64) 

(𝑰 + 𝑩 −𝟏𝑩𝑇𝑷𝑡+1)𝒙𝑡+1 = 𝑨𝒙𝑡 (3.65) 

𝒙𝑡+1 = (𝑰 + 𝑩 
−𝟏𝑩𝑇𝑷𝑡+1)

−1𝑨𝒙𝑡 (3.66) 

𝝀𝑡+1 = 𝑷𝑡+1𝒙𝑡+1 (3.67) 

In addition, since the state 𝒙𝑡 close to 0 is not always desirable, there is a variation 

of LQR for state tracking problem as Equation (3.42) where 𝒙̂𝑡 is the desirable state at 

time 𝑡. 

min
 𝑡

1

2
[∑(𝒙𝑡 − 𝒙̂𝑡)

𝑇𝑸(𝒙𝑡 − 𝒙̂𝑡) +  𝑡
𝑇  𝑡

𝑁−1

𝑡= 

] +
1

2
(𝒙𝑁 − 𝒙̂𝑁)

𝑇𝑸𝑁(𝒙𝑁 − 𝒙̂𝑁) 

s. t.   𝒙𝑡+1 = 𝑨𝒙𝑡 +𝑩 𝑡 𝑡 = 0 1 …  𝑁 − 1 given 𝒙  

(3.68) 

Similar to the original LQR, we can also solve the state tracking LQR with Lagrange 

multiplier: 

𝐿 =
1

2
[∑(𝒙𝑡 − 𝒙̂𝑡)

𝑇𝑸(𝒙𝑡 − 𝒙̂𝑡) +  𝑡
𝑇  𝑡

𝑁−1

𝑡= 

] +
1

2
(𝒙𝑁 − 𝒙̂𝑁)

𝑇𝑸𝑁(𝒙𝑁 − 𝒙̂𝑁)

+ [∑ 𝝀𝑡+1
𝑇(𝑨𝒙𝑡 +𝑩 𝑡 − 𝒙𝑡+1)

𝑁−1

𝑡= 

] 

(3.69) 
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min
𝒙𝑡 𝒙𝑁  𝑡 𝝀𝑡+1

𝐿 = min
𝒙𝑡 𝒙𝑁  𝑡 𝝀𝑡+1

𝐿
1

2
[∑(𝒙𝑡 − 𝒙̂𝑡)

𝑇𝑸(𝒙𝑡 − 𝒙̂𝑡) +  𝑡
𝑇  𝑡

𝑁−1

𝑡= 

]

+
1

2
(𝒙𝑁 − 𝒙̂𝑁)

𝑇𝑸𝑁(𝒙𝑁 − 𝒙̂𝑁)

+ [∑ 𝝀𝑡+1
𝑇(𝑨𝒙𝑡 + 𝑩 𝑡 − 𝒙𝑡+1)

𝑁−1

𝑡= 

] 

(3.70) 

Likewise, take the partial derivative equal to 𝟎 for the optimal point: 

𝜕𝐿

𝜕𝒙𝑡
= 𝑸(𝒙𝑡 − 𝒙𝑡) + 𝑨

𝑇𝝀𝑡+1 − 𝝀𝑡 = 𝟎 𝑡 = 0 1 …  𝑁 − 1 (3.71) 

𝜕𝐿

𝜕𝒙𝑁
= 𝑸𝑁(𝒙𝑁 − 𝒙̂𝑁) − 𝝀𝑁 = 𝟎 (3.72) 

𝜕𝐿

𝜕 𝑡
=   𝑡 + 𝑩

𝑇𝝀𝑡+1 = 𝟎 𝑡 = 0 1 …  𝑁 − 1 (3.73) 

𝜕𝐿

𝜕𝝀𝑡+1
= 𝑨𝒙𝑡 + 𝑩 𝑡 − 𝒙𝑡+1 = 𝟎 𝑡 = 0 1 …  𝑁 − 1 (3.74) 

With Equation (3.73), the optimal control is: 

 𝑡 = − 
−𝟏𝑩𝑇𝝀𝑡+1 (3.75) 

After arranging Equation (3.71) - (3.75) and the given 𝒙 , we can get the dynamic 

and the boundary conditions of the state 𝒙𝑡 and the co-state 𝝀𝑡: 

 

{
𝑸(𝒙𝑡 − 𝒙̂𝑡) + 𝑨

𝑇𝝀𝑡+1 = 𝝀𝑡  𝝀𝑁 = 𝑸𝑁𝒙𝑁 − 𝑸𝑁𝒙̂𝑁
𝑨𝒙𝑡 −𝑩 

−𝟏𝑩𝑇𝝀𝑡+1 = 𝒙𝑡+1 given 𝒙 
 

  ∀𝑡 = 0 1 …  𝑁 − 1 

(3.76) 

In this problem, we assume 𝝀𝑡 = 𝑷𝑡𝒙𝑡 + 𝒄𝑡, 𝑷𝑡 ∈ ℝ
𝑛×𝑛 and 𝒄𝑡 ∈ ℝ

𝑛: 

{
𝑷𝑁 = 𝑸𝑁

𝒄𝑡 = −𝑸𝑁𝒙̂𝑁
 𝑓𝑜𝑟  𝑡 = 𝑁 (3.77) 

For 𝑡 = 0 1 …  𝑁 − 1 
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𝝀𝑡+1 = 𝑷𝑡+1𝒙𝑡+1 + 𝒄𝑡+1 

= 𝑷𝑡+1(𝑨𝒙𝑡 − 𝑩 
−𝟏𝑩𝑇𝝀𝑡+1) + 𝒄𝑡+1 

= 𝑷𝑡+1𝑨𝒙𝑡 + 𝒄𝑡+1 − 𝑷𝑡+1𝑩 
−𝟏𝑩𝑇𝝀𝑡+1 

(3.78) 

(𝑰 + 𝑷𝑡+1𝑩 
−𝟏𝑩𝑇)𝝀𝑡+1 = 𝑷𝑡+1𝑨𝒙𝑡 + 𝒄𝑡+1 (3.79) 

𝝀𝑡+1 = (𝑰 + 𝑷𝑡+1𝑩 
−𝟏𝑩𝑇)−1𝑷𝑡+1𝑨𝒙𝑡 + (𝑰 + 𝑷𝑡+1𝑩 

−𝟏𝑩𝑇)−1𝒄𝑡+1 (3.80) 

With the co-state dynamic in Equation (3.76), 

𝝀𝑡 = 𝑸(𝒙𝑡 − 𝒙𝑡) + 𝑨
𝑇𝝀𝑡+1 

= 𝑸𝒙𝑡 + 𝑨
𝑇(𝑰 + 𝑷𝑡+1𝑩 

−𝟏𝑩𝑇)−1𝑷𝑡+1𝑨𝒙𝑡 − 𝑸𝒙̂𝑡

+ 𝑨𝑇(𝑰 + 𝑷𝑡+1𝑩 
−𝟏𝑩𝑇)−1𝒄𝑡+1 

= [𝑸 + 𝑨𝑇(𝑰 + 𝑷𝑡+1𝑩 
−𝟏𝑩𝑇)−1𝑷𝑡+1𝑨]𝒙𝑡 − 𝑸𝒙̂𝑡

+ 𝑨𝑇(𝑰 + 𝑷𝑡+1𝑩 
−𝟏𝑩𝑇)−1𝒄𝑡+1 

= 𝑷𝑡𝒙𝑡 + 𝒄𝑡 

(3.81) 

Therefore, 𝝀𝑡 = 𝑷𝑡𝒙𝑡 + 𝒄𝑡 is proved where 𝑷𝑡 and 𝒄𝑡 are: 

𝑷𝑡 = {
𝑸𝑁  𝑡 = 𝑁

𝑸 + 𝑨𝑇(𝑰 + 𝑷𝑡+1𝑩 
−𝟏𝑩𝑇)−1𝑷𝑡+1𝑨 𝑡 = 0 1 …  𝑁 − 1

 (3.82) 

𝒄𝑡 = {
−𝑸𝑁𝒙̂𝑁 𝑡 = 𝑁

−𝑸𝒙̂𝑡 + 𝑨
𝑇(𝑰 + 𝑷𝑡+1𝑩 

−𝟏𝑩𝑇)−1𝒄𝑡+1 𝑡 = 0 1 …  𝑁 − 1
 (3.83) 

Then, the optimal tracking state be solved with 𝑷𝑡, 𝒄𝑡 and the given 𝒙 : 

𝒙𝑡+1 = 𝑨𝒙𝑡 − 𝑩 
−𝟏𝑩𝑇𝝀𝑡+1 

= 𝑨𝒙𝑡 − 𝑩 
−𝟏𝑩𝑇(𝑷𝑡+1𝒙𝑡+1 + 𝒄𝑡+1) 

(3.84) 

(𝑰 + 𝑩 −𝟏𝑩𝑇𝑷𝑡+1)𝒙𝑡+1 = 𝑨𝒙𝑡 − 𝑩 
−𝟏𝑩𝑇𝒄𝑡+1 (3.85) 

𝒙𝑡+1 = (𝑰 + 𝑩 
−𝟏𝑩𝑇𝑷𝑡+1)

−1(𝑨𝒙𝑡 − 𝑩 
−𝟏𝑩𝑇𝒄𝑡+1) (3.86) 
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Chapter 4  

3D Raw Skeleton Reconstruction 

In this chapter, the proposed 3D human motion capture system and a rough 3D 

skeleton reconstruction method would be introduced. An overview of the multi-view 

system we build will be presented in Section 4.1. Next, in Section 4.2, an easy approach 

to calibrate and synchronize the system would be shown. Finally, to capture the 3D data 

with the proposed system, the 3D raw human pose reconstruction would be described in 

Section 4.3. 

4.1 System structure of multi-view system 

The cameras used in our multi-view system are the GigE industrial cameras as shown 

in Figure 4.1. The capture frequency can reach 300 Hz while the output image size is set 

as 720x540 pixels or 640x480 pixels. Besides the image capturing, these cameras can also 

record the capturing time for each frame with respect to the clock in the cameras. This 

function would increase the precision for synchronization and be introduced in Section 

4.2.2. 
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(a) (b) 

Figure 4.1: The GigE industrial cameras used in this thesis from [81: The Imaging 

Source 2022] 

(a) color camera DFK 33GX287  

(b) monochrome camera DMK 33GX287 

 

In addition, the lenses used in our system are listed in Table 4.1. Depending on the 

applied ranges, these lenses are selected to fit the best field of view (FOV) containing the 

whole activity range of the human. For our portable small-size capture system illustrated 

in Figure 4.4, we use the lenses MI-03524MP C to fulfill the small-range data recording. 

For the baseball field implementation, since the cameras should be installed out of the 

field, the other long-focal-length lenses listed in Table 4.1 are selected. 

Table 4.1 

Datasheet of the industrial lenses used in this thesis 

from [82: Sure Technology Corporation 2022] 

Lens Model Focal Length (mm) 
Nearest Working Distance 

(m) 

MI-03524MP C 3.5 Not provided 

MI-3514MP 35 0.3 

MI-5018MP 50 0.5 

MI-7528MP 75 1.1 
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Figure 4.2: System overview of the multi-view system 

 

The overview of the multi-view system is illustrated in Figure 4.2. To control the 

multiple cameras in the system, the cameras are connected to the computer as the control 

center. The computer involves the GigE PoE interface card to receive data and supply the 

power to the cameras through the ethernet cables. Furthermore, to synchronize the capture 

time for each camera, a signal generator outputs a 0 - 5V squared wave as the trigger 

signal and connects to all cameras with BNC cables. The connection is shown in Figure 

4.3. In the trigger mode, those cameras would capture the images only when the trigger 

signal is on. Therefore, the maximum frequency of the trigger signal is the same as the 

maximum sample rate of the cameras. That’s equal to 300Hz.  

 

Signal generator
(Trigger)

0 V

+5 V

 300 Hz

cam0

BNC cable

cam1

cam2

cam3
Ethernet cable

Computer
(Data Recorder)
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(a) (b) 

Figure 4.3: The practical connection of the multi-view system  

(a) Connection at the signal generator (b) Connection at the camera 

After connecting the whole system, our portable motion capture system is shown in 

Figure 4.4. There are four cameras capturing the views from different angles. The target 

human would act in the center area of the system so that the whole human body can be 

captured in every camera. 

 

Figure 4.4: The multi-view system in practice 

The cameras are framed in red rectangles. The computer and signal generator are 

framed in green rectangle. The activity range for human motion capture is labeled with 

blue rectangle. 
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4.2 Camera Calibration and Synchronization 

After the multi-view system is built up, camera calibration and synchronization are 

needed for accurate motion estimation. The camera calibration process is shown in 

Section 4.2.1. Then, the camera synchronization process is presented in Section 4.2.2. 

4.2.1 Camera Calibration 

The camera calibration consists of two parts, intrinsic calibration and extrinsic 

calibration. For intrinsic calibration, Zhang’s camera calibration method [54: Zhang 2000] 

is adopted. As Figure 4.5 shows, the chessboard is captured from several different angles. 

With the OpenCV [83: Bradski 2022] function, the chessboard corners are detected and 

would be used to calculate the intrinsic parameters for each camera. 

    
(a) (b) (c) (d) 

Figure 4.5: The chessboard images for intrinsic calibration with Zhang’s method [54: 

Zhang 2000] 

For extrinsic calibration, since our system is a multi-camera system, every camera 

should be calibrated to the same world coordinate. Thus, we deposit eight reference points 

to form a cuboid involving the capture space. With knowing the accurate positions of the 

reference points, once there are at least six noncoplanar points in the FOV of every camera, 

the extrinsic parameters can be regarded as a PnP problem and solved with the OpenCV 

functions. 
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Another property of this extrinsic calibration method is that the maximum 

calibration error would occur at the reference points since the cuboid formed by the 

reference points is a convex set. Therefore, the calibration error in the cuboid can be 

interpolated with the errors at the reference points. In other words, we can guarantee the 

upper bound of the calibration error in the activity space while the nonlinear distortion is 

negligible. 

  

(a) (b) 

  

(c) (d) 

Figure 4.6: The reference points for camera extrinsic calibration 

(a) Rod position 0 (b) Rod position 1 (c) Rod position 2 (d) Rod position 3  
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4.2.2 Camera Synchronization 

To synchronize the captured images from different cameras, the hardware trigger 

signal is utilized. Despite that, the captured images are still not fully synchronized. In 

Figure 4.7, there are the time stamps of the frames captured by the four cameras. Ideally, 

each camera should record 1500 frames in 5 seconds while the trigger single is 300 Hz. 

However, due to the environment brightness and other hardware issues, there exist 20 – 

50 dropped frames for every camera. If we directly use the frame index as the 

synchronizing label, the synchronization error may be high to 78 milliseconds. This 

synchronization error may cause huge position errors during the 3D reconstruction for 

high-speed motions like pitching and batting. 

  

(a) (b) 

Figure 4.7: The recorded time stamps for each camera with synchronized hardware 

trigger (300 Hz in 5 s) 

(a) in original scale (b) zoomed in at the end of the recording  

 

 

78 ms
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As the observation in Figure 4.8, the time difference of the time stamps for each 

camera didn’t drift synchronously. In addition, the time differences are sometimes lower 

than 3 milliseconds, which is not possible for 300-Hz capturing frequency ideally even if 

there are dropped frames. Therefore, the problem for hardware triggering is not only the 

dropped frame issue but also the other hardware problems. 

 

Figure 4.8: The time differences for each camera with synchronized hardware trigger  

Not only the synchronization would affect the precision of 3D reconstruction, but 

the time difference maintains or not would also influence the estimation after post-

processes. Therefore, to solve the issues above, we use the ideal time stamps as the 

benchmark to be matched by the real time stamps from the cameras. The ideal time stamps 

are generated with the recording frame per second (FPS) as Equation (4.1) where 𝑥 is 

the frame index for the output synchronized videos, and 𝑦 is the ideal time stamps. 

𝑦 =
1000 𝑚𝑠

𝐹𝑃𝑆
∙ 𝑥 

∀x = 1 2 3 …  

(4.1) 
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Figure 4.9: The concept of synchronization with time stamps  

With the ideal time stamps, we can pick up the nearest frame in one image sequence 

for every ideal time stamp as the synchronized image sequence, as shown in Figure 4.9. 

If the nearest frame is further than a threshold 𝑡ℎ𝑠𝑦𝑛𝑐  (usually equal to 2 or 3 

milliseconds) from the ideal time stamp, the synchronized image sequence will be 

inserted with a NaN frame (fully black image) to prevent the number of frames in the 

synchronized image sequences not the same for every camera. 

 

Figure 4.10: An example for synchronization with time stamps (𝑡ℎ𝑠𝑦𝑛𝑐 = 2𝑚𝑠) 

 

Ideal time stamp:
y = 1000/FPS*x

Frame index

Time stamp
(ms)

1 frame 1 frame

Find the nearest image for 
ideal time stamp

Real time stamp
for camX

Insert a NaN frame if 
image is further than 
𝑡ℎ𝑠𝑦𝑛𝑐

Time stamp(ms)

3.3 6.6 10 13.3 16.6

3.4 6.5

6.8

13.0 16.5

Real time stamp for camX

Choose the nearest 
(in time) image for 
the ideal time stamp

For the no matched ideal time 
stamp, insert NaN frame

Ideal time stamp
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In Figure 4.10, here is an example to present how to output a synchronized image 

sequence with the ideal time stamps and the real time stamps from a camera. As Figure 

4.10 shown, the blue graduations are the ideal time stamps with 300 Hz. Then, the green 

graduations are the real time stamps captured with a camera “camX”. Similar to the real 

situation we meet, the sampled times are not exactly the same as the ideal setting, and the 

sampled frequency is also drifting. To generate the synchronized image sequence, the 

nearest image would be searched for each ideal time stamp. For the ideal time stamp equal 

to 10 ms, since the nearest image is 3 ms far from it and 𝑡ℎ𝑠𝑦𝑛𝑐 is 2 ms, the synchronized 

image sequence would be inserted a NaN frame at 10 ms. Thus, all the images in the 

synchronized image sequence are framed with the red rectangles, and the synchronized 

image sequence can be generated. 
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4.3 3D Reconstruction from AlphaPose 

  

(a) (b) 

Figure 4.11: 2D target skeleton extraction 

(a) Multiple detected 2D skeletons by AlphaPose 

(b) Extracted 2D target skeleton 

With the camera calibration and the synchronization, the captured multi-view videos 

are ready to reconstruct the 3D motions. In this stage, AlphaPose [48: Fang et al. 2017] 

is utilized to extract the 2D keypoints from the images of every view. As mentioned in 

Section 3.1, AlphaPose is a multi-person 2D human skeleton estimator. During recording, 

there may be some pedestrians passing through the camera views and detected by 

AlphaPose as Figure 4.11(a) shows. For our algorithm, it’s designed for single-person 

skeleton estimation. Therefore, the other non-target 2D skeletons would influence our 

results. 

To eliminate those 2D skeletons and extract the target automatically, we first 

initialize the biggest 2D skeleton in the images as the target skeleton. During the motion, 

there are two conditions to determine whether the 2D skeleton is the target or not. The 

first one is that the position differences of the main body (the average position of 
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shoulders and hips) between any adjacent frames should be under a distance threshold 

(50 pixels). Secondly, the ratio of the width and height of the bounding boxes should not 

vary over a set threshold (equal to 1.6) with respect to the target skeleton in the previous 

frame. The first condition can reject the other skeletons which is far from the target. Then, 

the second condition can remove the skeletons which have different poses from the target 

at a near distance. After these two extraction conditions, the 2D target skeleton can be 

extracted as shown in Figure 4.11(b). 

  

(a) (b) 

Figure 4.12: Keypoints on a 2D skeleton 

(a) Keypoint positions on human body  

(b) Keypoint Indexes 

The extracted 2D target skeleton has 17 keypoints as shown in Figure 4.12. There 

are 5 keypoints on the head, 3 keypoints on each limb. The precise definitions for every 

keypoint are presented in Table 4.2. 
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Table 4.2 

Keypoint Definition for Microsoft COCO keypoint task from [51: Lin et al. 2015] 

Keypoint Index Point Definition in Human Body 

0 Nose 

1 Left Eye (LEye) 

2 Right Eye (REye) 

3 Left Ear (LEar) 

4 Right Ear (REar) 

5 Left Shoulder (LShoulder) 

6 Right Shoulder (RShoulder) 

7 Left Elbow (LElbow) 

8 Right Elbow (RElbow) 

9 Left Wrist (LWrist) 

10 Right Wrist (RWrist) 

11 Left Hip (LHip) 

12 Right Hip (RHip) 

13 Left Knee (LKnee) 

14 Right Knee (RKnee) 

15 Left Ankle (LAnkle) 

16 Right Ankle (RAnkle) 

 

After the 2D target skeleton extraction, the next step is to reconstruct the 3D skeleton. 

As shown in Figure 4.13, the 3D reconstruction process contains three modules: 

triangulation, reprojection, and calculating reprojection error.  
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Figure 4.13: Flowchart of 3D Reconstruction from multi-view data 
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To build the 3D points from 2D points in different views, the epipolar geometry 

mentioned in Section 3.2 is applied in triangulation. With the camera parameters 

calibrated in Section 4.2.1 and the 2D skeletons detected by AlphaPose for each view, the 

epipolar geometry can reconstruct the 3D keypoints in skeletons by selecting any two 

unrepeated cameras    and  𝑗. However, if the number of cameras is greater than two, 

there will be more than one reconstructed 3D skeleton. To determine which reconstructed 

3D point is optimum for each keypoint, all the 3D skeletons are re-projected to every 

view    and compared with the 2D skeleton generated in that view. For every 3D point 

in every 3D skeleton, their reprojection errors calculated by the 2-norm distance with the 

corresponding keypoints in 2D skeletons are accumulated for every camera view. After 

the traversal, the 3D keypoints whose accumulated reprojection errors are the lowest 

would be selected to build the optimal 3D skeleton. The overall algorithm is written in 

Algorithm 4.1.  
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Algorithm 4.1: 3D raw skeleton reconstruction 

Input: all 2D keypoint positions of the target human skeleton in   camera views 𝑃2   , camera 

parameters for each camera 𝑀  

Output: a 3D raw skeleton of the target human 𝑃3  

1: K ← the number of keypoints for a skeleton 

2: 𝑃3 ← 𝜙  

3: for 𝑘 ←  1 to 𝐾 do 

4:      𝑒𝑠𝑢𝑚 𝑚 𝑛 ← ∞ 

5:      for  𝑖 ←  1 to  − 1 do 

6:          for 𝑗 ←  𝑖 + 1 to    do 

7:              𝑃3      𝑗  ← 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑃2      𝑃2    𝑗  𝑀  𝑀𝑗) 

8:              𝑒𝑠𝑢𝑚 ← 0 

9:              for 𝑙 ←  1 to   do 

10:                  𝑃̂2     ← 𝑝𝑟𝑜𝑗𝑒𝑐𝑡(𝑃3      𝑗 𝑀 ) 

11:                  𝑒𝑠𝑢𝑚 ← 𝑒𝑠𝑢𝑚 + ‖𝑃̂2     − 𝑃2     ‖2 

12:              end for 

13:              if 𝑒𝑠𝑢𝑚 < 𝑒𝑠𝑢𝑚 𝑚 𝑛 do 

14:                  𝑒𝑠𝑢𝑚 𝑚 𝑛 ← 𝑒𝑠𝑢𝑚 

15:                  𝑃3   ← 𝑃3      𝑗 

16:              end if 

17:          end for 

18:      end for 

19:      𝑃3 ← 𝑃3 ∪ 𝑃3    

20: end for 

21: return 𝑃3  

Although the outputted 3D skeleton is optimal among all triangulated skeletons, 

there are several shortcomings needed to improve in the reconstructed skeletons. To 

emphasize the data roughness, we will call the reconstructed 3D skeleton as RawSK (raw 

skeleton).  

 The first detection of the RawSKs is that it includes lots of missing data and 

abnormal keypoint positions (outliers) as Figure 4.14 shown. 
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(a) (b) 

Figure 4.14: Missing data and outlier issues of RawSKs 

(a) Missing data in the RawSK for B21_406 at frame 633 

(b) Outlier data in the RawSK for B20_354 at frame 276 

The missing data and outlier issues cause by the occlusion, frame-dropping, and 

some imperfect training results of AlphaPose. These problems are common in the 

RawSKs directly reconstructed from multi-view AlphaPose results. 

 

Figure 4.15: The trajectory of right wrist in RawSK of the example 

Besides, since the RawSKs are reconstructed frame by frame, the reconstructed 

positions are independent of the results in other frames. This reason makes the RawSKs 

Missing RWrist

Abnormal detection 
for Left Leg
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perform shakily, as shown in Figure 4.15, and usually have bad estimations for the 

derivative metrics such as velocity and acceleration. 

In addition, the RawSKs are directly reconstructed from the 2D skeletons. Therefore, 

some 3D geometry constraints for human skeletons are not concerned. For example, the 

length between the right elbow to the right wrist would be constant. However, as the 3D 

position for each keypoint is reconstructed on its own, the bone length constraints are not 

considered. The distance between the right elbow to the right wrist is varying in the 

motion sequence as shown in Figure 4.16. 

 

Figure 4.16: The distance between RElbow and RWrist of RawSK in B20_354 

With these problems, it’s hard to regard the RawSKs as stable and robust motion 

estimation results. To overcome them, a method modifying the performance of RawSKs 

with only single-track information is proposed in Chapter 5. 
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Chapter 5  

Single-Track 3D Human Motion 

Modification 

After showing how to reconstruct the 3D raw human pose and the robustness issue 

for RawSKs in Chapter 4, this chapter would show how to estimate a stable and robust 

3D human motion with the proposed method. In Section 5.1, the joint space model for 

human motion would be described. Secondly, the proposed approach to estimate the body 

parameters for the joint-space human motion model would be introduced in Section 5.2. 

Thereafter, a modified UKF to increase the robustness with outlier component rejection 

and the initialization method would be presented in Section 5.3 and Section 5.4. Finally, 

an iterative LQR tracking method would be shown to solve the joint coordination problem 

in Section 5.5.  
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5.1 Kinematic model of Human Skeleton 

Referring to the Microsoft COCO keypoint task [51: Lin et al. 2015], the task 

AlphaPose training for, the keypoint definition is shown in Figure 5.1 (a) and Table 4.2. 

For a human skeleton, there are 17 keypoints distributd in the whole body, 5 keypoints in 

the head and 3 keypoints in each limb. If we estimate these 17 keypoints in 3D space, 

there would be high to 51 degrees of freedom (DOF) needed to be estimated. But, since 

all the keypoints come from the same human, the motion of every keypoint shouldn’t be 

independent. Considering human motions, we proposed the human motion model in joint 

space modified from [55: Ude et al. 2004] in Figure 5.1 (b). 

There are 22 DOFs to describe the relative motions of the keypoints in a human 

skeleton. Since the end keypoints of limbs are the wrists and ankles, the 3 DOFs near the 

end of each limb are ignored because they only affect the points on the hands and feet. 

Consequentially, the number of DOFs in every limb becomes four from seven for the 

keypoint definition from Microsoft COCO task. For the spine rotations, it’s composed of 

many small relative motions between the vertebrae. To simplify the kinematic model, we 

divide the overall spine motion into two groups: neck rotation and spine rotation. In each 

rotation, there are 3 DOFs including the three-rotating axis in different directions to 

perform the full rotating DOFs in 3D space. 
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(a) (b) 

Figure 5.1: Comparison of the representation between Cartesian Space and Joint Space 

(a) Keypoint Definition in Cartesian Space (b) The Joint Definition for Human Motion 

The kinematic model in Figure 5.1 (b) only shows how to describe the relative 

motions of each keypoints in a human skeleton. However, in Figure 5.1 (a) and our task, 

the absolute positions of keypoints in the world coordinate is the eventual goal we should 

estimate. To transform the relative keypoint motions in a human body into the world 

coordinate, the 6-DOF transformation between the head and world coordinate should also 

be estimated. 

To simply define the head coordinate {ℎ𝑒𝑎𝑑}, we set the nose position 𝒑  as the 

origin in {ℎ𝑒𝑎𝑑}. The vector from REar 𝒑4  to LEar 𝒑3  is parallel to the y-axis of 

{ℎ𝑒𝑎𝑑}. The points of the nose and the ears should on the XY-plane of {ℎ𝑒𝑎𝑑}. The 
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illustration is shown in Figure 5.2. Therefore, the states to describe the transformation 

between the head and world coordinate can be regarded as the position of the nose 𝒑  

and the roll 𝛼, pitch 𝛽, yaw 𝛾 angles between the head and the world coordinate.   

  

(a) (b) 

Figure 5.2: Head coordinate definition 

(a) Side view (b) Top view 

Adding the DOFs in the human kinematic model and the head-world transformation, 

we can reduce the number of the estimated DOFs from 51 to 28, which can dramatically 

decrease the difficulty of 3D human motion estimation. 

After knowing how many DOFs we should estimate, how exactly the keypoint 

positions are described with the joint states (22 joint angles + 6 head-world transformation 

stats) is the next step we concern. To recover the 3D keypoint positions of a human 

skeleton from the joint space, a forward kinematic function ℎ(𝒙𝑝𝑜𝑠) is developed in 

Equation (5.3)-(5.25), where 𝒙𝑝𝑜𝑠  is the state in joint space containing 26 elements 

shown in Equation (5.1). 
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𝒙𝑝𝑜𝑠 = [𝜣𝑇 𝑻𝑇]𝑇 (5.1) 

{
𝜣 = [𝜃1 𝜃2 ⋯ 𝜃22]

𝑇

𝑻 = [𝑝  𝑥 𝑝  𝑦 𝑝  𝑧 𝛼 𝛽 𝛾]𝑇
 (5.2) 

Besides the joint state 𝒙𝑝𝑜𝑠, the body parameters shown in Figure 5.3 and Table 5.1 

should also be known before calculating the forward kinematic function ℎ(𝒙𝑝𝑜𝑠). 

   

(a) (b) (c) 

Figure 5.3: Body Parameters defined for Human Skeleton Kinematic Model 

(a) Limb parameters 

(b) Spine parameters 

(c) Head parameters (the keypoint positions in {ℎ𝑒𝑎𝑑}) 
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Table 5.1 

The definition of the body parameters in a human skeleton 

Symbol Definition 

SW Shoulder Width (∈ ℝ) 

HW Hip Width (∈ ℝ) 

LUA Length of Left Upper Arm (∈ ℝ) 

LLA Length of Left Forearm (∈ ℝ) 

RUA Length of Right Upper Arm (∈ ℝ) 

RLA Length of Right Forearm (∈ ℝ) 

LUL Length of Left Thigh (∈ ℝ) 

LLL Length of Left Calf (∈ ℝ) 

RUL Length of Right Thigh (∈ ℝ) 

RLL Length of Right Calf (∈ ℝ) 

𝒑𝑛 𝑐 
     

Position of Neck rotation center  

in {ℎ𝑒𝑎𝑑} (∈ ℝ3) 

𝒑𝑛 𝑐 
𝑠  

Position of Neck rotation center  

in {𝑠ℎ} (∈ ℝ3) 

𝒑𝑠𝑝 𝑛 
𝑠  

Position of Spine rotation center  

in {𝑠ℎ} (∈ ℝ3) 

𝒑𝑠𝑝 𝑛 
  𝑝

 
Position of Spine rotation center  

in {ℎ𝑖𝑝} (∈ ℝ3) 

𝒑 
     

Position of Nose  

in {ℎ𝑒𝑎𝑑} (∈ ℝ3) 

𝒑1
     

Position of LEye  

in {ℎ𝑒𝑎𝑑} (∈ ℝ3) 

𝒑2
     

Position of REye  

in {ℎ𝑒𝑎𝑑} (∈ ℝ3) 

𝒑3
     

Position of LEar  

in {ℎ𝑒𝑎𝑑} (∈ ℝ3) 

𝒑4
     

Position of REar  

in {ℎ𝑒𝑎𝑑} (∈ ℝ3) 
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(a) (b) 

Figure 5.4: The coordinates defined in the human skeleton 

(a) Front view (b) Left side view  

For the head keypoints (𝒑  to 𝒑4), to transform them from {ℎ𝑒𝑎𝑑} into world 

coordinate {𝑤𝑜𝑟𝑙𝑑}, the only thing we need is the transformation matrix 𝑻    
𝑤𝑜𝑟  , and it 

can be calculated with Equation (5.1): 

     
𝑤𝑜𝑟  =  𝑧(𝛾) ∙  𝑦(𝛽) ∙  𝑥(𝛼) (5.3) 

     
𝑤𝑜𝑟  = [𝑝  𝑥 𝑝  𝑦 𝑝  𝑧]𝑇 (5.4) 

𝑻    
𝑤𝑜𝑟  = [

     
𝑤𝑜𝑟       

𝑤𝑜𝑟  

𝟎1×3 1
] (5.5) 

The rotation matrices  𝑥  𝑦  𝑧 follow the definition in Section 3.7. 
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With the transformation matrix 𝑇    
𝑤𝑜𝑟   and the positions of head keypoints the neck 

rotation center defined in {ℎ𝑒𝑎𝑑}, their 3D positions in {𝑤𝑜𝑟𝑙𝑑} can be calculated as: 

[ 𝒑 
𝑤𝑜𝑟  

1
] = 𝑻    

𝑤𝑜𝑟  [ 𝒑 
    

1
]  ∀𝑖 = 0 . . .  4 (5.6) 

[ 𝒑𝑛 𝑐 
𝑤𝑜𝑟  

1
] = 𝑻    

𝑤𝑜𝑟  [ 𝒑𝑛 𝑐 
    

1
] (5.7) 

For the keypoints in the shoulder coordinate {𝑠ℎ} (𝒑  and 𝒑 ), we can calculate 

the transformation matrix 𝑻𝑠 
    : 

 𝑠 
    =  𝑧(𝜃3) 𝑦(𝜃2) 𝑥(𝜃1) (5.8) 

 𝑠 
    = 𝒑𝑛 𝑐 

    −  𝑠 
    𝒑𝑛 𝑐 

𝑠  (5.9) 

𝑻𝑠 
    = [

 𝑠 
     𝑠 

    

𝟎1×3 1
] (5.10) 

Then, the positions of 𝒑  and 𝒑  in {𝑤𝑜𝑟𝑙𝑑} are calculated with the keypoint 

positions defined in {𝑠ℎ}: 

[ 𝒑 
𝑤𝑜𝑟  

1
] = 𝑻    

𝑤𝑜𝑟  ∙ 𝑻𝑠 
    [ 𝒑 

𝑠 

1
]  ∀𝑖 = 5 6 

where {
𝒑 

𝑠 = [0 𝑆 /2 0]𝑇

𝒑 
𝑠 = [0 −𝑆 /2 0]𝑇

 

(5.11) 

For the elbow and wrist keypoints, their positions in {𝑠ℎ} can be calculated as: 

𝑝 
𝑠 =  𝑦(𝜃 )  𝑥(𝜃4) [

0
0

−𝐿𝑈𝐴
] + 𝒑 

𝑠  (5.12) 

𝒑 
𝑠 =  𝑦(𝜃 )  𝑥(𝜃 ) [

0
0

−𝑅𝑈𝐴
] + 𝒑 

𝑠  (5.13) 

𝒑 
𝑠 =  𝑦(𝜃 )  𝑥(𝜃4) ([

0
0

−𝐿𝑈𝐴
] +  𝑧(𝜃 )  𝑦(𝜃 ) [

0
0

−𝐿𝐿𝐴
]) + 𝒑 

𝑠  (5.14) 
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𝒑1 
𝑠 =  𝑦(𝜃 )  𝑥(𝜃 ) ([

0
0

−𝑅𝑈𝐴
] +  𝑧(𝜃1 )  𝑦(𝜃11) [

0
0

−𝑅𝐿𝐴
]) + 𝒑 

𝑠  (5.15) 

To transform the elbow and wrist keypoints into {𝑤𝑜𝑟𝑙𝑑}, they can be calculated as: 

[ 𝒑 
𝑤𝑜𝑟  

1
] = 𝑻    

𝑤𝑜𝑟  ∙ 𝑻𝑠 
    [ 𝒑 

𝑠 

1
]  ∀𝑖 = 7 . . .  10 (5.16) 

For the keypoints in the hip coordinate {ℎ𝑖𝑝} (𝒑11 and 𝒑12), we can calculate the 

transformation matrix 𝑻  𝑝
𝑠 : 

   𝑝
𝑠 =  𝑧(𝜃14) 𝑦(𝜃13) 𝑥(𝜃12) (5.17) 

   𝑝
𝑠 = 𝒑𝑠𝑝 𝑛 

𝑠 −    𝑝
𝑠 𝒑𝑠𝑝 𝑛 

  𝑝
 (5.18) 

𝑻  𝑝
𝑠 = [

   𝑝
𝑠    𝑝

𝑠 

𝟎1×3 1
] (5.19) 

Then, the positions of 𝒑11 and 𝒑12 in {𝑤𝑜𝑟𝑙𝑑} are calculated with the keypoint 

positions defined in {ℎ𝑖𝑝}: 

[ 𝒑 
𝑤𝑜𝑟  

1
] = 𝑻    

𝑤𝑜𝑟  ∙ 𝑻𝑠 
    ∙ 𝑻  𝑝

𝑠 [ 𝒑 
  𝑝

1
]  ∀𝑖 = 11 12 

𝑤ℎ𝑒𝑟𝑒 {
𝒑11

  𝑝 = [0 𝐻 /2 0]𝑇

𝒑12
  𝑝 = [0 −𝐻 /2 0]𝑇

 

(5.20) 

For the knee and ankle keypoints, their positions in {ℎ𝑖𝑝} can be calculated as: 

𝒑13
  𝑝 =  𝑦(𝜃1 )  𝑥(𝜃1 ) [

0
0

−𝐿𝑈𝐿
] + 𝒑11

  𝑝
 (5.21) 

𝒑14
  𝑝 =  𝑦(𝜃2 )  𝑥(𝜃1 ) [

0
0

−𝑅𝑈𝐿
] + 𝒑12

  𝑝
 (5.22) 

𝒑1 
  𝑝 =  𝑦(𝜃1 )  𝑥(𝜃1 ) ([

0
0

−𝐿𝑈𝐿
] +   𝑧(𝜃1 ) 𝑦(𝜃1 ) [

0
0

−𝐿𝐿𝐿
])

+ 𝒑11
  𝑝  

(5.23) 
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𝒑1 
  𝑝 =  𝑦(𝜃2 )  𝑥(𝜃1 ) ([

0
0

−𝑅𝑈𝐿
] +  𝑧(𝜃21) 𝑦(𝜃22) [

0
0

−𝑅𝐿𝐿
])

+ 𝒑12
  𝑝  

(5.24) 

To transform the knee and ankle keypoints into {𝑤𝑜𝑟𝑙𝑑}, they can be calculated as: 

[ 𝒑 
𝑤𝑜𝑟  

1
] = 𝑻    

𝑤𝑜𝑟  ∙ 𝑻𝑠 
    [ 𝒑 

𝑠 

1
]  ∀𝑖 = 13 . . .  16 (5.25) 

By the combination of Equation (5.3)-(5.25), the forward kinematic function 

ℎ(𝒙𝑝𝑜𝑠) can be formed as: 

[
 
 
 
 

𝒑 
𝑤𝑜𝑟  

𝒑1
𝑤𝑜𝑟  

⋮
𝒑1 

𝑤𝑜𝑟  ]
 
 
 
 

= ℎ(𝒙𝑝𝑜𝑠) ∈ ℝ
 1 (5.26) 
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5.2 Body parameter estimation 

As defined in Table 5.1, there are 19 body parameters needed to be estimated for a 

human skeleton. As shown in Figure 5.5, the body parameters can be divided into three 

groups: 1) limb parameters, 2) spine parameters and 3) head parameters. For each group, 

the estimation methods for the body parameters from the RawSKs are also different. 

   

(a) (b) (c) 

Figure 5.5: Body Parameters defined for Human Skeleton Kinematic Model with 

keypoints positions 

(d) Limb parameters 

(e) Spine parameters 

(f) Head parameters (the keypoint positions in {ℎ𝑒𝑎𝑑}) 

5.2.1 Limb parameter estimation 

For limb parameters, they have some common features. First, they are scalar length. 

Second, both endpoints of limb parameters are the keypoints that can be detected in 

RawSKs. Because of these two properties, the limb parameters can be estimated easily 

by calculating the distances between the corresponding keypoints in the RawSKs. 
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However, as shown in Chapter 4, the keypoint positions of RawSKs are noisy and 

contains lots of outliers. To simply reduce the influence, we would calculate the means 

and standard deviations for the keypoint distances first. Then, with the statistical values, 

the outliers can be removed by keeping the distances whose values are nearby the means 

in twice the standard deviations. After keeping the inliers, the limb parameters are 

estimated by taking the average of the inlier distance. The whole processes are illustrated 

in Figure 5.6. 

 

Figure 5.6: The processes for limb parameter estimation 

 

5.2.2 Head parameter estimation 

Before the spine parameters, the estimation method for head parameters should be 

introduced first. The head parameters, in fact, are the head keypoint positions in {ℎ𝑒𝑎𝑑}. 

The points on a human’s head can be regarded as the points in a rigid body. Their motions 

should obey the rigid body motion ideally. Therefore, the head parameters are supposed 

Calculate the 2-norm of a 
vector between 2 points

Remove outliers 
[mean – 2*std < inliers < mean + 2*std]

RUA: 0.2936 m

Calculate new mean

( 𝒑 − 𝒑 )
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to be constants. To find these constants, the rigid body transformation 𝑻    
𝑤𝑜𝑟   from head 

coordinate {ℎ𝑒𝑎𝑑} to world coordinate {𝑤𝑜𝑟𝑙𝑑} should be estimated first. 

As the definition of {ℎ𝑒𝑎𝑑} in Figure 5.2, we can use Gram-Schmidt process to 

extract the x-axis unit vector and the y-axis unit vector of {ℎ𝑒𝑎𝑑} in {𝑤𝑜𝑟𝑙𝑑} Then, the 

z-axis unit vector of {ℎ𝑒𝑎𝑑} can be calculated with the cross product for the x-axis unit 

vector and y-axis unit vector of {ℎ𝑒𝑎𝑑}. Finally, with the position vector 𝒑  as the 

translation vector, the 𝑻    
𝑤𝑜𝑟   can be estimated in Algorithm 5.1. 

Algorithm 5.1: 𝑻ℎ𝑒𝑎𝑑
𝑤𝑜𝑟𝑙𝑑  estimation 

Input: The positions of head keypoints 𝒑
0
 𝒑

1
 𝒑

2
 𝒑

3
 𝒑

4
∈ ℝ3 in {𝑤𝑜𝑟𝑙𝑑} 

Output: The transformation matrix 𝑻ℎ𝑒𝑎𝑑
𝑤𝑜𝑟𝑙𝑑  

1:  1 ← 𝒑3 − 𝒑4  

2:  2 ← 𝒑 − (𝒑3 + 𝒑4)/2  

3: 𝒚⃑⃑     ←  1 ‖ 1‖⁄   

4:  3 ←  2 − ( 2
𝑇 𝒚⃑⃑     ) ∙ 𝒚⃑⃑       

5: 𝒙⃑⃑     ←  3 ‖ 3‖⁄   

6: 𝒛⃑     ← 𝒙⃑⃑     × 𝒚⃑⃑       

7:  ℎ𝑒𝑎𝑑
𝑤𝑜𝑟𝑙𝑑 ← [𝒙⃑ ℎ𝑒𝑎𝑑 𝒚⃑ 

ℎ𝑒𝑎𝑑
𝒛 ℎ𝑒𝑎𝑑]  

8:  ℎ𝑒𝑎𝑑
𝑤𝑜𝑟𝑙𝑑 ← 𝒑

0
  

9: 𝑻ℎ𝑒𝑎𝑑
𝑤𝑜𝑟𝑙𝑑 ← [

 ℎ𝑒𝑎𝑑
𝑤𝑜𝑟𝑙𝑑  ℎ𝑒𝑎𝑑

𝑤𝑜𝑟𝑙𝑑

𝟎1×3 1
]  

10: return 𝑻ℎ𝑒𝑎𝑑
𝑤𝑜𝑟𝑙𝑑  

The transformation matrix 𝑻    
𝑤𝑜𝑟   can be estimated for every frame in RawSKs 

once the keypoints 𝒑  𝒑3 𝒑4 are not missed. With 𝑻    
𝑤𝑜𝑟   for every frame, the head 

keypoints 𝒑  to 𝒑4 in {ℎ𝑒𝑎𝑑} can be calculated by pre-multiplying 𝑻    
𝑤𝑜𝑟  −1. 

To estimate the head parameters, we have the head keypoint positions in {ℎ𝑒𝑎𝑑} 

for every frame in the RawSK. With the implementation of rigid body assumption, the 



doi:10.6342/NTU202202468

73 

vectors between any two keypoints should remain the same in every frame. By 

minimizing the sum of the squared 2-norm of the vector difference between the optimal 

keypoint vector 𝒑̂ − 𝒑̂𝑗 and the keypoint vector 𝒑  𝑡
    − 𝒑𝑗 𝑡

     in every frame 𝑡, 

the optimization problem for head parameter estimation is formed in Equation (5.27): 

𝑚𝑖𝑛
𝒑̂𝟏 𝒑̂𝟐 𝒑̂𝟑 𝒑̂𝟒

∑∑ ∑ (‖( 𝒑  𝑡
    − 𝒑𝑗 𝑡

    ) − (𝒑̂ − 𝒑̂𝑗)‖2)
2

4

𝑗= +1

3

 = 

𝑁−1

𝑡= 

 (5.27) 

With the proof shown in Appendix A, the optimal solution for Equation (5.27) is: 

𝒑̂ = 𝒑̂𝟎 +
1

𝑁
∑ 𝒑  𝑡

    − 𝒑  𝑡
    

𝑁−1

𝑡= 

 ∀𝑖 = 1 . . .  4 (5.28) 

Since 𝒑̂𝟎 is set as [0 0 0]𝑇 in {ℎ𝑒𝑎𝑑}, the head parameters can be estimated 

as: 

𝒑 
    = 𝒑̂ =

1

𝑁
∑ 𝒑  𝑡

    − 𝒑𝟎 𝑡
    

𝑁−1

𝑡= 

 ∀𝑖 = 1 . . .  4 (5.29) 

 

 

Figure 5.7: The head keypoints in {ℎ𝑒𝑎𝑑}  for RawSK and the estimated head 

parameters 

 

Frame: 0 Frame: 563

… …

Frame: 653

…

Head parameters
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5.2.3 Spine parameter estimation 

For each spine parameter, one of its endpoints is not included in the RawSKs. 

Therefore, the direct estimation method for the limb parameter doesn’t suit the spine 

parameter. By the observation of the kinematic model, we can find that both the neck 

rotation joint and spine rotation joint are spherical joints. Thus, while observing in a 

coordinate fixed in one link of the spherical joint, the motion of the other endpoint should 

be on a spherical surface. The center of the spherical surface is the position of the 

spherical joint, and its radius shows the length of the second link, illustrated in Figure 5.8. 

 

 

Figure 5.8: The schematic diagram of the motion of the end point while the other end 

point is fixed for spherical joint 

For the neck spherical joint, we can fix our observation in {ℎ𝑒𝑎𝑑} by transforming 

the keypoints in {𝑤𝑜𝑟𝑙𝑑}  with 𝑻    
𝑤𝑜𝑟  −1  estimated in Section 5.2.2. To estimate 

𝒑𝑛 𝑐 
     and 𝒑𝑛 𝑐 

𝑠 , the middle point of shoulders (𝒑  and 𝒑 ) is chosen as the 

Workspace 

Sampled position 
of end point 

Fixed one end of 
spherical joint

Observing in {Green}
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observed point, denoted as 𝒑𝑠 𝑀  
     in {ℎ𝑒𝑎𝑑}. The positions of 𝒑𝑠 𝑀  

     at 

different time are shown in Figure 5.9.  

  

(a) (b) 

Figure 5.9: The schematic and scatter diagram of 𝒑𝑠 𝑀  
     

(a) the sphere fitting to estimate 𝒑𝑛 𝑐 
     and 𝒑𝑛 𝑐 

𝑠  

(b) the scatter diagram of 𝒑𝑠 𝑀  
     

With the positions of the shoulder middle point at different time, we can use sphere 

fitting in Section 3.3 to find the rotation center of neck in {ℎ𝑒𝑎𝑑}, i.e. 𝒑𝑛 𝑐 
    .  

𝒄𝑛 𝑐  𝑟𝑛 𝑐 ← 𝑆𝑝ℎ𝑒𝑟𝑒𝐹𝑖𝑡𝑡𝑖𝑛𝑔( 𝒑𝑠 𝑀   𝑡
    ) (5.30) 

𝒑𝑛 𝑐 
    = 𝒄𝑛 𝑐  (5.31) 

Besides, the estimated radius of the sphere also represents the distance between the 

shoulder middle point and the neck rotation center. By defining the z-axis of {𝑠ℎ} 

parallel to the vector from the shoulder middle point to the neck rotation center, 𝒑𝑛 𝑐 
𝑠  

can be estimated as: 

𝒑𝑛 𝑐 
𝑠 = [

𝟎
𝟎
𝑟𝑛 𝑐 

] (5.32) 

𝒑 
    

𝒑𝑛𝑒𝑐𝑘
ℎ𝑒𝑎𝑑

{ℎ𝑒𝑎𝑑}

x

y

z

𝒑𝑠ℎ𝑀𝑖𝑑
ℎ𝑒𝑎𝑑
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Similar to the neck rotation center, the spine parameters 𝒑𝑠𝑝 𝑛 
𝑠  and 𝒑𝑠𝑝 𝑛 

  𝑝
 

can also be estimated with the sphere fitting of the middle point of hips (𝒑11 and 𝒑12) in 

{𝑠ℎ}. 

𝒄𝑠𝑝 𝑛  𝑟𝑠𝑝 𝑛 ← 𝑆𝑝ℎ𝑒𝑟𝑒𝐹𝑖𝑡𝑡𝑖𝑛𝑔( 𝒑  𝑝𝑀   𝑡
𝑠 ) (5.33) 

𝒑𝑠𝑝 𝑛 
𝑠 = 𝒄𝑠𝑝 𝑛  (5.34) 

In addition, we set the z-axis of {𝑠ℎ} parallel to the vector from shoulder middle 

point the neck rotation center. Therefore, 𝒑𝑠𝑝 𝑛 
  𝑝

 can be estimated as: 

𝒑𝑠𝑝 𝑛 
  𝑝 = [

𝟎
𝟎

𝑟𝑠𝑝 𝑛 
] (5.35) 

The example of spine parameters near spine rotation center is shown in Figure 5.10. 

  

(a) (b) 

Figure 5.10: The schematic and scatter diagram of 𝒑  𝑝𝑀  
𝑠  

(a) the sphere fitting to estimate 𝒑𝑠𝑝 𝑛 
𝑠  and 𝒑𝑠𝑝 𝑛 

  𝑝
 

(b) the scatter diagram of 𝒑  𝑝𝑀  
𝑠  

 

  

𝒑𝑛 𝑐 
𝑠 

{𝑠ℎ}

𝒑𝑠𝑝 𝑛 
𝑠 
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𝒑  𝑝𝑀  
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5.3 Modified UKF with Outlier Component 

Rejection and State Constraints 

5.3.1 UKF implementation for human motion estimation 

With the skeleton kinematic model and the body parameter estimation, the 3D 

human motion estimation problem becomes a joint stat estimation problem. In control 

theory, the observers are common and useful tools for state estimation. Kalman filter is 

one of the most famous observers by minimizing the estimated state covariance. However, 

since the human skeleton is a highly nonlinear system, a variation of Kalman filter, 

unscented Kalman filter (UKF), is more suitable for our problem. 

Referring to Section 3.4, the UKF can be formulated as: 

{
𝒙𝑡 = 𝑓(𝒙𝑡−1  𝑡) + 𝒘𝑡
𝒛𝑡 = ℎ(𝒙𝑡) +  𝑡

 (5.36) 

{
𝒘𝑡~𝒩(𝟎 𝑸𝑈𝐾𝐹)

 𝑡~𝒩(𝟎  𝑈𝐾𝐹)
 (5.37) 

The state transition function 𝑓(∙) is set as the constant velocity model, i.e.: 

𝑓(𝒙𝑡−1  𝑡) = 𝑨𝑈𝐾𝐹𝒙𝑡−1 + 𝑩𝑈𝐾𝐹 𝑡 (5.38) 

The 𝑨𝑈𝐾𝐹 and 𝑩𝑈𝐾𝐹 are: 

𝑨𝑈𝐾𝐹 = [

𝑰22 𝑰22 𝟎22× 𝟎22× 
𝟎22×22 𝑰22 𝟎22× 𝟎22× 
𝟎 ×22 𝟎 ×22 𝑰 𝑰 
𝟎 ×22 𝟎 ×22 𝟎 × 𝑰 

] ∈ ℝ  ×   (5.39) 

𝑩𝑈𝐾𝐹 = [

𝟎22×22 𝟎22× 
𝑰22 𝟎22× 
𝟎 ×22 𝟎 × 
𝟎 ×22 𝑰 

] ∈ ℝ  ×2  (5.40) 
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The estimated state 𝒙𝑡 and the input  𝑡 are: 

𝒙𝑡 = [𝜣𝑡
𝑇 𝜣∆ 𝑡

𝑇 𝑻𝑡
𝑇 𝑻∆ 𝑡

𝑇 ]
𝑇
∈ ℝ𝑛 𝑛 = 56 (5.41) 

 𝑡 = [𝜣∆2 𝑡
𝑇 𝑻∆2 𝑡

𝑇 ]
𝑇
∈ ℝ𝑛/2 (5.42) 

Not only the position state 𝜣𝑡 and 𝑻𝑡 , but the discrete velocity terms 𝜣∆ 𝑡 and 

𝑻∆ 𝑡 are also included in the state 𝒙𝑡. Correspondingly, the input  𝑡 for the constant 

velocity model is the discrete acceleration 𝜣∆2 𝑡  and 𝑻∆2 𝑡 . However, as there is no 

acceleration measurement in our multi-view motion capture system, the state transition 

function 𝑓(∙) for our estimation becomes: 

𝑓(𝒙𝑡−1) = 𝑨𝑈𝐾𝐹𝒙𝑡−1 (5.43) 

For the observation function ℎ(𝒙𝑡) , it has the same output with the forward 

kinematic function in Equation (5.26) , while the input is 𝒙𝑡 rather than 𝒙𝑝𝑜𝑠. 

𝒛𝑡 =

[
 
 
 
 

𝒑 
𝑤𝑜𝑟  

𝒑1
𝑤𝑜𝑟  

⋮
𝒑1 

𝑤𝑜𝑟  ]
 
 
 
 

= ℎ(𝒙𝑡) ∈ ℝ
𝑚 𝑚 = 51 (5.44) 

And the observation 𝒛𝑡 ∈ ℝ
 1 is the 3D positions of every keypoint. 

With the equations above, we can implement the UKF for our joint state estimation 

with some parameters set by hand. These parameters are: initial state covariance 𝑷 , 

processing noise covariance 𝑸𝑈𝐾𝐹, and measurement noise covariance  𝑈𝐾𝐹. Besides, 

the initial state 𝒙̂  is also a parameter we should estimate before running the UKF, which 

would be introduced in Section 5.4. 
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With the proper setting of these parameters and set the component of the innovation 

vector as zero vector for the missed data, the estimation performs well when the 

observation from RawSKs is stable as Figure 5.11 shows. 

 

(a) 

 

(b) 

Figure 5.11: The estimation result with UKF in frame 150-220 for B20_354 

(a) the RawSK in frame 150-220 for B20_354 

(b) the UKF filtered in frame 150-220 for B20_354 
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5.3.2 Outlier Component Rejecting UKF (OCR-UKF) 

However, when there are few observation outliers with dramatic errors in the 

RawSKs, the performance would be influenced by the outlier significantly. As shown in 

Figure 5.12, the outliers occur on the left leg during the lifting process. Despite the fact 

that the outliers only happen in few separate frames, the filtered result will be affected 

over a long interval. 

 

(a) 

 

(b) 

Figure 5.12: The effect of outliers in RawSK to the UKF filtered result 

(a) the RawSK in frame 272-279 for B20_354 

(b) the UKF filtered in frame 272-279 for B20_354 

To avoid this issue, an outlier rejection mechanism is necessary. So far, there are 

several outlier rejection methods designed for Kalman filter, such as [56: Agamennoni et 

al. 2011], [57: Ting et al. 2007] and [58: Mu & Yuen 2015]. However, for these methods, 

the minimum detection size of the outlier detection is a frame, which means that they 

would regard the whole skeleton in the frame as an outlier when there is only one large 

error keypoint. For our problem in practice, the number of the outlier keypoints is few, 
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usually about 0 to 2. If the outlier rejection for a whole frame is adopted, lots of 

information that comes from the other inlier keypoints will be wasted. 

To utilize all the inlier keypoints in every frame, we proposed the outlier-

component-rejecting UKF (OCR-UKF) to filter out the outliers with the keypoint as the 

unit. The idea comes from the simple linear regression mentioned in Section 3.5.  

For every frame before the measurement update, the UKF would predict the one-

step advanced observation covariance 𝑷𝒛̂ 𝑡|𝑡−1  as Equation (3.26). In 𝑷𝒛̂ 𝑡|𝑡−1 , it 

contains the all predicted observation covariance for each component in innovation vector 

𝜺𝑡 = 𝒛𝑡 − 𝒛̂𝑡|𝑡−1 ∈ ℝ
𝑚 as: 

𝑷𝒛̂ 𝑡|𝑡−1 =

[
 
 
 
 
𝑝1 1 ⋯ 𝑝1  
⋮ ⋱ ⋮
𝑝  1 ⋯ 𝑝   

⋯ 𝑝1 𝑚
⋱ ⋮
⋯ 𝑝  𝑚

⋮ ⋱ ⋮
𝑝𝑚 1 ⋯ 𝑝𝑚  

⋱ ⋮
⋯ 𝑝𝑚 𝑚]

 
 
 
 

 𝜺𝑡 =

[
 
 
 
 
𝜀1
⋮
𝜀 
⋮
𝜀𝑚]
 
 
 
 

 (5.45) 

With the simple linear regression, every innovation component 𝜀  can be estimated 

with any innovation component 𝜀  as: 

𝜀 ̂ = 𝛼̂ . + 𝛽̂ . 𝜀  (5.46) 

We assume that the probability of innovation vectors is unbiased. Thus, 𝛼̂ . = 𝜇𝜀𝑙 −

𝛽̂ . 𝜇𝜀𝑖 = 0 with 𝜇𝜀𝑖 = 𝜇𝜀𝑙 = 0. 
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By taking the weighted average of the estimation from all components 𝜀 , we can 

estimate the component of the innovation vector 𝜀 ̂ as: 

𝜀 ̂ =
1

∑ 𝜌   2
𝑚
 =1

∑𝜌   
2𝛽̂ . 𝜀 

𝑚

 =1

 

=
1

∑ 𝜌   2
𝑚
 =1

∑𝜌   
2
𝑝   
𝑝   
𝜀 

𝑚

 =1

 

while 𝜌   
2 =

𝑝𝑙 𝑖
2

𝑝𝑖 𝑖𝑝𝑙 𝑙
 is the weight         

(5.47) 

Following the assumption from Kalman filter that the predicted observation 

distributions are gaussian with mean 𝒛̂𝑡|𝑡−1 and covariance 𝑷𝒛̂ 𝑡|𝑡−1, every innovation 

vector 𝜺𝑡 = 𝒛𝑡 − 𝒛̂𝑡|𝑡−1 should also be on the gaussian distribution with zero mean and 

covariance 𝑷𝒛̂ 𝑡|𝑡−1 if the observation 𝒛𝑡 follow the same distribution of the predicted 

observation. 

With this assumption, the covariance between every component 𝜀  and 𝜀  in 𝜺𝑡 

is 𝑝   . In Section 3.5 and [73: Chatterjee & Hadi 2006], the slope minimizing the sum of 

squared errors of linear regression result is 𝛽̂ . =
𝑝𝑙 𝑖

𝑝𝑖 𝑖
. Therefore, we can use 𝛽̂ .  to 

estimate 𝜀  with any other component 𝜀 . However, the relationship between 𝜀  and 𝜀  

may be low or even not relative. It will make the estimated 𝜀  not meaningful. Thus, the 

estimated result 𝜀 ̂ comes from the weighing average of each estimation with the weights 

are the squared correlation coefficients between 𝜀  and 𝜀  to emphasize the estimated 

results from the highly relative components. 
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Since the estimated component 𝜀 ̂  comes from the estimated observation 

covariance and the new observation, it would be strange if the estimated component 𝜀 ̂ 

is far from the real component 𝜀 . Therefore, a confidence score 𝑠  can be calculated in 

Equation (5.48) where 𝑘𝑜𝑢𝑡 is the outlier coefficient set by hand. 

𝑠 = 𝑒
− 𝑜𝑢𝑡

|𝜀̂𝑙−𝜀𝑙|
2

𝑝𝑙 𝑙  (5.48) 

The range of 𝑠  is (0 1] set by the definition. It can be regarded as an index that 

measures how possible the innovation component 𝜀  is an inlier. If 𝑠 < 0.5 , the 

innovation component 𝜀  will be treated as an outlier, vice versa. As 𝜺𝑡 = 𝒛𝑡 − 𝒛̂𝑡|𝑡−1, 

the observation component 𝑧  𝑡 will be regarded as an outlier component when 𝜀  is an 

outlier. Additionally, 𝑧  𝑡 will be regarded as an outlier component when the component 

is missed. 

The strictness of the outlier detection can be adjusted by the outlier coefficient 𝑘𝑜𝑢𝑡. 

When 𝑘𝑜𝑢𝑡  increases, the observation component would have smaller tolerance to 

become an inlier. While 𝑘𝑜𝑢𝑡 decreases, the observation component would have fewer 

chances to become an outlier. 

For our problem, as mentioned in Section 4.3, every keypoints in the RawSKs is 

reconstructed independently. But the positions in each axis are interrelated for a keypoint. 

Therefore, a keypoint should be treated as the minimum unit for the outlier detection. If 
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any confidence score of the three axes of the keypoint is smaller than 0.5, the whole 

keypoint should be regarded as an outlier, as illustrated in Figure 5.13. 

 

Figure 5.13: The flow to set a keypoint as the minimum unit for outlier detection 

Then, an example for outlier detection is shown in Figure 5.14. 

 

Figure 5.14: Outlier component detection with OCR-UKF in frame 272-279 for 

B20_354 

The outlier keypoints determined by OCR-UKF are marked with red circles. 

After the outlier detection, to eliminate the influence of the outliers, the modified 

Kalman gain 𝑲𝑂 𝑅 𝑡 for OCR-UKF is formed: 

𝑲𝑡 = [𝒌1 ⋯ 𝒌 ⋯ 𝒌𝑚] ∈ ℝ
𝑛×𝑚 

where 𝒌 ∈ ℝ
𝑛 

(5.49) 

𝒐 = {
𝟎𝑛×𝑛 𝑖𝑓 𝑡ℎ𝑒 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝑜𝑢𝑡𝑙𝑖𝑒𝑟
𝑰𝑛 𝑖𝑓 𝑡ℎ𝑒 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝑖𝑛𝑙𝑖𝑒𝑟

 (5.50) 

𝜀  𝑥
𝜀  𝑦
𝜀  𝑧
𝜀1 𝑥
𝜀1 𝑦
𝜀1 𝑧
⋮

𝜀1  𝑥
𝜀1  𝑦
𝜀1  𝑧 

𝑠  𝑥
𝑠  𝑦
𝑠  𝑧
𝑠1 𝑥
𝑠1 𝑦
𝑠1 𝑧
⋮

𝑠1  𝑥
𝑠1  𝑦
𝑠1  𝑧 

51 components 51 scores

𝑠  <0.5

𝑇𝑟𝑢𝑒
𝐹𝑎𝑙𝑠𝑒
⋮

𝐹𝑎𝑙𝑠𝑒

Boolean for inlier 
for 17 keypoints

False if any scores of 
the keypoints <0.5

𝑜  𝑥
𝑜  𝑦
𝑜  𝑧
𝑜1 𝑥
𝑜1 𝑦
𝑜1 𝑧
⋮

𝑜1  𝑥
𝑜1  𝑦
𝑜1  𝑧 

51 outlier labels
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𝑲𝑂 𝑅 𝑡 = [𝒐1𝒌1 ⋯ 𝒐 𝒌 ⋯ 𝒐𝑚𝒌𝑚] ∈ ℝ
𝑛×𝑚 (5.51) 

With the modified Kalman gain, the measurement update for OCR-UKF is turned 

into: 

𝒙̂𝑡 = 𝒙̂𝑡|𝑡−1 +𝑲𝑂 𝑅 𝑡(𝒛𝑡 − 𝒛̂𝑡|𝑡−1) 

= 𝒙̂𝑡|𝑡−1 +𝑲𝑂 𝑅 𝑡𝜺𝑡 

= 𝒙̂𝑡|𝑡−1 +∑𝒐 𝒌 𝜀 

𝑚

 = 

 

(5.52) 

With 𝒐 , the outlier component 𝜀  wouldn’t affect the estimated state 𝒙̂𝑡 anymore. 

However, since the Kalman gain is modified, the covariance update in Equation 

(3.58) for UKF would not suit for OCR-UKF anymore. 

  



doi:10.6342/NTU202202468

86 

With the update equation for estimated state, for an arbitrary Kalman gain 𝑲𝑡, the 

updated state covariance is: 

𝑷𝑡 = 𝑐𝑜 (𝒙𝑡 − 𝒙̂𝑡|𝑡) 

= 𝑐𝑜 (𝒙𝑡 − (𝒙̂𝑡|𝑡−1 +𝑲𝑡𝜺𝑡)) 

= 𝑐𝑜 (𝒙𝑡 − [𝒙𝑡|𝑡−1 +𝑲𝑡 (𝒛𝑡 − ℎ(𝒙̂𝑡|𝑡−1))]) 

= 𝑐𝑜 (𝒙𝑡 − [𝒙𝑡|𝑡−1 +𝑲𝑡 (ℎ(𝒙𝑡) +  𝑡 − ℎ(𝒙̂𝑡|𝑡−1))]) 

= 𝑐𝑜 ((𝒙𝑡 − 𝒙̂𝑡|𝑡−1) − 𝑲𝑡[ℎ(𝒙𝑡) − ℎ(𝒙̂𝑡|𝑡−1)] − 𝑲𝑡 𝑡) 

= 𝑐𝑜 ((𝒙𝑡 − 𝒙̂𝑡|𝑡−1) − 𝑲𝑡[ℎ(𝒙𝑡) − ℎ(𝒙̂𝑡|𝑡−1)]) + 𝑲𝑡 𝑈𝐾𝐹𝑲𝑡
𝑇 

(5.53) 

Define a matrix 𝑯𝑡 ∈ ℝ
𝑚×𝑛  such that 𝑲𝑡[ℎ(𝒙𝑡) − ℎ(𝒙̂𝑡|𝑡−1)] = 𝑲𝑡𝑯𝑡(𝒙𝑡 −

𝒙̂𝑡|𝑡−1), then 𝑷𝑡 equals: 

𝑷𝑡 = 𝑐𝑜 ((𝒙𝑡 − 𝒙̂𝑡|𝑡−1) − 𝑲𝑡[ℎ(𝒙𝑡) − ℎ(𝒙̂𝑡|𝑡−1)]) + 𝑲𝑡 𝑈𝐾𝐹𝑲𝑡
𝑇 

= 𝑐𝑜 ((𝑰 − 𝑲𝑡𝑯𝑡)(𝒙𝑡 − 𝒙̂𝑡|𝑡−1)) + 𝑲𝑡 𝑈𝐾𝐹𝑲𝑡
𝑇 

= (𝑰 − 𝑲𝑡𝑯𝑡)𝑐𝑜 (𝒙𝑡 − 𝒙̂𝑡|𝑡−1)(𝑰 − 𝑲𝑡𝑯𝑡)
𝑇 +𝑲𝑡 𝑈𝐾𝐹𝑲𝑡

𝑇 

= (𝑰 − 𝑲𝑡𝑯𝑡)𝑷𝑡|𝑡−1(𝑰 − 𝑲𝑡𝑯𝑡)
𝑇 +𝑲𝑡 𝑈𝐾𝐹𝑲𝑡

𝑇 

= 𝑷𝑡|𝑡−1 −𝑲𝑡𝑯𝑡𝑷𝑡|𝑡−1 − 𝑷𝑡|𝑡−1𝑯𝑡
𝑇𝑲𝑡

𝑇

+𝑲𝑡(𝑯𝑡𝑷𝑡|𝑡−1𝑯𝑡
𝑇 +  𝑈𝐾𝐹)𝑲𝑡

𝑇 

= 𝑷𝑡|𝑡−1 −𝑲𝑡𝑯𝑡𝑷𝑡|𝑡−1 − 𝑷𝑡|𝑡−1𝑯𝑡
𝑇𝑲𝑡

𝑇 +𝑲𝑡𝑷𝒛̂ 𝑡|𝑡−1𝑲𝑡
𝑇 

(5.54) 
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Recalling the original concept of Kalman filter, minimizing the trace of estimated 

state covariance min
𝑲𝑡
𝑡𝑟(𝑷𝑡), the optimal Kalman gain for the standard Kalman filter is 

formed by: 

𝜕 𝑡𝑟(𝑷𝑡)

𝜕𝑲𝑡
= −2(𝑯𝑡𝑷𝑡|𝑡−1)

𝑇
+ 2𝑲𝑡𝑷𝒛̂ 𝑡|𝑡−1 = 0 (5.55) 

𝑲𝑡 = 𝑷𝑡|𝑡−1𝑯𝑡
𝑇𝑷𝒛̂ 𝑡|𝑡−1

−1 (5.56) 

Additionally, with the optimal Kalman gain 𝑲𝑡, the following equation is formed: 

𝑲𝑡𝑷𝒛̂ 𝑡|𝑡−1𝑲𝑡
𝑇 = 𝑷𝑡|𝑡−1𝑯𝑡

𝑇𝑲𝑡
𝑇 = 𝑲𝑡𝑯𝑡𝑷𝑡|𝑡−1 (5.57) 

Therefore, the state covariance update function for standard Kalman filter and UKF 

is: 

𝑷𝑡 = 𝑷𝑡|𝑡−1 −𝑲𝑡𝑷𝒛̂ 𝑡|𝑡−1𝑲𝑡
𝑇 (5.58) 

However, for the OCR-UKF, the Kalman gain 𝑲𝑂 𝑅 𝑡  is designed to reject the 

effect of the outliers rather than minimize the trace of the state covariance. Thus, its state 

covariance should be updated by Equation (5.54) as: 

𝑷𝑡 = 𝑷𝑡|𝑡−1 −𝑲𝑂 𝑅 𝑡𝑯𝑡𝑷𝑡|𝑡−1 − 𝑷𝑡|𝑡−1𝑯𝑡
𝑇𝑲𝑂 𝑅 𝑡

𝑇

+𝑲𝑂 𝑅 𝑡𝑷𝒛̂ 𝑡|𝑡−1𝑲𝑂 𝑅 𝑡
𝑇 

(5.59) 

To calculate 𝑯𝑡, we can utilize the optimal Kalman gain 𝑲𝑡 for UKF calculated in 

Equation (3.29) and the derived relationship for optimal Kalman gain 𝑲𝑡 and 𝑯𝑡 in 

Equation (5.57) as: 

{
𝑲𝑡 = 𝑷𝒙̂𝒛̂ 𝑡|𝑡−1𝑷𝒛̂ 𝑡|𝑡−1

−1

𝑲𝑡𝑷𝒛̂ 𝑡|𝑡−1𝑲𝑡
𝑇 = 𝑷𝑡|𝑡−1𝑯𝑡

𝑇𝑲𝑡
𝑇 (5.60) 
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Therefore, 𝑯𝑡 can be calculated by: 

(𝑷𝒙̂𝒛̂ 𝑡|𝑡−1𝑷𝒛̂ 𝑡|𝑡−1
−1)𝑷𝒛̂ 𝑡|𝑡−1 = 𝑷𝑡|𝑡−1𝑯𝑡

𝑇 (5.61) 

𝑯𝑡 = (𝑷𝑡|𝑡−1
−1𝑷𝒙̂𝒛̂ 𝑡|𝑡−1)

𝑇
 

= 𝑷𝒙̂𝒛̂ 𝑡|𝑡−1
𝑇 𝑷𝑡|𝑡−1

−1 ∈ ℝ𝑚×𝑛 

(5.62) 

Imaginably, because the OCR Kalman gain 𝑲𝑂 𝑅 𝑡 is not designed to minimize the 

state covariance, the state and observation covariance would be widened with the time 

update when the outlier components are rejected, as shown in Figure 5.15. 

  

(a) (b) 

Figure 5.15: Observation covariance variation while encountering the outliers 

(a) observation covariance variation for LKnee in B20_354 

(b) observation covariance variation for LAnkle in B20_354 

However, it makes a good property that the OCR-UKF can catch the inliers even 

when the inliers are far from the predicted state after a long outlier interval as shown in 

Figure 5.16. Since the observation covariance is widened with time, the confidence score 

𝑠 = 𝑒
− 𝑜𝑢𝑡

|𝜀̂𝑙−𝜀𝑙|
2

𝑝𝑙 𝑙  would increase as 𝑝    is a diagonal element in observation covariance. 

Hence, the inlier region would also be expanded while the inlier threshold is fixed at 𝑠 =

0.5. 
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Figure 5.16: The concept of outlier rejection and inlier interpolation for OCR-UKF 

Besides rejecting the outliers, it’s also important to trace back the influence of the 

observations during the outlier interval once the inlier observations are caught, as shown 

in Figure 5.16. Since the outlier component rejection mechanism rejects all the effects of 

the observation in the outlier interval, the predicted state may be hugely biased without 

the new information from the observation. The measurement update only updates the 

estimated state once the inlier is caught at 𝜏 𝑛 = 𝑡 + 𝑁𝑜𝑢𝑡 where 𝑁𝑜𝑢𝑡 is the duration 

of the outlier interval. To trace the corresponding innovation during the outlier interval, 

we calculate the influence of innovation for the 𝑙-th component of 𝜺𝜏𝑒𝑛𝑑 on state as: 

𝝐  𝜏𝑒𝑛𝑑 = 𝒌  𝜏𝑒𝑛𝑑𝜀  𝜏𝑒𝑛𝑑 (5.63) 

The vector 𝝐  𝜏𝑒𝑛𝑑  can represent the state change after the outlier interval for the  

𝑙-th component. 

Inlier region (dependent on 𝑷𝒛̂)

Estimated state

Observation

Time 𝜏: 𝑡 𝑡 + 1 𝑡 + 2 𝑡 + 3

Interpolate the state

𝑡 + 4  …

Predicted state

Only time update

𝑡 − 1

Outlier observation

𝑁𝑜𝑢𝑡 = 3

𝒙̂𝑡−1

𝒙̂𝑡|𝑡−1
𝒙̂𝑡+1|𝑡−1 𝒙̂𝑡+2|𝑡−1 𝒙̂𝑡+3|𝑡−1

𝒙̂𝑡+𝟑

𝒛𝑡

𝒛𝑡+1

𝒛𝑡+2

𝒛𝑡+3
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Figure 5.17: Illustration of tracing back state change (inlier interpolation) 

To trace back the state change 𝝐  𝜏  for every frame in the outlier interval while 

considering the system dynamic, a variation of LQR tracking is applied: 

min
 𝜏

1

2
[ ∑  𝜏

𝑇  𝑛 𝜏

𝜏𝑒𝑛𝑑−1

𝜏=𝑡−1

] +
1

2
(𝝐̂  𝜏𝑒𝑛𝑑 − 𝝐  𝜏𝑒𝑛𝑑)

𝑇
𝑸 𝑛 𝜏𝑒𝑛𝑑(𝝐̂  𝜏𝑒𝑛𝑑 − 𝝐  𝜏𝑒𝑛𝑑) 

s. t.   𝝐̂  𝜏+1 = 𝑨𝝐̂  𝜏 + 𝑩 𝜏 𝜏 = 𝑡 − 1 𝑡 …  𝜏 𝑛  with 𝝐̂  𝑡−1 = 0 

(5.64) 

The variation of LQR tracking only tracks the state change at the end and minimizes 

the weighting squared sum of the system input during the interval. Therefore, the state 

change during the outlier interval can be traced with the smoothest trajectory. Also, as the 

state transition function 𝑓(∙) is linear the state change can be compensated with addition 

directly once the outlier interval ends for the 𝑙-th component: 

𝒙𝜏 = 𝒙̂𝜏|𝑡−1 +∑𝝐̂  𝜏

𝑚

 = 

 (5.65) 

For the frames not including any outliers or whose outlier intervals haven’t finished 

yet, their 𝝐̂  𝜏 will be set as 0. After all, the procedures of the OCR-UKF can be illustrated 

in Figure 5.18. 

Frame 𝜏

𝑡 − 1

Difference of state from 
predicted state 𝒙̂𝜏|𝑡−1
(w/o measurement update 
for 𝑙-th component in 
observation)

Smoothed state 𝒙̂𝜏|𝜏𝑒𝑛𝑑
traced back from frame 𝜏 𝑛 

𝝐  𝜏𝑒𝑛𝑑 = 𝒌𝑙 𝜏𝑒𝑛𝑑𝜀𝑙 𝜏𝑒𝑛𝑑

Those 𝝐  𝜏 need to be traced back

𝜏 𝑛 
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Figure 5.18: Illustration for the processes of OCR-UKF 

 

  

Initial estimates of 𝒙̂𝟎 and 𝑷𝟎

Measurement Update & Outlier Rejection

𝑲𝑡 = 𝑷𝒙𝒛̂ 𝑡|𝑡−1𝑷𝒛̂ 𝑡|𝑡−1
−1 = 𝒌1 ⋯ 𝒌𝑙 ⋯ 𝒌𝑚

𝑷𝒙𝒛̂ 𝑡|𝑡−1 =∑𝜔 
𝑐    𝑡|𝑡−1 − 𝒙̂𝑡|𝑡−1 𝜸  𝑡|𝑡−1 − 𝒛̂𝑡|𝑡−1

𝑇
2𝑛

 = 

𝑲𝑂 𝑅 𝑡 = 𝒐1𝒌1 ⋯ 𝒐 𝒌 ⋯ 𝒐𝑚𝒌𝑚

𝑯𝑡 = 𝑷𝒙𝒛̂ 𝑡|𝑡−1
𝑇 𝑷𝑡|𝑡−1

−1

𝒙̂𝑡 = 𝒙̂𝑡|𝑡−1 +𝑲𝑂 𝑅 𝑡 𝒛𝑡 − 𝒛̂𝑡|𝑡−1

𝑷𝑡 = 𝑷𝑡|𝑡−1 −𝑲𝑂 𝑅 𝑡𝑯𝑡𝑷𝑡|𝑡−1 − 𝑷𝑡|𝑡−1𝑯𝑡
𝑇𝑲𝑂 𝑅 𝑡

𝑇 +𝑲𝑂 𝑅 𝑡𝑷𝒛̂ 𝑡|𝑡−1𝑲𝑂 𝑅 𝑡
𝑇

𝝐𝑙 𝜏𝑒𝑛𝑑 = 𝒌𝑙 𝜏𝑒𝑛𝑑𝜀𝑙 𝜏𝑒𝑛𝑑

Solve min
 𝜏

1

2
∑  𝜏

𝑇 𝑖𝑛 𝜏
𝜏𝑒𝑛𝑑−1
𝜏=𝑡−1 +

1

2
𝝐̂𝑙 𝜏𝑒𝑛𝑑 − 𝝐𝑙 𝜏𝑒𝑛𝑑

𝑇
𝑸𝑖𝑛 𝜏𝑒𝑛𝑑 𝝐̂𝑙 𝜏𝑒𝑛𝑑 − 𝝐𝑙 𝜏𝑒𝑛𝑑

s. t.  𝝐̂𝑙 𝜏+1 = 𝑨𝝐̂𝑙 𝜏 + 𝑩 𝜏 𝜏 = 𝑡 − 1 𝑡 …  𝜏𝑒𝑛𝑑      𝝐̂𝑙 𝑡−1 = 0

Inlier Interpolation

𝒙̂𝜏 = 𝒙̂𝜏|𝑡−1 +∑𝝐̂𝑙 𝜏

𝑚

𝑙=0

𝑷𝒛̂ 𝑡|𝑡−1 =

𝑝1 1 ⋯ 𝑝1 𝑙
⋮ ⋱ ⋮
𝑝𝑙 1 ⋯ 𝑝𝑙 𝑙

⋯ 𝑝1 𝑚
⋱ ⋮
⋯ 𝑝𝑙 𝑚

⋮ ⋱ ⋮
𝑝𝑚 1 ⋯ 𝑝𝑚 𝑙

⋱ ⋮
⋯ 𝑝𝑚 𝑚

 𝜺𝑡 =

𝜀1
⋮
𝜀𝑙
⋮
𝜀𝑚

𝜀𝑙̂ =
1

∑ 𝜌𝑙 𝑖2
𝑚
𝑖=1

∑𝜌𝑙 𝑖
2
𝑝𝑙 𝑖
𝑝𝑖 𝑖
𝜀𝑖

𝑚

𝑖=1

Outlier Detection

𝑠𝑙 = 𝑒
−𝑘𝑜𝑢𝑡

𝜀𝑙̂−𝜀𝑙
2

𝑝𝑙 𝑙

𝑠  𝒐 with minimum outlier unit

𝜌   
2 =

𝑝   
2

𝑝   𝑝   

If any outlier 

interval end?

No

Yes

Initialize the unassigned 𝝐̂  𝜏 as 0

Generate sigma points  𝑖 𝑡|𝑡−1

𝑷𝑡|𝑡−1 = ∑𝜔𝑖
𝑐  𝑖 𝑡|𝑡−1 − 𝒙̂𝑡|𝑡−1  𝑖 𝑡|𝑡−1 − 𝒙̂𝑡|𝑡−1

𝑇
2𝑛

𝑖=0

+ 𝑸

𝒛̂𝑡|𝑡−1 =∑𝜔𝑖
𝑚𝜸𝑖 𝑡|𝑡−1

2𝑛

𝑖=0

Time Update

𝒙̂𝑡|𝑡−1 =∑𝜔𝑖
𝑚 𝑖 𝑡|𝑡−1

2𝑛

𝑖=0

𝑷𝒛̂ 𝑡|𝑡−1 = ∑𝜔 
𝑐 𝜸  𝑡|𝑡−1 − 𝒛̂𝑡|𝑡−1 𝜸  𝑡|𝑡−1 − 𝒛̂𝑡|𝑡−1

𝑇
2𝑛

 = 

+  

𝜸  𝑡|𝑡−1 = ℎ    𝑡|𝑡−1
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5.3.3 KKT condition and joint damper force for joint velocity 

Besides the OCR-UKF, there are some other designs to improve the estimation 

performance in this work. They are KKT condition for joint velocity and the joint damper 

force. The two mechanisms are used to restrict the magnitudes of the joint velocity which 

are often huge for the transitional state with poor state initialization.  

The KKT condition for joint velocity is to apply the well-known KKT conditions to 

restrict the state with lower bound and upper bound by adjusting the Kalman gain before 

determining the OCR Kalman gain 𝑲𝑂 𝑅 𝑡 . The detailed derivative will be shown in 

Appendix B. 

In conclusion, the Kalman gain with the KKT condition is calculated by Equation 

(5.66) with the given state lower bound 𝒙 𝑜𝑤 𝑟 and state upper bound 𝒙𝑢𝑝𝑝 𝑟. 

𝑲𝐾𝐾𝑇 𝑡 = 𝑷𝑡|𝑡−1𝑯𝑡
𝑇𝑷𝒛̂ 𝑡|𝑡−1

−1 + (𝝁1 − 𝝁2)𝜺𝑡
𝑇𝑷𝒛̂ 𝑡|𝑡−1

−1  (5.66) 

The 𝝁1, 𝝁2 are determined with Algorithm 5.2 

Algorithm 5.2: determine the Lagrange multiplier 𝝁1, 𝝁2 

Input: state bounds 𝒙 𝑜𝑤 𝑟 , 𝒙𝑢𝑝𝑝 𝑟 , innovation vector 𝜺𝑡  in the current frame, and other predicted 

information 

Output: the value of Lagrange multiplier 𝝁1, 𝝁2 

Note: 𝑛 is dimension of the state 𝒙𝑡, 𝑎𝑡   is the 𝑖-th element of 𝒂𝑡, and same for 𝑏𝑡  , 𝜇1  , 𝜇2   

1: 𝒂𝑡 ← 𝒙 𝑜𝑤 𝑟 − 𝒙𝑡|𝑡−1 − 𝑷𝑡|𝑡−1𝑯𝑡
𝑇𝑷𝒛̂ 𝑡|𝑡−1

−1 𝜺𝑡  

2: 𝒃𝑡 ← 𝒙𝑡|𝑡−1 − 𝒙𝑢𝑝𝑝 𝑟 + 𝑷𝑡|𝑡−1𝑯𝑡
𝑇𝑷𝒛̂ 𝑡|𝑡−1

−1 𝜺𝑡  

3: 𝑐𝑡 ← 𝜺𝑡
𝑇𝑷𝒛̂ 𝑡|𝑡−1

−1 𝜺𝑡  

4: for 𝑖 ← 1 . . .  𝑛 do 

5:    if 𝑎𝑡  ≥ 0  do 

6:       𝜇1  ←
1

𝑐𝑡
𝑎𝑡   
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7:       𝜇2  ← 0 

8:    else if 𝑎𝑡   0 and 𝑏𝑡   0 do 

9:       𝜇1  ← 0 

10:       𝜇2  ← 0 

11:    else do 

12:       𝜇1  ← 0 

13:       𝜇2  ←
1

𝑐𝑡
𝑏𝑡   

14:    if end 

15: return 𝝁1, 𝝁2 

With it, the state can be bounded in the interval between 𝒙 𝑜𝑤 𝑟 and 𝒙𝑢𝑝𝑝 𝑟. 

However, the joint velocities are not always in the low magnitude intervals. 

Especially for intense exercise, the joint velocity may raise dramatically for a short time, 

then, drop down suddenly. Therefore, the state bounds are only used for the unhuman 

motion with a relatively wide restricted state interval.  

For real human motion, it’s hard to maintain a high joint velocity for a long time. 

Besides the stopping consciousness of humans, we think that there are some other 

impedances coming from the human body. We regard the impedance as the damper force 

to generate the resistive force when the joint velocity is large. Thus, the state transition 

function is rewritten as: 

𝒙𝑡 = 𝑓(𝒙𝑡−1) = 𝑨𝑈𝐾𝐹𝒙𝑡−1 + 𝑩𝑈𝐾𝐹   𝑚𝑝 𝑡−1 (5.67) 

   𝑚𝑝 𝑡−1 = 𝑐  𝑚𝑝 ∙ [𝜣∆ 𝑡−1
𝑇 𝑻∆ 𝑡−1

𝑇 ]
𝑇
 (5.68) 

The joint velocity and head-world transformation velocity come from 𝒙𝑡−1: 

𝒙𝑡−1 = [𝜣𝑡−1
𝑇 𝜣∆ 𝑡−1

𝑇 𝑻𝑡−1
𝑇 𝑻∆ 𝑡−1

𝑇 ]
𝑇
 (5.69) 
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After the OCR-UKF and the velocity constraints, the estimated trajectory is shown 

in Figure 5.19. Compared with the RawSK, most of the outliers are rejected successfully. 

However, the trajectory still looks rough and shaky, which makes it unlike a perfect 

estimation result. To handle this problem, an iterative LQR motion smoother will be 

proposed in Section 5.5. 

 

Figure 5.19: The estimated trajectory of LAnkle for B20_354 with OCR-UKF 
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5.4 Initial Inversed Kinematic Estimation 

As mentioned in Section 5.3, the proposed OCR-UKF needs a guess initial state 𝒙̂  

in the first frame before the filtering process. With the converge property of Kalman filter, 

the initial guess for the state is able to accept some tolerance. However, if the guessed 

initial state has too large errors so that the estimated state is out of the convergence region, 

the filter process may work improperly. Thus, a good estimation of the initial state is 

important. The proposed procedure here is similar to the solving of inversed kinematic 

of the human skeleton with the RawSK in the first frame. 

The initial parameters that need to be estimated are: 

𝒙𝑝𝑜𝑠  𝑛 𝑡 = [𝜣 𝑛 𝑡
𝑇 𝑻 𝑛 𝑡

𝑇 ]𝑇 ∈ ℝ2  (5.70) 

{
𝜣 𝑛 𝑡 = [𝜃1  𝑛 𝑡 𝜃2  𝑛 𝑡 ⋯ 𝜃22  𝑛 𝑡]𝑇

𝑻 𝑛 𝑡 = [𝑝  𝑥  𝑛 𝑡 𝑝  𝑦  𝑛 𝑡 𝑝  𝑧  𝑛 𝑡 𝛼 𝑛 𝑡 𝛽 𝑛 𝑡 𝛾 𝑛 𝑡]𝑇
 (5.71) 
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These parameters are used as the state describing human pose as Figure 5.20. 

 
 

(a) (b) 

Figure 5.20: Illustration for the initial estimated states 

(a) the initial pose and skeleton joint angle 𝜣 (b) the initial head pose and head-world 

transformation parameters 𝑻 

The estimated parameters can be divided into five parts: 1) Head coordinate 

estimation (𝑻 𝑛 𝑡), 2) Shoulder coordinate estimation (𝜃1  𝑛 𝑡 𝜃2  𝑛 𝑡 𝜃3  𝑛 𝑡), 3) Hip 

coordinate estimation (𝜃12  𝑛 𝑡 𝜃13  𝑛 𝑡 𝜃14  𝑛 𝑡), 4) Elbow and knee angle estimation 

( 𝜃   𝑛 𝑡 𝜃11  𝑛 𝑡 𝜃1   𝑛 𝑡 𝜃22  𝑛 𝑡 ), and 5) Shoulder and hip joint angle estimation 

(𝜃4  𝑛 𝑡 𝜃   𝑛 𝑡 𝜃   𝑛 𝑡 𝜃   𝑛 𝑡 𝜃   𝑛 𝑡 𝜃1   𝑛 𝑡 𝜃1   𝑛 𝑡 𝜃1   𝑛 𝑡 𝜃1   𝑛 𝑡 𝜃1   𝑛 𝑡 𝜃2   𝑛 𝑡 𝜃21  𝑛 𝑡). 

 

  

𝒑 
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1). Head coordinate estimation (𝑻 𝑛 𝑡) 

As mentioned in Section 5.1, the forward kinematic of the proposed human 

kinematic model starts from the head. Therefore, the first step is to estimate the head-

world transformation parameters 𝑻 𝑛 𝑡 in Figure 5.20 (b). 

The first three elements of 𝑻 𝑛 𝑡, [𝑝  𝑥  𝑛 𝑡 𝑝  𝑦  𝑛 𝑡 𝑝  𝑧  𝑛 𝑡]𝑇, are estimated as 

the position of the nose keypoint 𝒑  in the first frame directly. To estimate the roll-pitch-

yaw angles of the transformation between world coordinate and head coordinate, the head 

keypoint positions in {ℎ𝑒𝑎𝑑} and the positions of the head keypoints in {𝑤𝑜𝑟𝑙𝑑} are 

utilized. 

Since there are 5 points in the head, the 3D transformation matrix estimation method 

presented in Section 3.6 can be used to find the relative transformation 𝑻    
𝑤𝑜𝑟  . Taking 

advantage of the rotation matrix      
𝑤𝑜𝑟   in 𝑻    

𝑤𝑜𝑟  , the roll-pitch-yaw angles 𝛼 𝑛 𝑡 , 

𝛽 𝑛 𝑡 , 𝛾 𝑛 𝑡  can be obtained with the ZYX rotation matrix decomposition method 

mentioned in Algorithm 3.1. 

𝛼 𝑛 𝑡 𝛽 𝑛 𝑡 𝛾 𝑛 𝑡 ←    _𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛_𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(      
𝑤𝑜𝑟  ) (5.72) 
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2). Shoulder coordinate estimation (𝜃1  𝑛 𝑡 𝜃2  𝑛 𝑡 𝜃3  𝑛 𝑡) 

 

 

(a) (b) 

Figure 5.21: Illustration for head-shoulder transformation 

(a) head-shoulder transformation (b) shoulder coordinate definition 

To estimate the initial values of 𝜃1  𝑛 𝑡 𝜃2  𝑛 𝑡 𝜃3  𝑛 𝑡 , the rotation matrix  𝑠 
     

from head coordinate {ℎ𝑒𝑎𝑑} to shoulder coordinate {𝑠ℎ} should be estimated first. 

The head coordinate {ℎ𝑒𝑎𝑑} for the initial frame has been estimated in the 1) Head 

coordinate estimation (𝑻 𝑛 𝑡). For the shoulder coordinate {𝑠ℎ}, its definition is shown 

in Figure 5.21(b). The middle point of the shoulder points 𝒑𝑠 𝑀  =
(𝒑 + 𝒑 )

2
⁄  is set 

as the origin of {𝑠ℎ}. The left shoulder keypoint 𝒑  is set lying on the positive y-axis of 

{𝑠ℎ} . Then, the neck rotation center 𝒑𝑛 𝑐 , calculated with the spine parameter 

𝒑𝑛 𝑐 
     and world-head transformation 𝑻    

𝑤𝑜𝑟  , is set lying on the YZ-plane of {𝑠ℎ} 

with positive z-value. With these three conditions, the shoulder frame {𝑠ℎ}  and its 

transformation matrix 𝑻𝑠 
𝑤𝑜𝑟   from {𝑤𝑜𝑟𝑙𝑑}  can estimated easily. To obtain the 

rotation matrix  𝑠 
     affected by 𝜃1  𝑛 𝑡 𝜃2  𝑛 𝑡 𝜃3  𝑛 𝑡 , Equation (5.73)-(5.74) are 

applied: 

x y
z𝑠ℎ

 𝑠 
      𝑠 

    

𝒑 
𝑠 

𝜃1𝑥, 𝜃2𝑦, 𝜃3𝑧 𝒑𝑛 𝑐 
𝑠 

{𝑠ℎ}

x

y
𝒑 

𝑠 

𝒑𝑠 𝑀  
𝑠 

z
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𝑻𝑠 
    = 𝑻    

𝑤𝑜𝑟  −1 ∙ 𝑻𝑠 
𝑤𝑜𝑟   (5.73) 

[
 𝑠 

     𝑠 
    

𝟎3×1 1
] = 𝑻𝑠 

     (5.74) 

Thus, the 𝜃1  𝑛 𝑡 𝜃2  𝑛 𝑡 𝜃3  𝑛 𝑡 can be estimated as: 

𝜃1  𝑛 𝑡 𝜃2  𝑛 𝑡 𝜃3  𝑛 𝑡 ←    _𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛_𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(  𝑠 
    ) (5.75) 

 

3). Hip coordinate estimation (𝜃12  𝑛 𝑡 𝜃13  𝑛 𝑡 𝜃14  𝑛 𝑡) 

 

 

(a) (b) 

Figure 5.22: Illustration for shoulder-hip transformation 

(a) shoulder-hip transformation (b) hip coordinate definition 

Similar to the shoulder coordinate {𝑠ℎ}, the hip coordinate {ℎ𝑖𝑝} is defined with 

three conditions as Figure 5.25(b) shows. The middle point of the hip points 𝒑  𝑝𝑀  =

(𝒑11 + 𝒑12)
2
⁄  is set as the origin of {ℎ𝑖𝑝}. The left hip keypoint 𝒑11 is set lying on the 

positive y-axis of {ℎ𝑖𝑝}. Then, the spine rotation center 𝒑𝑠𝑝 𝑛 , calculated with the spine 

parameter 𝒑𝑠𝑝 𝑛 
𝑠  and world-shoulder transformation 𝑻𝑠 

𝑤𝑜𝑟  , is set lying on the YZ-

plane of {ℎ𝑖𝑝} with a positive z-value. Utilized the three conditions, the transformation 

matrix 𝑻  𝑝
𝑤𝑜𝑟   can be calculated. 

x y
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  𝑝

{ℎ𝑖𝑝}

x

y

𝒑11
  𝑝

𝒑  𝑝𝑀  
  𝑝
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Since the relative rotation    𝑝
𝑠  from {𝑠ℎ}  to {ℎ𝑖𝑝}  is only influenced by 

𝜃12 𝜃13 𝜃14, 𝜃12  𝑛 𝑡 𝜃13  𝑛 𝑡 𝜃14  𝑛 𝑡 can be estimated with    𝑝
𝑠  directly. Applying the 

same method in 2) Shoulder coordinate estimation: 

𝑻  𝑝
𝑠 = 𝑻𝑠 

𝑤𝑜𝑟  −1 ∙ 𝑻  𝑝
𝑤𝑜𝑟   (5.76) 

[
   𝑝

𝑠    𝑝
𝑠 

𝟎3×1 1
] = 𝑻  𝑝

𝑠  (5.77) 

Thus, the 𝜃12  𝑛 𝑡 𝜃13  𝑛 𝑡 𝜃14  𝑛 𝑡 can be estimated as: 

𝜃12  𝑛 𝑡 𝜃13  𝑛 𝑡 𝜃14  𝑛 𝑡 ←    _𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛_𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(    𝑝
𝑠 ) (5.78) 
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4). Elbow and knee angle estimation (𝜃   𝑛 𝑡 𝜃11  𝑛 𝑡 𝜃1   𝑛 𝑡 𝜃22  𝑛 𝑡) 

  

(a) (b) 

Figure 5.23: Illustration for limb joint angle estimation 

(a) limb coordinate {𝑙𝑖𝑚𝑏} and its parent coordinate {𝑟𝑜𝑜𝑡} (b) XY-plane definition 

of {𝑙𝑖𝑚𝑏} and the flexion angle 

After part 1) to part 3), the initial states affecting the main body pose have been 

estimated. The remaining states influence the poses of each limb. For the four limbs in a 

human skeleton, their state initialization methods are the same. 

As Figure 5.23(a) shows, from the keypoint close to the main body to the endpoint 

of the limb, the three keypoints are denoted as “a (shoulder or hip)”, “b (elbow or knee)”, 

and “c (wrist or ankle)”. In this part, the initial elbow and knee angles 

(𝜃   𝑛 𝑡 𝜃11  𝑛 𝑡 𝜃1   𝑛 𝑡 𝜃22  𝑛 𝑡), which are the flexion angle 𝜃𝑓  𝑥 𝑜𝑛 shown in Figure 

5.23(b), will be estimated. 

As shown in Figure 5.23(b), the magnitude of the flexion angle |𝜃𝑓  𝑥 𝑜𝑛| can be 

calculated with the vector 𝑎𝑏⃑⃑⃑⃑  from “a” to “b” and the vector 𝑏𝑐⃑⃑⃑⃑  from “b” to “c” as: 

|𝜃𝑓  𝑥 𝑜𝑛| =  − arctan2(‖𝑎𝑏⃑⃑⃑⃑ × 𝑏𝑐⃑⃑⃑⃑ ‖ |𝑎𝑏⃑⃑⃑⃑ ∙ 𝑏𝑐⃑⃑⃑⃑ |) (5.79) 

a

b

x
y

z

c

𝑟𝑜𝑜𝑡 𝜃𝑥  𝜃𝑦

𝜃𝑧

b
c

𝑧   𝑚 
𝑥   𝑚 a

𝜃𝑓  𝑥 𝑜𝑛
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The angle arctan2(‖𝑎𝑏⃑⃑⃑⃑ × 𝑏𝑐⃑⃑⃑⃑ ‖ |𝑎𝑏⃑⃑⃑⃑ ∙ 𝑏𝑐⃑⃑⃑⃑ |) is the included angle between 𝑎𝑏⃑⃑⃑⃑  and 

𝑏𝑐⃑⃑⃑⃑ . Since ‖𝑎𝑏⃑⃑⃑⃑ × 𝑏𝑐⃑⃑⃑⃑ ‖ ≥ 0, the included angle must be smaller than  . 

After acquiring the magnitude of the flexion angle |𝜃𝑓  𝑥 𝑜𝑛|, the sign of 𝜃𝑓  𝑥 𝑜𝑛 

is dependent on what the angle is. Referring to [84: DSHS.WA 2022] and the proposed 

human skeleton kinematic model in Section 5.1, the flexion angles of elbows should 

always be negative, and the ones of knees should always be positive, i.e.: 

{
𝜃   𝑛 𝑡 = −|𝜃   𝑛 𝑡|

𝜃11  𝑛 𝑡 = −|𝜃11  𝑛 𝑡|
 (5.80) 

{
𝜃1   𝑛 𝑡 = |𝜃1   𝑛 𝑡|

𝜃22  𝑛 𝑡 = |𝜃22  𝑛 𝑡|
 (5.81) 

 

5). Shoulder and hip joint angle estimation  

(𝜃4  𝑛 𝑡 𝜃   𝑛 𝑡 𝜃   𝑛 𝑡 𝜃   𝑛 𝑡 𝜃   𝑛 𝑡 𝜃1   𝑛 𝑡 𝜃1   𝑛 𝑡 𝜃1   𝑛 𝑡 𝜃1   𝑛 𝑡 𝜃1   𝑛 𝑡 𝜃2   𝑛 𝑡 𝜃21  𝑛 𝑡)  

Continuing the denotation in part 4) Elbow and knee angle estimation, 

subsequently, we defined two coordinates {𝑟𝑜𝑜𝑡}  and {𝑙𝑖𝑚𝑏}  as shown in Figure 

5.23(a). {𝑟𝑜𝑜𝑡} is the parent coordinate of the limb, {𝑠ℎ} for the arms, {ℎ𝑖𝑝} for the 

legs. {𝑙𝑖𝑚𝑏} is the coordinate of the limb, which is defined with the following conditions 

as shown in Figure 5.23(b). The origin of {𝑙𝑖𝑚𝑏} is defined at the point “a”. The z-axis 

of {𝑙𝑖𝑚𝑏} is parallel and has the same direction as the vector 𝑏𝑎⃑⃑⃑⃑  from “b” to “a”. While 

the points “a”, “b” and “c” are not colinear, the point “c” is set lying on the XZ-plane of 

{𝑙𝑖𝑚𝑏} so that there are two possible unit x-vector 𝒙⃑⃑   𝑚  of {𝑙𝑖𝑚𝑏}. To make the 
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solution unique, another constrain is that the angle between the unit x-vector 𝒙⃑⃑   𝑚  of 

{𝑙𝑖𝑚𝑏} and the unit x-vector 𝒙⃑⃑ 𝑟𝑜𝑜𝑡 of {𝑟𝑜𝑜𝑡} should be equal or smaller than  2⁄ , i.e.: 

𝒙⃑⃑   𝑚 
𝑇 ∙ 𝒙⃑⃑ 𝑟𝑜𝑜𝑡 > 0 (5.82) 

After that, the limb coordinate {𝑙𝑖𝑚𝑏} is defined and 𝑻  𝑚 
𝑤𝑜𝑟   can be obtained. 

To estimate the corresponding joint angles 𝜃𝑥  𝜃𝑦 𝜃𝑧 of the limb, the rotation matrix 

   𝑚 
𝑟𝑜𝑜𝑡  from {𝑟𝑜𝑜𝑡} to {𝑙𝑖𝑚𝑏} is received with: 

𝑻  𝑚 
𝑟𝑜𝑜𝑡 = 𝑻𝑟𝑜𝑜𝑡

𝑤𝑜𝑟  −1 ∙ 𝑻  𝑚 
𝑤𝑜𝑟   (5.83) 

[
   𝑚 

𝑟𝑜𝑜𝑡    𝑚 
𝑟𝑜𝑜𝑡

𝟎3×1 1
] = 𝑻  𝑚 

𝑟𝑜𝑜𝑡  (5.84) 

With the kinematic structure in Figure 5.23(a), we can know the rotation matrix 

   𝑚 
𝑟𝑜𝑜𝑡  can be represented as: 

   𝑚 
𝑟𝑜𝑜𝑡 =  𝑦(𝜃𝑦) 𝑥(𝜃𝑥) 𝑧(𝜃𝑧) (5.85) 

To acquire the rotation angles, the YXZ rotation decomposition described in 

Algorithm 3.2 would be applied: 

𝜃𝑥  𝜃𝑦 𝜃𝑧 ←    _𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛_𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(    𝑚 
𝑟𝑜𝑜𝑡 ) (5.86) 

The rotation angles 𝜃𝑥 𝜃𝑦  𝜃𝑧 correspond to the rotation angles in the shoulders and 

hips as Table 5.2. 

Table 5.2 

Rotation joint angle correspondences for limbs 

Joint Angle in a Limb Joint Angle in Human Skeleton 

𝜃𝑥 𝜃4  𝑛 𝑡 𝜃   𝑛 𝑡 𝜃1   𝑛 𝑡 𝜃1   𝑛 𝑡 

𝜃𝑦 𝜃   𝑛 𝑡 𝜃   𝑛 𝑡 𝜃1   𝑛 𝑡 𝜃2   𝑛 𝑡 

𝜃𝑧 𝜃   𝑛 𝑡 𝜃1   𝑛 𝑡 𝜃1   𝑛 𝑡 𝜃21  𝑛 𝑡 
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As mentioned in part 5) Shoulder and hip joint angle estimation, the initialization 

only works when the points of the limbs are not colinear. While the keypoints are colinear 

for one of the limbs, the initialization would output the initial state including NaNs (not 

a number). The situation would also happen when one of the limb keypoints is missed or 

there are more than one head keypoints missed. To reduce the probability of failure and 

also increase its stability, the state initialization would be run for the first 10 frames and 

average the estimated states excluding the NaNs. 
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5.5 Iterative LQR Motion Smoother 

After the OCR-UKF filtering, we can see there are still some small noise in the joint 

states so that the filtered skeleton looks shaky. The reason comes from that the Kalman 

filter is a stochastic filter. As the assumption in Equation (5.36)-(5.37), there are process 

noises when the state is updating. It’s reasonable that the filtered results are shaky.  

However, for human motion estimation, not only the position but also the higher 

order terms, like velocity and acceleration, should be estimated accurately. The shaky 

motion of the skeleton would lead to huge errors in the discrete derivation of the positions. 

To reduce the noises while considering the system dynamic, i.e. constant velocity model 

in Equation (5.43), the linear quadratic tracking (LQR tracking) mentioned in Section 3.8 

is applied.  

The denoise smoothing process can be formed as an optimization problem as: 

min
 𝑡

1

2
[∑(𝒙𝑡 − 𝒙̂𝑡)

𝑇𝑸 𝑞𝑟1(𝒙𝑡 − 𝒙̂𝑡) +  𝑡
𝑇  𝑞𝑟1 𝑡

𝑁−1

𝑡= 

]

+
1

2
(𝒙𝑁 − 𝒙̂𝑁)

𝑇𝑸 𝑞𝑟1 𝑁(𝒙𝑁 − 𝒙̂𝑁) 

s. t.   𝒙𝑡 = 𝑨𝑈𝐾𝐹𝒙𝑡−1 + 𝑩𝑈𝐾𝐹 𝑡 𝑡 = 0 1 …  𝑁 − 1 given 𝒙  

(5.87) 

The reference trajectory 𝒙̂𝑡  to track is the output of the OCR-UKF, and 𝑸 𝑞𝑟1, 

  𝑞𝑟1, 𝑸 𝑞𝑟1 𝑁 are the handcrafted weights set as 𝑸 𝑞𝑟1 = 𝑸 𝑞𝑟1 𝑁 = 𝑰   and   𝑞𝑟1 =

𝟏𝟎𝟑 ∙ 𝑰2  . The optimal solution of 𝒙𝑡  introduced in Section 3.8 is the smoothed 

trajectory by the LQR tracking. 
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The concept of using LQR tracking as a smoothing filter is that the denoise process 

is like a trade-off between the position accuracy and the smoothness of the estimated 

trajectory. When the smooth state dynamic is fit, the constant velocity model for example, 

noise term is supposed to come from the input signals. For LQR tracking, it’s also a trade-

off between the state tracking errors and the magnitude of input when the tracking input 

is zero. In the constant velocity model, the roughness of the trajectories causes by the 

additional acceleration  𝑡. Using the LQR tracking as a smoothing filter can effectively 

reduce the roughness and keep the small tracking errors for state 𝒙𝑡 while considering 

the given system dynamic. 

After applying the smoothing technique, the overall roughness of the joint state 

seems to decrease while the overall trajectory is close to the output of OCR-UKF, as 

shown in Figure 5.24. 

 

Figure 5.24: The comparison of the smoothness before and after the LQR tracking 

The roughness is reduced 
after LQR tracking
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Nonetheless, it seems to cause small additional errors for the keypoint trajectory, as 

shown in Figure 5.25. 

 

Figure 5.25: The additional error comes from the directly LQR tracking 

The reason for these additional errors causes by the independent tracking for each 

joint angle. The accuracy of output of OCR-UKF is based on the forward kinematic 

function ℎ(𝒙𝑡) which takes the effect from all joint states to every keypoint position. In 

the LQR tracking, since the weights are set as 𝑸 𝑞𝑟 = 𝑸 𝑞𝑟 𝑁 = 𝑰   and   𝑞𝑟 = 𝟏𝟎
𝟑 ∙

𝑰2 ,  every joint track their own trajectories independently. Due to this reason, the 

keypoint position calculated with the forward kinematic function may generate some 

additional errors because the coordinate among the joints is ignored. As the result, for the 

keypoints far from the head, the start of the body chain in the forward kinematic function, 

the additional error would be greater since there are more uncooperative joints affecting 

the positions of the keypoints. 

Additional ripple while the 
OCR-UKF output is almost static
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Figure 5.26: Body chains of the proposed kinematic model for human skeleton 

To solve this issue, instead of the joint state 𝒙𝑡, the target we need to track is the 

keypoint positions 𝒛̂𝑡 = ℎ(𝒙̂𝑡): 

min
 𝑡

1

2
[∑(ℎ(𝒙𝑡) − 𝒛̂𝑡)

𝑇𝑸 𝑞𝑟2(ℎ(𝒙𝑡) − 𝒛̂𝑡) +  𝑡
𝑇  𝑞𝑟2 𝑡

𝑁−1

𝑡= 

]

+
1

2
(ℎ(𝒙𝑁) − 𝒛̂𝑁)

𝑇𝑸 𝑞𝑟2 𝑁(ℎ(𝒙𝑁) − 𝒛̂𝑁) 

s. t.   𝒙𝑡 = 𝑨𝑈𝐾𝐹𝒙𝑡−1 + 𝑩𝑈𝐾𝐹 𝑡 𝑡 = 0 1 …  𝑁 − 1 given 𝒙  

(5.88) 

However, after adjusting the chasing target as Equation (5.88), the optimization 

problem is turned into a nonlinear problem and takes a huge time to solve.  

  

Start of the body chains

x
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𝜃4𝑥, 𝜃 𝑦

𝜃 𝑧
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𝜃 𝑦
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𝜃1 𝑧𝜃21𝑧
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z

R L
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To speed up the processing time with the analytic solution of LQR tracking, we use 

the linearization technique as: 

𝐽 =
1

2
[∑(ℎ(𝒙𝑡) − 𝒛̂𝑡)

𝑇𝑸 𝑞𝑟2(ℎ(𝒙𝑡) − 𝒛̂𝑡) +  𝑡
𝑇  𝑞𝑟2 𝑡

𝑁−1

𝑡= 

]

+
1

2
(𝒙𝑁 − 𝒙̂𝑁)

𝑇𝑸 𝑞𝑟2 𝑁(𝒙𝑁 − 𝒙̂𝑁) 

≈
1

2
[∑(𝒙𝑡 − 𝒙̃𝑡)

𝑇 𝒙̌𝑡
𝑇𝑸 𝑞𝑟2 𝒙̌𝑡(𝒙𝑡 − 𝒙̃𝑡) +  𝑡

𝑇  𝑞𝑟2 𝑡

𝑁−1

𝑡= 

]

+
1

2
(𝒙𝑁 − 𝒙̂𝑁)

𝑇 𝒙̌𝑁
𝑇𝑸 𝑞𝑟2 𝑁 𝒙̌𝑁(𝒙𝑁 − 𝒙̂𝑁) 

(5.89) 

𝒙̌𝑡  is the tracked state generated in the previous iteration,  𝒙̌𝑡  is the Jacobian 

matrix of ℎ(𝒙𝑡) at 𝒙𝑡 = 𝒙𝑡: 

 𝒙̌𝑡 =
𝜕ℎ

𝜕𝒙𝑡
|𝒙𝑡=𝒙̌𝑡 (5.90) 

𝒙̃𝑡 is the new tracked state in this iteration calculated as Equation where 𝑝𝑖𝑛 ( 𝒙̌𝑡) 

is the pseudo inversed matrix of  𝒙̌𝑡: 

𝒙̃𝑡 = 𝒙̌𝑡 + 𝑝𝑖𝑛 ( 𝒙̌𝑡) ∙ (𝒛̂𝑡 − ℎ(𝒙̌𝑡)) (5.91) 

Therefore, the linearized keypoint tracking problem can be formulated as: 

min
 𝑡

1

2
[∑(𝒙𝑡 − 𝒙𝑡)

𝑇𝑸 𝑞𝑟2 𝒙̌𝑡(𝒙𝑡 − 𝒙̃𝑡) +  𝑡
𝑇  𝑞𝑟2 𝑡

𝑁−1

𝑡= 

]

+
1

2
(𝒙𝑁 − 𝒙̃𝑁)

𝑇𝑸 𝑞𝑟2 𝒙̌𝑁(𝒙𝑁 − 𝒙̃𝑁) 

s. t.   𝒙𝑡 = 𝑨𝑈𝐾𝐹𝒙𝑡−1 + 𝑩𝑈𝐾𝐹 𝑡 𝑡 = 0 1 …  𝑁 − 1 given 𝒙  

(5.92) 
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The only difference to the classical LQR tracking is the 𝑸 𝑞𝑟2 𝒙̌𝑡 is time-varying. 

Despite that, the analytic solution derived in Equation (3.86) still works for the time-

varying weights. 

However, since the Jacobian matrix of the forward kinematic function  𝒙̌𝑡  is 

always zero for the velocity state, 𝑸 𝑞𝑟2 𝒙̌𝑡 =  𝒙̌𝑡
𝑇𝑸 𝑞𝑟2 𝒙̌𝑡 has zero weighting for the 

velocity tracking. To make up for this issue, 𝑸 𝑞𝑟2 𝒙̌𝑡 would be added with other weights: 

𝑸 𝑞𝑟2 𝒙̌𝑡 =  𝒙̌𝑡
𝑇𝑸 𝑞𝑟2 𝒙̌𝑡 + 𝑸 𝑞𝑟2 𝑣    (5.93) 

The 𝑸 𝑞𝑟2 𝑣    is a diagonal weight for the velocity state as Equation (5.94) where 

𝐺𝑣   is a constant gain for the velocity weights. 

𝑸 𝑞𝑟2 𝑣   = [

𝟎22×22 𝟎22×22 𝟎22× 𝟎22× 
𝟎22×22 𝐺𝑣  ∙ 𝑰22 𝟎22× 𝟎22× 
𝟎 ×22 𝟎 ×22 𝟎 × 𝟎 × 
𝟎 ×22 𝟎 ×22 𝟎 × 𝐺𝑣  ∙ 𝑰 

] (5.94) 

In addition, because the trajectory filtered after the OCR-UKF is shaky, the velocity 

state filtered after the direct LQR tracking would be more accurate. Therefore, the 

tracking target 𝒙̅𝑡  after adding the velocity weight would be calculated by Equation 

(5.95):  

𝒙𝑡 = [𝜣̃𝑡
𝑇 𝜣̆∆ 𝑡

𝑇  𝑻̃𝑡
𝑇 𝑻̆∆ 𝑡

𝑇 ]
𝑇
 (5.95) 

[𝜣̆𝑡
𝑇 𝜣̆∆ 𝑡

𝑇  𝑻̆𝑡
𝑇 𝑻̆∆ 𝑡

𝑇 ]
𝑇
= 𝒙̆𝑡 (5.96) 

[𝜣̃𝑡
𝑇 𝜣̃∆ 𝑡

𝑇  𝑻̃𝑡
𝑇 𝑻̃∆ 𝑡

𝑇 ]
𝑇
= 𝒙̃𝑡 (5.97) 
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The state 𝒙̆𝑡 is the filtered state after the direct LQR tracking. As shown in Equation 

(5.95), the tracked state target 𝒙𝑡 is composed of the position terms estimated from the 

OCR-UKF and the velocity terms filtered by the direct LQR tracking. Afterward, the 

accurate smoothed result can be regarded as the solution of Equation (5.98): 

min
 𝑡

1

2
[∑(𝒙𝑡 − 𝒙𝑡)

𝑇𝑸 𝑞𝑟2 𝒙̌𝑡(𝒙𝑡 − 𝒙̅𝑡𝑡) +  𝑡
𝑇  𝑞𝑟2 𝑡

𝑁−1

𝑡= 

]

+
1

2
(𝒙𝑁 − 𝒙̅𝑁)

𝑇𝑸 𝑞𝑟2 𝒙̌𝑁(𝒙𝑁 − 𝒙̅𝑁) 

s. t.   𝒙𝑡 = 𝑨𝑈𝐾𝐹𝒙𝑡−1 + 𝑩𝑈𝐾𝐹 𝑡 𝑡 = 0 1 …  𝑁 − 1 given 𝒙  

(5.98) 

To ensure the accuracy of the linearization, 𝒙̌𝑡 should be close to the real joint state 

which we can’t access for estimation. To overcome it, the iterative LQR motion smoother 

is proposed as shown in Algorithm 5.3. 

Algorithm 5.3: Iterative LQR motion smoothing 

Input: a rough reference state 𝒙𝑡, forward kinematic function ℎ(𝒙𝑡), number of iterations 𝑁 𝑡 𝑟  

Output: the refined state 𝒙𝑡 

1: 𝒛̂𝑡 ← ℎ(𝒙𝑡)  

2: 𝒙̆𝑡 ← 𝐽𝑜𝑖𝑛𝑡_ 𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡_𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔(𝒙𝑡) – solve (5.87)  

3: 𝒙𝑡 ← 𝒙̆𝑡  

4: for i  ←  1 to 𝑁 𝑡 𝑟  do 

5:      𝒙̌𝑡 ←
𝜕 

𝜕𝒙𝑡
|𝒙𝑡=𝒙̌𝑡  

6:     𝒙𝑡 ← 𝒙𝑡 + 𝑝𝑖𝑛 ( 𝒙̌𝑡) ∙ (𝒛̂𝑡 − ℎ(𝒙𝑡)) 

7:     𝒙𝑡 ← [𝜣̃𝑡
𝑇 𝜣̆∆ 𝑡

𝑇  𝑻̃𝑡
𝑇 𝑻̆∆ 𝑡

𝑇 ]
𝑇
 

8:     𝒙𝑡 ← 𝐽𝑜𝑖𝑛𝑡_𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡_𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡_𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔(𝒙𝑡) – solve (5.98) 

9:     𝒙𝑡 ← 𝒙𝑡 

10: end for  

11: return 𝒙𝑡 
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To guide 𝒙̌𝑡 close to the real state, the joint-dependent state tracking with Equation 

(5.87) is set as 𝒙̌𝑡 for the initial guess first. Since 𝒙̌𝑡 is close to the real state with the 

initial guess,  𝒙̌𝑡 would also be close to the Jacobian at the real state. Therefore, the 

updated state 𝒙𝑡 solved with Equation (5.98) can approach the real state. As 𝒙̌𝑡 reach 

the real state, 𝒙̿𝑡 would equal to 𝒙̌𝑡 and not be changed anymore. To limit the operation 

time, the number of iterations is limited at 𝑁 𝑡 𝑟 . Usually, 𝑁 𝑡 𝑟 = 3 is enough, as 

shown in Figure 5.27. The estimation result after OCR-UKF and iterative LQR motion 

smoother would be called as PostSK. 

  

(a) (b) 

Figure 5.27: The result of iterative LQR motion smoother 

(a) the overview of the trajectory of LAnkle for B20_354 

(b) the zoomed in trajectory of LAnkle for B20_354 
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Chapter 6  

Simulation and Experimental Results 

and Analysis  

In this chapter, the simulations and experiments are conducted to demonstrate and 

verify the applicability of the proposed system. In Section 6.1, the overview of the 

processes in simulations and experiments is reviewed. To evaluate the proposed method, 

error metrics to measure the performance of motion estimation are described in Section 

6.2. The setups and results of the simulation to evaluate the skeleton motion modification 

method proposed in Chapter 5 are presented in Section 6.3 and Section 6.4 individually. 

To show the overall human motion estimation in the real-world, the experiment setups 

and results are shown in Section 6.5 and Section 6.6. Moreover, to compare with deep-

learning-based methods popular in recent years, an evaluation tested on Human3.6M is  

demonstrated in Section 6.7. 
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6.1 Overview of the Procedures of the Simulations 

and Experiments 

To demonstrate the proposed method, both simulation and experiment will be shown 

in this chapter. In the simulation, the full processes to obtain the estimation motion from 

the rough and noisy skeleton mentioned in Chapter 5 will be evaluated as shown in Figure 

6.1. 

 

Figure 6.1: Flow chart for simulations 

The rough skeleton (RawSK) will first pass through the body parameter estimation 

described in Section 5.2 to estimate the link parameters of a human skeleton. Next, the 

proposed method will use the estimated body parameters and the first few frames of the 

RawSK to reckon an approximate joint state for the initialization of the joint state 

estimator as Section 5.4 said.  
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After the joint state initialization, the joint state estimator proposed in Section 5.3 

will reduce the noise and even reject the outlier with the outlier-component rejecting 

mechanism. Hereafter, since the output of the joint state estimator still contains some 

detectable high-frequency noises, the proposed motion smoother with iterative LQR 

tracking mentioned in Section 5.5 will be applied to reduce the velocity and acceleration 

errors further. Finally, after the motion smoothing, the forward kinematic function will 

transform the estimation results from the joint space into the skeleton keypoint positions. 

The estimation results (PostSK) can be compared with the ground truth (gtSK) and 

evaluated its performance. 

For the experiment, the whole procedures to obtain the estimated motion in real-

world will be examined as shown in Figure 6.2. Not only the processes to modify the 3D 

raw skeletons but the processes to acquire the RawSKs from the multi-view system 

mentioned in Chapter 4 will also be investigated. The target human motion will be 

captured as videos with the proposed multi-view system presented in Section 4.1. The 

well-known 2D skeleton detection model, AlphaPose, will extract the 2D target skeletons 

in every view. With the 3D reconstruction method shown in Section 4.3, the RawSKs will 

be formed as the input of the 3D skeleton modification module which is the same 

processes as the simulation procedures. 
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Besides the reconstructed results, in the experiment, the influence of the properties 

of the 3D reconstructed AlphaPose skeletons is also one of the points needed to be 

analyzed. The influence will directly determine the practical values of the proposed 

method. 

 

Figure 6.2: Flow chart for experiments 
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6.2 Evaluation Metrics 

Referring to [12: Wang et al. 2021], a common metric to quantify the 3D human pose 

estimation error is MPJPE (Mean Per Joint Position Error), which is calculated by: 

𝐸𝑀𝑃𝐽𝑃𝐸(𝒮) =
1

𝑁
∑[

1

𝑁𝑠
∑‖𝒑  𝒮(𝑡) − 𝒑  𝑔𝑡(𝑡)‖2

𝑁𝑠−1

 = 

]

𝑁

𝑡=1

 (6.1) 

where 𝒮 denotes the corresponding skeleton to evaluate, 𝒑  𝒮(𝑡) ∈ ℝ
3 and 𝒑  𝑔𝑡(𝑡) ∈

ℝ3 are the positions of 𝑖-th keypoint in 𝒮 and ground truth skeleton at frame 𝑡, 𝑁 is 

the frame number of the motion sequence, 𝑁𝑠 is the keypoint number to compare. 

Apart from the position errors, the higher-order metrics for velocity and acceleration 

are used in this thesis as well since human motions are not only determined by its pose. 

To acquire the higher-order information, the discrete derivative is applied as Equation 

(6.9) and Equation (6.10): 

   𝒮(𝑡) = 𝒑  𝒮(𝑡) − 𝒑  𝒮(𝑡 − 1),  set 𝒑  𝒮(0) = 𝒑  𝒮(1) (6.2) 

   𝑔𝑡(𝑡) = 𝒑  𝑔𝑡(𝑡) − 𝒑  𝑔𝑡(𝑡 − 1),  set 𝒑  𝑔𝑡(0) = 𝒑  𝑔𝑡(1) (6.3) 

where    𝒮(𝑡) ∈ ℝ
3  and    𝑔𝑡(𝑡) ∈ ℝ

3  are the velocities of 𝑖-th keypoint in 𝒮  and 

ground truth skeleton at frame 𝑡. 
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According to the quantification method of MPJPE, a metric to evaluate the velocity 

error of a skeleton 𝒮, MPJVE (Mean Per Joint Velocity Error), is shown as: 

𝐸𝑀𝑃𝐽𝑉𝐸(𝒮) =
1

𝑁
∑[

1

𝑁𝑠
∑‖   𝒮(𝑡) −    𝑔𝑡(𝑡)‖2

𝑁𝑠−1

 = 

]

𝑁

𝑡=1

 (6.4) 

Similar to MPJVE, the acceleration metric, MPJAE (Mean Per Joint Acceleration 

Error), can be calculated by: 

𝐸𝑀𝑃𝐽𝐴𝐸(𝒮) =
1

𝑁
∑[

1

𝑁𝑠
∑‖𝒂  𝒮(𝑡) − 𝒂  𝑔𝑡(𝑡)‖2

𝑁𝑠−1

 = 

]

𝑁

𝑡=1

 (6.5) 

where 𝒂  𝒮(𝑡) ∈ ℝ
3 and 𝒂  𝑔𝑡(𝑡) ∈ ℝ

3 are the accelerations of 𝑖-th keypoint in 𝒮 and 

ground truth skeleton at frame 𝑡 which can be calculated as: 

𝒂  𝒮(𝑡) =    𝒮(𝑡) −    𝒮(𝑡 − 1) ,  set    𝒮(0) =    𝒮(1) (6.6) 

𝒂  𝑔𝑡(𝑡) =    𝑔𝑡(𝑡) −    𝒮(𝑡 − 1) ,  set    𝑔𝑡(0) =    𝑔𝑡(1) (6.7) 

These three metrics are the main metrics to evaluate the performance of the proposed 

method from the views of positions (MPJPE), velocity (MPJVE) and acceleration 

(MPJAE). 
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6.3 Simulation Setups 

In the simulation, the main purpose is to investigate the properties of the proposed 

skeleton modifying method from different views. The ground truth motions will be 

generated with hand-craft ideal joint state and body parameters. Then, the ground truth 

keypoint positions will be obtained by passing through the forward kinematic function. 

To produce the RawSKs as the inputs, additional noises will be added to the ground truth 

keypoint position. These noises are used to simulate the real noise caused by occlusion, 

frame dropping and imperfect detection from the keypoint detector. Therefore, the noises 

will contain basic noises, outliers and some missing data to reproduce the real situation. 

6.3.1 Kinematic model Setups 

In the simulation, to reduce the factors influencing the estimation result, a simplified 

skeleton (SimSK) is proposed to analogize the human skeleton, as shown in Figure 6.3. 

There are 6 keypoints and 4 joints in a SimSK. The numbers of estimated body parameters 

are 4 for the head and 2 for the limb shown in Table 6.1. 

The simplified skeleton would be applied to replace the human skeleton in this 

simulation to reduce the considered variables. 
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(a) (b) 

Figure 6.3: Analogy of SimSK and human skeleton 

(a) The kinematic model of SimSK 

(b) The kinematic model of human skeleton 

In Figure 6.3 (a), the head part of SimSK labeled in yellow is a rigid-body structure 

and is used to analogize the head part of the human skeleton in Figure 6.3 (b). There are 

4 points in the head part, which is the minimum number of the points to apply the 3D 

transformation estimation described in Section 3.6. The transformation state between the 

head part and the world coordinate will also be estimated as the head-world 

transformation in the human skeleton. 

For the limb part labeled in blue in Figure 6.3 (a), it’s used to analogize the limb 

structure in the human skeleton. From 𝒑3  to 𝒑 , the three keypoints are used to 

represent the root point (shoulder or hip), middle point (elbow or knee) and endpoint 

(wrist or ankle) in a limb of a human skeleton. They have corresponding kinematic 

structure for the joint state. 
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Consequentially, there are six body parameters to describe the SimSK. As Table 6.1 

shown,  1 and  2 are the parameters represent the lengths of both sections in the limb 

part. For the head part, ( 𝒑 
     𝒑1

     𝒑2
     𝒑4

    ) are the parameters to represent 

the keypoint positions in the rigid-body coordinate {ℎ𝑒𝑎𝑑}. 

Table 6.1 

The definition of the body parameters in a SimSK 

Symbol Definition 

 1 Length of Upper section of Limb (∈ ℝ) 

 2 Length of Lower section of Limb (∈ ℝ) 

𝒑 
     

Position of 𝒑   

in {ℎ𝑒𝑎𝑑} (∈ ℝ3) 

𝒑1
     

Position of 𝒑1  

in {ℎ𝑒𝑎𝑑} (∈ ℝ3) 

𝒑2
     

Position of 𝒑2  

in {ℎ𝑒𝑎𝑑} (∈ ℝ3) 

𝒑3
     

Position of 𝒑3  

in {ℎ𝑒𝑎𝑑} (∈ ℝ3) 

In the simulation, the ideal body parameters are set as: 

{
 1 = 0.4 (𝑚)
 2 = 0.3 (𝑚)

 (6.8) 

{
 
 

 
 

𝒑 
    = [0 0 0]𝑇  (𝑚)

𝒑1
    = [0.2 0 0]𝑇  (𝑚)

𝒑2
    = [0 0.2 0]𝑇  (𝑚)

𝒑3
    = [0 0 0.2]𝑇  (𝑚)

 (6.9) 
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When the state is equal to a zero vector, the keypoints of ideal SimSK is visualized 

as Figure 6.4 shown. 

 

Figure 6.4: The SimSK with given ideal body parameters 

 

6.3.2 Tested Motions 

In the simulation, the ideal state 𝒙       𝑡 for the SimSK is defined with following 

variables: 

{

𝑝  𝑥 = cos𝜔𝑡

𝑝  𝑦 = 𝑠𝑖𝑛 𝜔𝑡

𝑝  𝑧 = 𝑠𝑖𝑛
1

2
𝜔𝑡

 {
𝛼 = 0
𝛽 = 0
𝛾 = 0

 (6.10) 

{
 
 

 
 

𝜃1 𝑥 =
 
2⁄ ∙ 𝑠𝑖𝑛 𝜔𝑡

𝜃2 𝑦 =
 
2⁄ ∙ 𝑠𝑖𝑛 𝜔𝑡

𝜃3 𝑧 =
 
2⁄ ∙ 𝑠𝑖𝑛 2𝜔𝑡

𝜃4 𝑦 =
 
4⁄ ∙ 𝑠𝑖𝑛

3

2
𝜔𝑡 +  2⁄

 (6.11) 
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The trajectories of the state values are illustrated in Figure 6.5: 

 

Figure 6.5: The ideal state of SimSK in simulation 

(𝑝  𝑥 𝑝  𝑦 𝑝  𝑧) is the position of 𝒑 . (𝛼 𝛽 𝛾) are the roll-pitch-yaw angle of the 

head. 𝜃1 𝑥 to 𝜃4 𝑦 are the joint angle in the SimSK. 𝜔 is the motion speed factor and 

set as 0.03.  

Therefore, the ideal state 𝒙       𝑡 is: 

𝒙       𝑡 = [𝑻𝑡
𝑇 𝜣𝑡

𝑇 𝑻∆ 𝑡
𝑇 𝜣∆ 𝑡

𝑇 ]
𝑇
∈ ℝ𝑛 𝑛 = 20 (6.12) 

{
 

 
𝑻𝑡 = [𝑝  𝑥 𝑝  𝑦 𝑝  𝑧 𝛼 𝛽 𝛾]𝑇

𝜣𝑡 = [𝜃1 𝑥 𝜃2 𝑦 𝜃3 𝑧 𝜃4 𝑦]𝑇

𝑻∆ 𝑡 = 𝑻𝑡 − 𝑻𝑡−1
𝜣∆ 𝑡 = 𝜣𝑡 − 𝜣𝑡−1

 (6.13) 

With the defined ideal joint state 𝒙       𝑡  in Equation (6.10)-(6.11), the ideal 

motion can be generated with forward kinematic function ℎ(∙) as: 

𝒛       𝑡 = [𝒑 
𝑇 𝒑1

𝑇 𝒑2
𝑇 𝒑3

𝑇 𝒑4
𝑇 𝒑 

𝑇]𝑇 = ℎ(𝒙       𝑡) (6.14) 

Therefore, the ideal motion of the SimSK can be illustrated in Figure 6.6. 
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Figure 6.6: The ideal motion (gtSK) of SimSK in simulation 

The ideal motion will be regarded as the ground truth (gtSK) in the simulation, i.e: 

𝒛𝑔𝑡 𝑡 = 𝒛      𝑡 ∈ ℝ
1  (6.15) 

To demonstrate the proposed estimation method, the RawSK will be generated with 

the ground truth. Since the RawSK is used to simulate the raw noisy motion sampled from 

the real world, it should contain the three defects like the real raw data: basic noises, 

outliers and missing data. 
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For the basic noises, we use a white noise 𝒘𝑡  multiplied with a gain 𝐺 𝑛  to 

simulate the small observation noise as Equation (6.16). 

𝒛 𝑛 𝑡 = 𝒛𝑔𝑡 𝑡 + 𝐺 𝑛 𝑡 ∙ 𝒘𝑡 ∈ ℝ
1  (6.16) 

𝒘𝑡 ~ 𝒩(0 1)  (6.17) 

𝐺 𝑛 𝑡 = 0.03  (6.18) 

Then, for the outliers caused by the imperfect detection of AlphaPose and the 3D 

reconstruction, we first design a probability 𝑃𝑜𝑢𝑡   𝑟_𝑠𝑡 𝑟𝑡  for every keypoint at each 

frame as the start of the outlier intervals. 

𝑃𝑜𝑢𝑡   𝑟_𝑠𝑡 𝑟𝑡 = 0.025  (6.19) 

Once an outlier interval is chosen to start in the 𝑖-th keypoint at the frame 𝑡, a length 

will be sampled as the duration of the outlier interval from Poisson distribution:  

𝑁𝑜𝑢𝑡   𝑡 ~ 𝑃𝑜𝑖𝑠(𝜆𝑜𝑢𝑡)  (6.20) 

𝜆𝑜𝑢𝑡 = 2  (6.21) 

In the outlier interval, the raw motion will be added to the same random vector in 

the whole interval where the random vector is calculated by: 

   𝑡  = 𝐺𝑜𝑢𝑡   𝑡 ∙ 𝒏  𝑡 ∈ ℝ
3  (6.22) 

𝒏  𝑡 =
   𝑡

‖   𝑡‖
 (6.23) 

where 𝐺𝑜𝑢𝑡   𝑡 is sampled from a uniform distribution in [0.3 0.8], and    𝑡 ∈ ℝ
3 is a 

random vector whose elements are all sampled from a uniform distribution in [−1 1]. 
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For the outlier part, since the detection results of AlphaPose are highly pose-

dependent, the outliers usually sustain in a few frames because the human pose is highly 

similar in the interval. Likewise, the outlier values in the outlier interval are also similar. 

Thus, the outlier situations can be simulated with the approach above.  

 With this approach, the overall outlier probability 𝑃𝑜𝑢𝑡   𝑟 can be calculated as 

Equation since 𝐸[𝑃𝑜𝑖𝑠(𝜆𝑜𝑢𝑡)] = 𝜆𝑜𝑢𝑡. 

𝑃𝑜𝑢𝑡   𝑟 = 𝑃𝑜𝑢𝑡   𝑟_𝑠𝑡 𝑟𝑡 ∙ 𝜆𝑜𝑢𝑡 = 0.05  (6.24) 

Then, for the missing data, similar to outliers, the missing data usually sustain a few 

frames but longer. Therefore, we can use the same approach. First, set the probability 

𝑃𝑚 𝑠𝑠_𝑠𝑡 𝑟𝑡 of the start of the missing interval as: 

𝑃𝑚 𝑠𝑠_𝑠𝑡 𝑟𝑡 = 0.005  (6.25) 

The duration of the missing interval in the 𝑖-th keypoint at the frame 𝑡 is also 

sampled from Poisson distribution:  

𝑁𝑚 𝑠𝑠   𝑡 ~ 𝑃𝑜𝑖𝑠(𝜆𝑚 𝑠𝑠)  (6.26) 

𝜆𝑚 𝑠𝑠 = 10  (6.27) 

All the keypoint values in the missing interval will be removed to simulate the 

missing data situation in the real data. Finally, the overall missing probability is calculated 

as: 

𝑃𝑚 𝑠𝑠 = 𝑃𝑚 𝑠𝑠_𝑠𝑡 𝑟𝑡 ∙ 𝜆𝑚 𝑠𝑠 = 0.05  (6.28) 
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The stages of generating RawSKs are illustrated in Figure 6.7. After obtaining the 

ideal motion, the basic noises are added. The outlier intervals with their additional outlier 

vectors    𝑡 are joined. Last, to simulate the missing data problem, the missing interval 

are sampled and wiped out the values. 

 

Figure 6.7: Generation stages of RawSK 
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Eventually, the RawSK motion in the simulation is illustrated in Figure 6.8. 

 

Figure 6.8: The raw motion of SimSK in simulation 
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6.3.3 Parameter Settings 

In the simulation, the parameters set for the proposed estimation method are shown 

as Table 6.2 and Table 6.3: 

Table 6.2 

The Parameter Settings for the Joint State Estimator in the Proposed Method 

in the Simulation 

Joint State Estimator: 

 Symbol Value Meaning 

𝑷  10−1 ∙ 𝑰2  Initial state covariance 

𝑸𝑈𝐾𝐹 [
𝟎1 ×1 𝟎1 ×1 
𝟎1 ×1 10− ∙ 𝑰1 

] Process noise covariance 

 𝑈𝐾𝐹 10− ∙ 𝑰1  Measurement noise covariance 

𝑘𝑜𝑢𝑡 0.008 Outlier rejecting coefficient 

𝑸 𝑛 𝑁𝑜𝑢𝑡 101 ∙ 𝑰2  State weights for inlier interpolation 

  𝑛 𝑰1  Input weights for inlier interpolation 

𝒙 𝑜𝑤 𝑟 −∞ ∙ 𝟏2  State lower bound with KKT condition 

𝒙𝑢𝑝𝑝 𝑟 ∞ ∙ 𝟏2  State upper bound with KKT condition 

𝑐  𝑚𝑝 −0.1 Damper coefficient for body force 
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Table 6.3 

The Parameter Settings for the Motion Smoother in the Proposed Method 

in the Simulation 

Motion Smoother: 

 Symbol Value Meaning 

𝑸 𝑞𝑟1 𝑰2  State weights for initial LQR tracking 

  𝑞𝑟1 103 ∙ 𝑰1  Input weights for initial LQR tracking 

𝑸 𝑞𝑟2 [
𝑰12 𝟎12× 
𝟎 ×12 50 ∙ 𝑰 

] State weights for iterative LQR tracking 

𝑸 𝑞𝑟2 𝑣   [
𝟎1 ×1 𝟎1 ×1 
𝟎1 ×1 104 ∙ 𝑰1 

] 

Velocity state weights for iterative LQR 

tracking 

  𝑞𝑟2 [
103 ∙ 𝑰 𝟎 ×4
𝟎4× 102 ∙ 𝑰4

] Input weights for iterative LQR tracking 

𝑁 𝑡 𝑟 3 

Number of iterations for iterative LQR 

tracking 
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6.4 Simulation Results and Analysis 

6.4.1 Performance Analysis of Motion Estimation 

As the proposed method shown in Figure 6.1, the first step of the skeleton 

modification is to estimate the body parameters of the skeleton (SimSK). The estimated 

results and the ground truth values of the body parameters are listed in Table 6.4. The 

maximum estimation error of the body parameters is in 𝒑1
     and high to 46 mm. The 

overall body parameter estimation errors are from 0 to 46 mm. These errors are acceptable, 

however, may influence the motion estimation. 

Table 6.4 

The Estimated Body Parameters in the Simulation 

Body Parameter Ground Truth (m) Estimated Value (m) 

 1 0.4 0.409 

 2 0.3 0.317 

𝒑 
     [0 0 0]𝑇 [0 0 0]𝑇 

𝒑1
     [0.2 0 0]𝑇 [0.246 0 0]𝑇 

𝒑2
     [0 0.2 0]𝑇 [0.041 0.212 0]𝑇 

𝒑3
     [0 0 0.2]𝑇 [0.038 0.011 0.177]𝑇 

The estimated trajectories and errors of all keypoints in the SimSK are illustrated in 

Figure 6.9 and Figure 6.10. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 6.9: The estimated trajectory for 𝒑 , 𝒑1 and 𝒑2 in Simulation 

(a) Trajectory of 𝒑  (b) Position Error of 𝒑   

(c) Trajectory of 𝒑1 (d) Position Error of 𝒑1 

(e) Trajectory of 𝒑2 (f) Position Error of 𝒑2 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 6.10: The estimated trajectory for 𝒑3, 𝒑4 and 𝒑  in Simulation 

(a) Trajectory of 𝒑3 (b) Position Error of 𝒑3 

(c) Trajectory of 𝒑4 (d) Position Error of 𝒑4 

(e) Trajectory of 𝒑  (f) Position Error of 𝒑  
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In Figure 6.9 and Figure 6.10, we can notice that the errors for most keypoints in 

PostSK are much lower than those in RawSK. It’s because the outlier-component-

rejecting mechanism we design in Section 5.3 works properly. In most frames, the errors 

are less relative to the outliers from the RawSK, which increases the robustness of the 

estimation results.  

However, for the keypoint 𝒑 , there are huge errors occurring in few frames with 

the outliers. As 𝒑  is the end point of the SimSK, there is lower correlations between 

𝒑  and other keypoints. In other words, there is more freedom and higher uncertainty for 

𝒑  given the information on the other keypoints. Therefore, it’s harder to determine the 

outliers when the outliers occur in 𝒑 . It’s the reason caused by the kinematic structure. 

For the overall estimation errors, the average errors of the six keypoints are 

illustrated in Figure 6.11. There are three stages of the estimation in the proposed method: 

1) RawSK, 2) the estimated skeleton after the joint state estimator (KF-SK), and 3) 

PostSK. As mentioned in Chapter 5, the task of the joint state estimator is to reject the 

outliers, fill the missing data and propose the joint state with better position performance. 

Then, the task of motion smoother is to reduce the high-order errors and further refine the 

skeleton position by considering the trade-off between state tracking and joint 

acceleration. 
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In Figure 6.11 (a), it’s easy to observe that the KF-SK rejects the missing data and 

most of the outliers and then performs much better position errors. For the PostSK, the 

motion smoother lowers the position errors again in Figure 6.11 (a) and enhances the 

velocity and acceleration performance in Figure 6.11 (b) and (c). 

 

(a) 

  

(b) (c) 

Figure 6.11: The average error of all keypoints in simulation 

(a) average position error (b) average velocity error (c) average acceleration error 
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The precise improvement of MPJPE, MPJVE and MPJAE in different stages are 

listed in Table 6.5. 

Table 6.5 

Estimation Performance in the Simulation 

Skeleton 𝒮 𝐸𝑀𝑃𝐽𝑃𝐸(𝒮) 

Unit: (mm) 

𝐸𝑀𝑃𝐽𝑉𝐸(𝒮) 

Unit: (mm/frame) 

𝐸𝑀𝑃𝐽𝐴𝐸(𝒮) 

Unit:(mm/frame2) 

RawSK 75.93 90.47 159.91 

KF-SK 52.27 52.36 87.44 

PostSK 35.37 2.27 0.56 

The MPJPEs in each stage keep dropping in the whole estimation flow. The MPJVEs 

and MPJAEs decrease dramatically in proportion after the motion smoothing stage. 

The estimated trajectories in each stage are displayed in Figure 6.12. In RawSK, 

there are lots of outliers and missing data. The overall trajectories are chaotic. In KF-SK, 

all the missing intervals are filled. Most of the outliers are rejected. But the trajectories 

are still rough and shaky. After the motion smoother, the trajectories of the PostSK are 

much smoother and look like the ground truth skeleton in Figure 6.12 (d). 
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(a) (b) 

  

(c) (d) 

Figure 6.12: The estimated trajectories of every keypoint in different estimation stages 

(a) Raw skeleton (b) KF skeleton after the joint estimator (c) Post skeleton (d) 

Ground truth skeleton 
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6.4.2 Effectiveness of OCR Joint State Estimator 

In this section, the effectiveness of the outlier-component-rejecting joint state 

estimator will be discussed. The discussed topic is composed of two parts: 1) the 

effectiveness of OCR (outlier component rejection) and 2) the performance with different 

joint state estimators. There are four independent variables to investigate the performance 

under different RawSK properties: 1) probability of outliers 𝑃𝑜𝑢𝑡   𝑟, 2) expected outlier 

interval duration 𝜆𝑜𝑢𝑡 , 3) probability of missing data 𝑃𝑚 𝑠𝑠 , and 4) expected missing 

interval duration 𝜆𝑚 𝑠𝑠. Since the RawSKs contain random variables, they will be run 10 

times and be taken the average errors for each parameter setting. For the other parameters 

not set as the independent variable, they will remain in the same settings in Section 6.3.2. 

 

1) Different probability of outliers 𝑷𝒐  𝒍𝒊𝒆𝒓: 

To test the effectiveness of outlier component rejection (OCR), there are two joint 

state estimators to be compared. The first one is the proposed method. The other one is 

the same as the proposed one but its outlier component rejecting mechanism is turned off, 

which means that the outlier rejecting coefficient 𝑘𝑜𝑢𝑡 is set as 0. 

As shown in Figure 6.13, the performance errors increase as the probability of 

outliers 𝑃𝑜𝑢𝑡   𝑟 grows no matter with or without OCR. For the estimator without OCR, 

there are more false detections being regarded as the normal observation so that the 
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estimation errors will raise. For the estimator with OCR, since the observation covariance 

will go up when the outliers are rejected, there is higher opportunities to regard the 

outliers as inliers when 𝑃𝑜𝑢𝑡   𝑟 grows. 

However, as Figure 6.13 (a) and (b) shown, the improvements by the OCR 

mechanism in MPJPE and MPJVE also increase when 𝑃𝑜𝑢𝑡   𝑟 grows, which means that 

outlier resistance ability of the estimator with OCR is greater than the one without OCR. 

 

(a) 

  

(b) (c) 

Figure 6.13: The performance with or without OCR (outlier component rejection) in 

different probability of outliers 𝑃𝑜𝑢𝑡   𝑟 

(a) Position Error (b) Velocity Error (c) Acceleration Error 
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For MPJAE in Figure 6.13 (c), there is no obvious trend for the improvements by 

the OCR mechanism. One of the inferences is that acceleration is pretty close to the 

ground truth after the motion smoother. Therefore, there is no apparent difference for 

MPJAE. 

In Figure 6.14, there are three joint state estimators. One is the proposed estimator. 

Another one is extended Kalman filter (EKF). The other one is unscented Kalman filter 

(UKF). Since the EKF and the UKF don’t have the ability to handle the missing data, they 

would replace the missing data with the predicted observation as Equation (6.29): 

𝑧  𝑡 = {
𝑧̂  𝑡|𝑡−1 𝑖𝑓 𝑧  𝑡 𝑚𝑖𝑠𝑠𝑒𝑑

𝑧  𝑡 𝑒𝑙𝑠𝑒
  ∀𝑙 = 1 . . .  𝑚 (6.29) 

where 𝑧  𝑡 is the 𝑙-th element in 𝒛𝑡 ∈ ℝ
𝑚 and 𝑧̂  𝑡|𝑡−1 is the 𝑙-th element in 𝒛̂𝑡|𝑡−1 ∈

ℝ𝑚. 

The performance errors of the three joint state estimators in different 𝑃𝑜𝑢𝑡   𝑟 are 

shown in Figure 6.14. All the performance errors grow up when 𝑃𝑜𝑢𝑡   𝑟  increases. 

Besides, the proposed one always performs the best among the three joint state estimators. 

UKF is the second, and EKF is the worst. In the comparison between UKF and EKF, 

since the skeleton model is a highly nonlinear system. The sampling method adopted by 

UKF would perform better than the linearization method of partial derivatives adopted 

by EKF. 
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(a) 

  

(b) (c) 

Figure 6.14: The performance with different joint state estimators in different 

probability of outliers 𝑃𝑜𝑢𝑡   𝑟 

(a) Position Error (b) Velocity Error (c) Acceleration Error 
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2) Different expected outlier interval duration 𝝀𝒐   

In this part, the expected outlier interval duration 𝜆𝑜𝑢𝑡 will the independent variable. 

As shown in Figure 6.15, MPJPE and MPJVE increase slightly as 𝜆𝑜𝑢𝑡 grows. Since 

𝑃𝑜𝑢𝑡   𝑟 remains the same, the expected ratio of outliers is still the same. However, when 

𝜆𝑜𝑢𝑡 grows, the outliers will trend to gather as fewer and longer outlier intervals. With 

longer outlier intervals, the state covariance 𝑷𝑡 and the bias of the predicted state 𝒙̂𝑡|𝑡−𝜏 

in the proposed method will become higher since there is a longer time without 

measurement update. For the joint state estimator without OCR, the longer outlier 

intervals are more influential than the shorter but more outlier intervals as shown in Figure 

6.15. 

In Figure 6.15 (c), the influence of 𝜆𝑜𝑢𝑡 looks subtle. However, when 𝜆𝑜𝑢𝑡 = 7 10, 

there are two obvious peaks for the joint state estimator with OCR. It seems caused by 

other factors unrelative to 𝜆𝑜𝑢𝑡. 10-time of re-test is not enough to wipe out the factors. 
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(a) 

  

(b) (c) 

Figure 6.15: The performance with or without OCR (outlier component rejection) in 

different expected outlier interval duration 𝜆𝑜𝑢𝑡 

(a) Position Error (b) Velocity Error (c) Acceleration Error 
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Compared with EKF and UKF, the proposed method still prevails with different 

𝜆𝑜𝑢𝑡. In Figure 6.16, we can notice that both EKF and UKF seem not to have an obvious 

trend in 𝜆𝑜𝑢𝑡. 

 

(a) 

  

(b) (c) 

Figure 6.16: The performance with different joint state estimators in different expected 

outlier interval duration 𝜆𝑜𝑢𝑡 

(a) Position Error (b) Velocity Error (c) Acceleration Error 
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3) Different probability of missing data 𝑷𝒎𝒊𝒔𝒔 

Besides the outliers, the missing data is also one of the important defects in RawSKs. 

However, with the observation in Figure 6.17, there is no obvious trend in 𝑃𝑚 𝑠𝑠. One of 

the inferences is that missing data are perfectly labeled outliers for the proposed method 

with OCR. Unlike the real outliers, they won’t be regarded as the inliers and influence 

the estimation results. Therefore, there is no obvious trend for the proposed method with 

OCR in 𝑃𝑚 𝑠𝑠 . For the proposed method without OCR, the missing data are directly 

replaced with the predicted state as Equation (6.29). Thus, there is also no obvious trend 

for the proposed method without OCR. 
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(a) 

  

(b) (c) 

Figure 6.17: The performance with or without OCR (outlier component rejection) in 

different probability of missing data 𝑃𝑚 𝑠𝑠 

(a) Position Error (b) Velocity Error (c) Acceleration Error 
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The results are similar in Figure 6.18. There is no obvious trend in 𝑃𝑚 𝑠𝑠 for the 

three joint state estimators. The proposed method prevails over the others in most cases. 

 

(a) 

  

(b) (c) 

Figure 6.18: The performance with different joint state estimators in different 

probability of missing data 𝑃𝑚 𝑠𝑠 

(a) Position Error (b) Velocity Error (c) Acceleration Error 
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4) Different expected missing interval duration 𝝀𝒎𝒊𝒔𝒔 

The last part is for 𝜆𝑚 𝑠𝑠. As the results in part 3), there is no obvious trend in Figure 

6.19 and Figure 6.20. Despite that there is a go-down trend in MPJAE for the proposed 

method with OCR, it seems caused by the fined smoothing results and the few sample 

times. 

 

(a) 

  

(b) (c) 

Figure 6.19: The performance with or without OCR (outlier component rejection) in 

different expected missing interval duration 𝜆𝑚 𝑠𝑠 

(a) Position Error (b) Velocity Error (c) Acceleration Error 
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(a) 

  

(b) (c) 

Figure 6.20: The performance with different joint state estimators in different expected 

missing interval duration 𝜆𝑚 𝑠𝑠 

(a) Position Error (b) Velocity Error (c) Acceleration Error 

In summary, the proposed method shows the best performance in different 𝑃𝑜𝑢𝑡   𝑟 

and 𝜆𝑜𝑢𝑡  compared with EKF and UKF. The effectiveness of outlier component 

rejection is also verified. When 𝑃𝑜𝑢𝑡   𝑟  grows higher, the improvement of the OCR 

mechanism is more obvious. 

For the missing data, there is no apparent trend no matter for 𝑃𝑚 𝑠𝑠 or for 𝜆𝑚 𝑠𝑠. 
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6.4.3 Effectiveness of Iterative LQR Motion Smoother 

In this section, we will compare the proposed motion smoother -- iterative LQR 

tracking (iterLQR) with other motion smoother: the proposed initial LQR tracking 

(initLQR), state low pass filter (stateLP), and keypoint low pass filter (kyptLP). 

The initLQR is the initialization part of iterLQR mentioned in Equation (5.87). the 

stateLP is to filter the joint state with a low pass filter directly. Last, the kyptLP is to filter 

the keypoint positions of KF-SK with a low pass filter. 

The low pass filter here is composed of the well-known Butterworth filter with fifth 

order and the zero-phase digital filtering described in [59: Gustafsson 1996] to avoid the 

phase delay in low pass filters. The cutoff frequency for the Butterworth filter is set as 

0.025 times the sampled frequency (FPS). 

The random properties of RawSK are set the same as the one mentioned in Section 

6.3.2 while repeating the test with 10 different samples. The overall performance is shown 

in Figure 6.21. Among the four motion smoothers, initLQR has the best performance in 

MPJPE and MPJVE for this motion. However, the statistical dispersions of the LQR-

based methods are higher than the low-pass-filter-based methods. Besides, the differences 

among the motion smoothers are relatively small to their dispersions. 
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(a) 

  

(b) (c) 

Figure 6.21: The performance with different motion smoother in the simulation 

(a) Position Error (b) Velocity Error (c) Acceleration Error 

As the design concept of iterLQR is to improve the end point position error caused 

by the joint coordination problem, the performance of the endpoint 𝒑  of SimSK is 

shown in Figure 6.22. Statistically, the proposed iterLQR has the minimum median values 

for position and velocity error. For the acceleration, the iterLQR, initLQR and stateLP 

have similar performance while the kyptLP has much less dispersion. It’s because the 

kyptLP is the only one smoother that directly smooths the keypoint positions without 
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considering the joint state. Since the nonlinear system 𝑓(∙)  and ℎ(∙)  of a human 

skeleton is not fully observable, the joint state may vary hugely even when the keypoint 

positions in RawSKs are similar. Therefore, the kyptLP without considering the joint state 

has a much smaller variation compared with the others. 

 

(a) 

  

(b) (c) 

Figure 6.22: The end point performance with different motion smoother in the 

simulation 

(a) Position Error (b) Velocity Error (c) Acceleration Error 
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Nevertheless, also caused by the direct keypoint smoothing, the skeleton kinematic 

model is not considered for the kyptLP. The segment lengths smoothed by the kyptLP 

would not be constant. To evaluate the variation of segment lengths, we define a metric-

varying ratio 𝑟𝑣( ) as: 

𝑟𝑣( ) =
 𝑚 𝑥 −  𝑚 𝑛

𝜇 
 (6.30) 

where   is the varying segment length,  𝑚 𝑥 is the maximum value of  ,  𝑚 𝑛 is the 

minimum value of  , and 𝜇  is the mean value of  . 

The varying ratios of the two segment length in SimSK are plotted in Figure 6.23. 

The state-filtering-based motion smoothers (iterLQR, initLQR, stateLP) have zero-value 

varying ratios due to the skeleton kinematic model. However, for kyptLP, its varying 

ratios are considerable. 

  

(a) (b) 

Figure 6.23: Segment length varying ratio in the simulation 

(a) length of upper section  1 (b) length of lower section  2  
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To demonstrate the advantage of the proposed iterLQR further, a special but 

common motion in real life is investigated. The motion is a fix-end-point motion 

illustrated in Figure 6.24. The relative pose of the skeleton remains the same as the tested 

motion in Section 6.3.2 while the end point 𝒑  is fixed at the origin. Analogizing to a 

human skeleton, the motion is common when one of the feet is fixed on the ground. The 

other keypoints can do the relative motion while the endpoint is fixed. 

 

Figure 6.24: The ideal motion (gtSK) of SimSK in fixed-end-point simulation 
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In the fixed-end-point motion, the average performances with different motion 

smoother are shown in Figure 6.25. The average errors of iterLQR are lower than others’ 

in MPJPE and MPJVE. 

 

(a) 

  

(b) (c) 

Figure 6.25: The performance with different motion smoother in fixed-end-point 

simulation 

(a) Position Error (b) Velocity Error (c) Acceleration Error 
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For the endpoint performance in Figure 6.26, the iterLQR also performs the best 

among the state-filtering-based motion smoother (iterLQR, initLQR, stateLP). For the 

kyptLP, since the endpoint position is fixed, the endpoint performance is much better than 

the others. 

 

(a) 

  

(b) (c) 

Figure 6.26: The end point performance with different motion smoother in fixed-end-

point simulation 

(a) Position Error (b) Velocity Error (c) Acceleration Error 
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However, since the kyptLP doesn’t consider the skeleton kinematic model, the 

varying ratios of the segment lengths with the kyptLP are also great in this motion. 

  

(a) (b) 

Figure 6.27: Segment length varying ratio in fixed-end-point simulation 

(a) length of upper section  1 (b) length of lower section  2  
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6.4.4 Influence of the Motion Speed 

In the last section of the simulation, the influence of the motion speed will be the 

independent variable. 

As the ideal motion mentioned in Equation (6.10)-(6.11), the motion speed would 

be affected by ω whose default value is 0.03. With higher ω, the motion speed becomes 

higher. Then, the performance with different ω is shown in Figure 6.28. 

As ω grows, both MPJPE and MPJVE have apparent increasing trends. The reason 

caused from that the state transition function 𝑓(∙) for the joint state estimator described 

in Equation (5.43) is the constant velocity model. When the joint acceleration input is 

unknown, the estimation error will increase as the joint acceleration becomes more and 

more unignorable.  

On the other hand, increasing the sampling frequency also means reducing the 

motion speed between the frames. Therefore, it’s potential to enhance the performance of 

the real-world experiment by increasing the FPS of the capture system. 
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(a) 

  

(b) (c) 

Figure 6.28: The end point performance with different motion speeds ω 

(a) Position Error (b) Velocity Error (c) Acceleration Error 
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6.5 Experiment Setups 

To evaluate the estimation error, a commercial optoelectronic motion capture system, 

VICON, is utilized as the ground truth provider in this experiment. The VICON markers 

are attached to the skin and leggings of the target to acquire the ground truth of the 

keypoints positions.  

However, since we can’t attach the VICON markers on the target’s face which would 

affect the detection of AlphaPose, the ground truth positions of head keypoints are not 

accessible. Therefore, in the experiment, we only compare the 12 keypoints on the body.  

The details of the multi-view system construction will be presented in Section 6.5.1. 

The tested motions in the experiment are shown in Section 6.5.2. Then, the parameter 

settings for the proposed motion estimation method will be listed in Section 6.5.3. 
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6.5.1 Multi-view system setups 

To fulfill the proposed vision-based motion estimation method, the multi-view 

system mentioned in Chapter 4 should be installed. As Section 4.1 said, the proposed 

multi-view system is composed of four synchronized cameras capturing the target videos 

from different views. The positions of these four cameras in the experiment are shown in 

Figure 6.29 marked with red circles. In the experiment, the multi-view system and 

VICON will record simultaneously. 

 

Figure 6.29: The camera positions set for VICON evaluation 

To define the world coordinate {𝑤𝑜𝑟𝑙𝑑} , the calibration process mentioned in 

Section 4.2 is applied. There are four rod positions with eight reference points illustrated 

in Figure 6.30 for the extrinsic calibration. After the calibration, the world coordinate 

{𝑤𝑜𝑟𝑙𝑑} for the experiment is defined by the positions of the reference points. Besides, 

to transform the ground truth position of the keypoints to {𝑤𝑜𝑟𝑙𝑑}, the transformation 

cam0

cam1

cam2

cam3
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matrix from VICON to {𝑤𝑜𝑟𝑙𝑑} are also calculated with the VICON markers attached 

to the reference points. 

  

(a) (b) 

Figure 6.30: The positions of reference points for VICON evaluation 

(a) XY-positions (b) Z-positions  

Going through the calibration process, the camera parameters for the multi-view 

system are estimated as Table 6.6 and Table 6.7 show. 

  

Y
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X

Z0: 0.020 m
Z1: 1.904 m

0.095 m

Rod_0
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Rod_2
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Table 6.6 

Intrinsic and Extrinsic Camera Parameters for Multi-view System in VICON Evaluation 

 Intrinsic Parameter 𝑲 Extrinsic Parameter 𝑻𝑐 𝑚
𝑤𝑜𝑟   

Cam0 [
513.28
0
0

 
0

515.15
0

 
363.39
301.41
1

] [

0.620 0.784 0.015 −0.164
0.085 −0.049 −0.995 0.595
−0.780 0.619 −0.097 5.192
0 0 0 1

] 

Cam1 [
511.26
0
0

 
0

514.04
0

 
336.75
261.23
1

] [

0.373 −0.928 0.004 −0.999
−0.085 −0.038 −0.996 1.015
0.924 0.371 −0.093 3.137
0 0 0 1

] 

Cam2 [
510.11
0
0

 
0

511.65
0

 
378.04
275.79
1

] [

−0.241 −0.970 0.015 −0.110
0.015 −0.019 −1.000 1.092
0.970 −0.241 0.019 2.245
0 0 0 1

] 

Cam3 [
511.25
0
0

 
0

513.45
0

 
357.65
240.22
1

] [

−0.764 0.645 0.014 1.600
0.190 0.246 −0.950 1.088
−0.616 −0.724 −0.310 3.283
0 0 0 1

] 

 

Table 6.7 

Distortion Coefficients of Cameras for Multi-view System in VICON Evaluation 

 Distortion Coefficients [𝑘1 𝑘2 𝑝1 𝑝2 𝑘3] 

Cam0 [−0.180 0.262 −0.001 −0.002 −0.286] 

Cam1 [−0.164 0.194 −0.002 −0.003 −0.176] 

Cam2 [−0.144 0.046 0.001 −0.003 0.077] 

Cam3 [−0.132 −0.005 0.000 −0.002 0.167] 
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With the calibrated extrinsic parameters, the positions and the orientations of the 

cameras can be illustrated in Figure 6.31. The axis marked with the black point for each 

camera shows its facing direction (z-axis). As Figure 6.31 shown, all the cameras 

approximately face the origin of {𝑤𝑜𝑟𝑙𝑑}, which is around the position of the target. The 

camera positions are also similar to the relative positions shown in Figure 6.29. 

 

Figure 6.31: The camera positions calculated with the calibrated extrinsic parameters  

(the axis with black points are the z-axis of cameras) 

In addition, to make it easier to find the correspondence between the estimated 

results and the ground truth provided by VICON, the recording FPS of the multi-view 

system is the same as VICON’s FPS at 120 Hz. 

  

Top View

Back View Right View
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6.5.2 Tested Motions 

In this experiment, we present three actions with the same subject (target person). 

These three actions are two common motions during baseball games (hitting and pitching) 

and one motion (punching) similar to pitching but with different trajectories in right arms. 

For each action, there are five cases to evaluate the reproducibility of the proposed 

method. All the cases are listed in Table 6.8 and labeled with the case index from 0 to 14. 

Table 6.8 

Testing Cases with VICON Evaluation 

Subject Action Case Name Case Index 

S1 

Hitting 

Hitting_01 0 

Hitting_02 1 

Hitting_03 2 

Hitting_04 3 

Hitting_05 4 

Pitching 

Pitching_01 5 

Pitching_02 6 

Pitching_03 7 

Pitching_04 8 

Pitching_05 9 

Punching 

Punching_01 10 

Punching_02 11 

Punching_03 12 

Punching_04 13 

Punching_05 14 

The motion sequence of each action is illustrated in Figure 6.32. Hitting is acted as 

a batter hits the ball in a baseball game. Pitching is a motion of a pitcher throwing a ball. 

Then, punching is a motion similar to pitching, but the right arm is punching forward. 
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(a) 

 

(b) 

 

(c)  

Figure 6.32: The motion sequence of the testing actions in VICON evaluation plotted 

with estimated positions by proposed method  

(a) Hitting (b) Pitching (c) Punching 
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6.5.3 Parameter Settings 

In the experiment, the parameters set for the proposed estimation method are shown 

in Table 6.9 and Table 6.10: 

Table 6.9 

The Parameter Settings for the Joint State Estimator in the Proposed Method 

in the Experiment 

Joint State Estimator: 

 Symbol Value Meaning 

𝑷  10−1 ∙ 𝑰   Initial state covariance 

𝑸𝑈𝐾𝐹 

[
 
 
 
𝟎22×22 𝟎22×22 𝟎22× 𝟎22× 
𝟎22×22 10− ∙ 𝑰22 𝟎22× 𝟎22× 
𝟎 ×22 𝟎 ×22 𝟎 × 𝟎 × 
𝟎 ×22 𝟎 ×22 𝟎 × 10− ∙ 𝑰 ]

 
 
 

 Process noise covariance 

 𝑈𝐾𝐹 10−4 ∙ 𝑰 1 

Measurement noise 

covariance 

𝑘𝑜𝑢𝑡 0.05 Outlier rejecting coefficient 

𝑸 𝑛 𝑁𝑜𝑢𝑡 101 ∙ 𝑰   

State weights for inlier 

interpolation 

  𝑛 𝑰2  

Input weights for inlier 

interpolation 

𝒙 𝑜𝑤 𝑟 −[∞ ∙ 𝟏22 0.1 ∙ 𝟏22 ∞ ∙ 𝟏 ∞ ∙ 𝟏 ]
𝑇 

State lower bound with 

KKT condition 
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𝒙𝑢𝑝𝑝 𝑟 [∞ ∙ 𝟏22 0.1 ∙ 𝟏22 ∞ ∙ 𝟏 ∞ ∙ 𝟏 ]
𝑇 

State upper bound with 

KKT condition 

𝑐  𝑚𝑝 −0.1 

Damper coefficient for 

body force 
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Table 6.10 

The Parameter Settings for the Motion Smoother in the Proposed Method 

in the Experiment 

Motion Smoother: 

 Symbol Value Meaning 

𝑸 𝑞𝑟1 𝑰   

State weights for initial LQR 

tracking 

  𝑞𝑟1 103 ∙ 𝑰2  

Input weights for initial LQR 

tracking 

𝑸 𝑞𝑟2 [

𝑰24 𝟎24× 𝟎24×1 𝟎24× 
𝟎 ×24 10 ∙ 𝑰 𝟎 ×1 𝟎 × 
𝟎1 ×24 𝟎1 × 𝑰1 𝟎1 × 
𝟎 ×24 𝟎 × 𝟎 ×1 10 ∙ 𝑰 

] 

State weights for iterative 

LQR tracking 

𝑸 𝑞𝑟2 𝑣   

[
 
 
 
𝟎22×22 𝟎22×22 𝟎22× 𝟎22× 
𝟎22×22 104 ∙ 𝑰22 𝟎22× 𝟎22× 
𝟎 ×22 𝟎 ×22 𝟎 × 𝟎 × 
𝟎 ×22 𝟎 ×22 𝟎 × 104 ∙ 𝑰 ]

 
 
 
 

Velocity state weights for 

iterative LQR tracking 

  𝑞𝑟2 [
102 ∙ 𝑰22 𝟎22× 
𝟎 ×22 103 ∙ 𝑰 

] 

Input weights for iterative 

LQR tracking 

𝑁 𝑡 𝑟 3 

Number of iterations for 

iterative LQR tracking 
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6.6 Experiment Results and Analysis 

6.6.1 Result of 3D Reconstruction 

In the simulation, the RawSKs have already been given by the ideal motions with 

additional noise. However, in the experiment, we need to capture the RawSKs from the 

real human motions to form the RawSKs. With the 3D reconstruction method mentioned 

in Chapter 4, the RawSKs are built as Figure 6.33 shown. 

 

Figure 6.33: Example of keypoint trajectory in RawSKs in experiment 

As we expected, the RawSKs are pretty rough and have some detects influencing 

the estimation results potentially, such as outliers and missed data. To quantify the 

defects of RawSK as in the simulation, the outlier ratio and average outlier interval 
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duration will be used to analogize the outlier probability 𝑃𝑜𝑢𝑡   𝑟 and the expected outlier 

interval duration 𝜆𝑜𝑢𝑡 in the simulation. For the missing data, the missing data ratio and 

the average missing interval duration are used to analogize the probability of missing data 

𝑃𝑚 𝑠𝑠 and the expected missing interval duration 𝜆𝑚 𝑠𝑠. 

For the missing data, it’s easy to calculate their properties in RawSKs since they are 

labeled with NaNs directly. However, the outliers don’t have a natural definition to mark. 

For that reason, we simply define the outliers in RawSK as: 

𝑂𝑢𝑡𝑙𝑖𝑒𝑟 √(𝒑  𝑟 𝑤(𝑡) − 𝒑  𝑔𝑡(𝑡))
𝑇

𝑺𝒑  
−1 (𝒑  𝑟 𝑤(𝑡) − 𝒑  𝑔𝑡(𝑡)) ≥ 𝑘𝑜𝑢𝑡 𝑟 𝑤 (6.31) 

where 𝒑  𝑟 𝑤(𝑡) is the keypoint position for the 𝑖-th keypoint in frame 𝑡 in RawSK, 

𝒑  𝑔𝑡(𝑡)  is the keypoint position for the 𝑖 -th keypoint in frame 𝑡  in ground truth 

skeleton, and 𝑺𝒑   is the covariance of 𝒑  𝑟 𝑤(𝑡) − 𝒑  𝑔𝑡(𝑡)  for all 𝑡  in the 𝑖 -th 

keypoint. 

While plotting the position error vectors 𝒑  𝑟 𝑤(𝑡) − 𝒑  𝑔𝑡(𝑡) for all 𝑡 as shown in 

Figure 6.34, there are some points far from the group around the origin. To pick those 

points out as outliers, we use the outlier definition as Equation (6.31) imitating the 

Mahalanobis distance while setting 𝑘𝑜𝑢𝑡 𝑟 𝑤 = 5. Then, the outlier vectors are labeled 

with red color, and the inliers are labeled with blue color in Figure 6.34. 
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Figure 6.34: Outlier Labeled result for RElbow of RawSK in punching_05 

With the labeled outliers and missing data, we can calculate the outlier and missing 

data properties as shown in Figure 6.35. 

For the AlphaPose, proposed multi-view system and 3D reconstruction method, the 

outlier ratios are between 1.0% to 2.2%, and the average outlier interval durations are 

between 1.15 to 1.45 frames. 

For missing data, the missing data ratios are between 0% to 14%. Finally, the average 

missing interval durations are between 1.00 to 1.35 frames. 
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(a) 

 

(b) 

Figure 6.35: Outlier and missing data properties of RawSK 

(a) Outlier properties (b) Missing data properties 
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Besides the properties of the potential influencing factors, the position errors MPJPE 

of the RawSKs in the experiment are illustrated in Figure 6.36. 

 

Figure 6.36: MPJPE of RawSKs in experiment 

The overall position error of RawSKs is about 30mm to 40mm except Hitting_01. 

In Figure 6.37, we can find that AlphaPose is bad at arm keypoint detection with the bat-

lifting pose. Particularly, the keypoint of LWrist is marked out of the arm at the frame. In 

Hitting_01, the target remained the bat-lifting pose for a much longer time than in the 

other hitting cases. Therefore, the MPJPE is especially great in Hitting_01. 
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Figure 6.37: AlphaPose detection result for Cam1 in Hitting_01 
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6.6.2 Performance Analysis of Motion Estimation 

After the 3D reconstruction for the RawSKs, the 3D skeleton modification method 

presented in Chapter 5 is applied. The estimated trajectories in the three estimation stages 

(RawSK, KF-SK, PostSK) and the ground truth trajectory are plotted in Figure 6.38. 

After the joint state estimator with the outlier component rejection mechanism, most 

of the outliers in the KF-SK are rejected successfully. Then, after the motion smoother, 

the residual outliers are wiped out, and the trajectory becomes smoother in PostSK. In 

addition, the PostSK is also close to the ground truth after the proposed 3D skeleton 

modification method. 

 

Figure 6.38: Example of keypoint trajectory in different estimation stages 

 



doi:10.6342/NTU202202468

177 

The numerical errors are illustrated in Figure 6.39. No matter in MPJPE, MPJVE, or 

MPJAE, the numerical errors decrease gradually for all the cases in the experiment. 

However, the final performances are still affected by the RawSKs. As shown in Figure 

6.39 (a), the MPJPE is still high in Hitting_01 after the modification. Also, the MPJPEs 

for KF-SK and PostSK look highly relative to the MPJPE for RawSKs. 

 

(a) 

  

(b) (c) 

Figure 6.39: Estimation error in different estimation stages 

(a) MPJPE (b) MPJVE (c) MPJAE 
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The average errors for every case in different estimation stages are listed in Table 

6.11. For the MPJPE, the errors decrease gradually in the three estimation stages. For 

MPJVE and MPJAE, the errors drop dramatically in proportion between the KF-SK and 

the PostSK, which shows that the motion smoother works. 

Table 6.11 

Average Estimation Performance in the Experiment 

Skeleton 𝒮 𝐸𝑀𝑃𝐽𝑃𝐸(𝒮) 

Unit: (mm) 

𝐸𝑀𝑃𝐽𝑉𝐸(𝒮) 

Unit: (mm/frame) 

𝐸𝑀𝑃𝐽𝐴𝐸(𝒮) 

Unit:(mm/frame2) 

RawSK 35.75 28.37 49.91 

KF-SK 33.86 16.17 26.17 

PostSK 30.74 1.21 0.44 
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6.6.3 Effectiveness of OCR Joint State Estimator 

Same as the simulation, the proposed joint state estimator is going to be compared 

with the other joint state estimators: extended Kalman filter (EKF), unscented Kalman 

filter (UKF), and the outlier-robust Kalman filter (ORKF) proposed in Algorithm 1 in 

[56: Agamennoni et al. 2011]. The concept of the ORKF is that it assumes the covariance 

of measurement noise is time-varying. Then, the time-varying measurement noise 

covariance 𝚪𝑡 is estimated with an iterative method at each frame. With the mechanism, 

the outliers can be assigned with higher 𝚪𝑡. Therefore, the influence of outliers would be 

reduced. However, since the ORKF is designed for linear systems, the human kinematic 

model doesn’t fit it. To fulfill the implementation, the linearization method same as EKF 

is applied to ORKF to avoid this problem. 

In Figure 6.40, the estimated errors of the proposed method with different joint state 

estimators are shown. The proposed OCR joint state estimator outperforms the other three 

joint state estimators in most cases except Hitting_01. In Hitting_01, lots of the keypoint 

positions are incorrect and far from the ground truth as mentioned in Section 6.6.1. 

Because of this reason, the outlier component detection mechanism may not work 

properly and cause the results. For ORKF, there are some missed data because 𝚪𝑡 didn’t 

converge during the iterative 𝚪𝑡  estimation. Therefore, the ORKF can’t work for the 

cases. 
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(a) 

  

(b) (c) 

Figure 6.40: The performance different joint state estimator in experiment 

(a) MPJPE (b) MPJVE (c) MPJAE 
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6.6.4 Effectiveness of Iterative LQR Motion Smoother 

The comparison of different motion smoothers will be discussed in this section. The 

compared motion smoothers are the same as those in the simulation: the proposed iterative 

LQR tracking method (iterLQR), the initial smoothing method of iterLQR (initLQR), the 

smoothing method with low pass filter on joint state (stateLP), and the smoothing method 

with low pass filter on keypoint positions (kyptLP). 

The performances are shown in Figure 6.41. For MPJPE, the differences among the 

four motion smoothers are not obvious. For MPJVE, the performance of kyptLP is 

slightly better than the others. The stateLP is the worst. The iterLQR and initLQR perform 

similarly. Finally, for MPJAE, the proposed iterLQR has the worst performance among 

the motion smoothers. 

But, in fact, the differences between these motion smoothers are subtle. It’s more 

important to ensure whether the proposed iterLQR works for the designed purpose, such 

as increasing the endpoint position accuracy and maintaining the segment lengths. 

Therefore, the position errors for the endpoints in the human skeleton are illustrated in 

Figure 6.42. 
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(a) 

  

(b) (c) 

Figure 6.41: The performance different motion smoothers in experiment 

(a) MPJPE (b) MPJVE (c) MPJAE 
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(a) 

  

(a) (b) 

  

(c) (d) 

Figure 6.42: The end point position errors with different state-filtering based motion 

smoothers 

(a) Average position error of four end points (b) Position error of LWrist (c) Position 

error of RWrist (d) Position error of LAnkle (e) Position error of RAnkle 
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As Figure 6.42 shown, the proposed iterLQR outperforms the other state-filtering-

based methods in most cases, especially in LAnkle which usually is the fixed anchor 

during the high-speed motion in the experiment. 

In Figure 6.43, we take the eight segments on the four limbs, as Figure 6.43 (a) shows, 

to calculate the average varying ratio of the segment lengths in the experiment. As shown 

in Figure 6.43 (b), the varying ratios of kyptLP can be high over 0.4 and at least 0.1 in 

the experiment. At the same time, the other motion smoothers maintain 0 varying ratios 

for the segment lengths since they consider the human skeleton kinematic model. 

  

(a) (b) 

Figure 6.43: Varying Ratios with different motion smoothers in experiment 

(a) The segment lengths used to take the average (b) The average varying ratios with 

different motion smoothers in the experiment 
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6.6.5 Influence of the Motion Speed 

In this section, the influence of the motion speed will be discussed. However, unlike 

the simulation, we can’t adjust the motion speed of the target with one variable directly. 

Instead, we will analyze the performance with the instantaneous velocity and acceleration 

magnitudes for every keypoint in each frame. 

The scatter plots of the position, velocity, and acceleration estimation errors with 

respect to the keypoint instantaneous velocity and acceleration magnitudes are illustrated 

in Figure 6.44, Figure 6.45, and Figure 6.46. We can observe that there seem to be some 

relationships, but some other factors, such as poor skeleton initialization, have significant 

impacts on a small number of keypoints.  

To get rid of these impacts, we divide the keypoints into ten intervals with velocity 

magnitudes and acceleration magnitudes, as shown in Figure 6.47. In the experiment, 

most keypoints are concentrated around the low-velocity intervals and the low 

acceleration intervals. The numbers of the keypoints in the intervals are annotated in 

Figure 6.47. There are 17973 frames in the 15 cases totally. Since there are 12 body 

keypoints to be compared, the total number of the keypoints is 215676. The vast majority 

of the data came from the first intervals of velocity and acceleration magnitude. 
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(a) 

 

(b) 

Figure 6.44: Position Estimation Error Distribution with Velocity/Acceleration 

Magnitude of Keypoints 

(a) Position Estimation Error with Velocity Magnitude (b) Position Estimation Error 

with Acceleration Magnitude 
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(a) 

 

(b) 

Figure 6.45: Velocity Estimation Error Distribution with Velocity/Acceleration 

Magnitude of Keypoints 

(a) Velocity Estimation Error with Velocity Magnitude (b) Velocity Estimation Error 

with Acceleration Magnitude 
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(a) 

 

(b) 

Figure 6.46: Acceleration Estimation Error Distribution with Velocity/Acceleration 

Magnitude of Keypoints 

(a) Acceleration Estimation Error with Velocity Magnitude (b) Acceleration 

Estimation Error with Acceleration Magnitude 
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(a) 

 

(b) 

Figure 6.47: Dynamic distribution of the keypoints 

(a) Velocity distribution (b) Acceleration distribution 
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(a) 

 

(b) 

Figure 6.48: Position Estimation Error with Velocity/Acceleration Magnitude of 

Keypoints 

(a) Position Estimation Error with Velocity Magnitude (b) Position Estimation Error 

with Acceleration Magnitude 
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(a) 

 

(b) 

Figure 6.49: Velocity Estimation Error with Velocity/Acceleration Magnitude of 

Keypoints 

(a) Velocity Estimation Error with Velocity Magnitude (b) Velocity Estimation Error 

with Acceleration Magnitude 
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(a) 

 

(b) 

Figure 6.50: Acceleration Estimation Error with Velocity/Acceleration Magnitude of 

Keypoints 

(a) Acceleration Estimation Error with Velocity Magnitude (b) Acceleration 

Estimation Error with Acceleration Magnitude 
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Taking the average errors for each interval, we can get the trends of average 

performances with respect to the velocity magnitudes and acceleration magnitudes as 

shown in Figure 6.48, Figure 6.49, and Figure 6.50. 

Except for the acceleration intervals whose values are greater 30 𝑚𝑚 𝑓𝑟𝑎𝑚𝑒2⁄ , the 

estimation errors show obvious trends to increase with the dynamic magnitudes, no matter 

for velocity or acceleration. It appears the high relationships between the estimation errors 

and the motion dynamic. The relationships can also correspond to the weakness of the 

constant velocity model in joint space. The ignored joint accelerations may be 

unignorable when the motion dynamic increases. 

For the acceleration intervals whose values are greater 30 𝑚𝑚 𝑓𝑟𝑎𝑚𝑒2⁄ , the 

numbers of sampled keypoints are too small. Therefore, the results are vulnerable and not 

informative. 
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6.6.6 Processing Time for Proposed Method 

After the performance analysis, the consumed time is also a consideration for 

practice. The number of processed frames for a case is from 1186 to 1311 frames in the 

experiments. The processing times for each stage are illustrated in Figure 6.51 (a). The 

average processing times are 6.30 seconds for 3D reconstruction, 0.56 seconds for body 

parameter estimation, 9.88 seconds for joint state estimation, and 5.86 seconds for motion 

smoothing. The processing FPS without the running time of AlphaPose in the experiment 

is plotted in Figure 6.51 (b). The average FPS is 57.47 Hz. All the estimated results were 

processed with Intel Core i9-10900 CPU @ 2.8GHz. 
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(a) 

 

(b) 

Figure 6.51: Processing time for proposed method 

(a) processing time for each stage (b) FPS without AlphaPose  
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6.7 Compare with Deep learning-based methods 

As mentioned in Section 2.2.2, the works for 3D human motion estimation in recent 

years are mainly based on deep learning. To present a more complete comparison, the 

performance difference between the proposed method and other deep learning approaches 

will be shown in this section. Before the numerical results, how to evaluate the proposed 

method with those methods on an approximate benchmark will be explained in Section 

6.7.1. Finally, the specific performances for different actions will be listed in Section 

6.7.2. 

6.7.1 Human3.6M Evaluation Setups 

To compare the performance of 3D human motion estimation or 3D human pose 

estimation for single-person, the most famous dataset is Human3.6M [29: Ionescu et al. 

2014]. The most commonly used comparison benchmark is Protocol 1 for multi-view 

estimation mentioned in [70: Fang et al. 2018], which is to use subjects 1,5,6,7,8 for 

training and subjects 9 and 11 for evaluation. There are 17 keypoints used to evaluate as 

shown in Figure 6.52. Naturally, the proposed method can’t be implemented on the 

protocol since the keypoint definition in Human3.6M doesn’t fit the skeleton kinematic 

model illustrated in Figure 5.1. In addition, the positions of the keypoints on the limbs are 

slightly different from AlphaPose skeleton. For example, 𝒑  and 𝒑  are labeled on 

heels not ankles.  
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Figure 6.52: Human skeleton defined in Human3.6M 

To handle the keypoint defining issue, we use another 3D human pose estimation 

model, Learnable Triangulation [41: Iskakov et al. 2019], trained on Human3.6M to 

reconstruct the RawSKs instead of AlphaPose.  

Learnable Triangulation, like AlphaPose, is a model that only cares about position 

errors and didn’t consider the temporal information in the motion sequences. Therefore, 

it’s potential to increase the velocity and acceleration performance with the proposed 

method. 

As shown in Figure 6.53, for the implementation, the RawSKs are composed of the 

keypoints marked with blue circles. Since there is no corresponding keypoint for the same 

head structure, we use the reconstructed head keypoints from AlphaPose in Figure 6.53 

(a) to build the head part of the RawSKs. Then, for the body part, we use the keypoints 
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on the limbs from Learnable Triangulation to construct the rest parts of RawSKs. The 

slight differences in keypoint definition are regarded as the differences in body 

parameters. Eventually, the proposed method can be used on Human3.6M with the same 

parameter settings in Section 6.5.3. 

 
 

(a) (b) 

Figure 6.53: The keypoint definition for RawSK for Human3.6M 

(a) The keypoints of head come from the reconstructed 3D AlphaPose (b) The 

keypoints of body come from the output of Learnable Triangulation trained on 

Human3.6M 

For the evaluation, since there is no corresponding ground truth for the head 

keypoints, the evaluated results will only compare the 12 keypoints errors on the four 

limbs as shown in Figure 6.53 (b), which makes the benchmark slightly different than the 

benchmarks in other works. Besides, because the evaluated keypoints in RawSKs are all 

from Learnable Triangulation, the evaluated errors of the RawSK can be regarded as the 

performance of Learnable Triangulation. 

Right Side Left Side

𝒑 

𝒑1𝒑2

𝒑3𝒑4

𝒑 
𝒑 

𝒑 𝒑 

𝒑1 𝒑 

𝒑11𝒑12

𝒑14 𝒑13

𝒑1 𝒑1 

x y

z



doi:10.6342/NTU202202468

199 

Table 6.12 

Tested Cases with Human3.6M 

Subject Action Case Name 

S9/S11 

Directions 
Directions 

Directions_1 

Discussion 
Discussion_1 

Discussion_2 

Eating 
Eating 

Eating_1 

Greeting 
Greeting 

Greeting_1 

Phoning 
Phoning 

Phoning_1 

Posing 
Posing 

Posing_1 

Purchases 
Purchases 

Purchases_1 

Sitting 
Sitting 

Sitting_1 

SittingDown 
SittingDown 

SittingDown_1 

Smoking 
Smoking 

Smoking_1 

Photo 
Photo 

Photo_1 

Waiting 
Waiting 

Waiting_1 

Walking 
Walking 

Walking_1 

WalkDog 
WalkDog 

WalkDog_1 

WalkTogether 
WalkTogether 

WalkTogether_1 
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In Protocol 1, the tested cases are listed in Table 6.12. However, as the camera 

parameters in S9_Greeting_1, S9_SittingDown_1, and S9_Waiting are incorrect, the 

three cases will be eliminated for evaluation. The projected ground truth skeletons with 

the wrong camera parameters in the three cases are shown in Figure 6.54. 

   

(a) (b) (c) 

Figure 6.54: Projected ground truth skeleton in the eliminated cases on Human3.6M 

(a) S9_Greeting_1 (b) S9_SittingDown_1 (c) S9_Waiting 

The rest of the cases will be used to evaluate the estimation performance numerically. 
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6.7.2 Performance Analysis of Motion Estimation 

In this section, the numerical errors will be displayed. For position evaluation 

(MPJPE), the works are divided into two groups: considering velocity errors or not 

considering velocity errors.  

Many works put a lot of effort and focus on MPJPE results during the development 

because the original evaluation metrics for Human3.6M only consider the position 

performance. However, in recent years, more and more papers claimed that position is 

not the only thing determining the estimation performance by humans. Therefore, the 

MPJVE had come out to provide a higher-order metric for human motion estimation. 

The works considering velocity errors are the papers presenting their MPJPE and 

MPJVE at the same time and are listed in Table 6.13. For the works focusing on the 

position performance, their MPJPEs are listed in Table 6.14. 
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Table 6.13 

Comparison for Position Error (MPJPE) in mm 

with method considering velocity errors on Human3.6M 

Action 

R
aw

S
K

 

(L
earn

ab
le 

T
rian

g
u
latio

n
) 

P
o
stS

K
 

[6
0
: P

av
llo

 et 

al. 2
0
1
9

] 

[6
1
: L

in
 &

 L
ee 

2
0
1
9
] 

[6
2
: C

h
en

 et al. 

2
0
2
2
] 

[6
3
: W

an
g
 et al. 

2
0
2
0
] 

[6
4
: L

i et al. 

2
0
2
2
] 

Directions 18.5  29.6  45.2  42.5  41.4  40.2  40.3  

Discussion 19.1  24.5  46.7  44.8  43.5  42.5  43.3  

Eating 19.8  25.0  43.3  42.6  40.1  42.6  40.2  

Greeting 18.8  25.7  45.6  44.2  42.9  41.1  42.3  

Phoning 21.2  28.7  48.1  48.5  46.6  46.7  45.6  

Posing 18.5  25.2  44.6  42.6  41.7  41.4  41.8  

Purchases 18.6  31.1  44.3  41.4  42.3  42.3  40.5  

Sitting 22.0  27.7  57.3  56.5  53.9  56.2  55.9  

SittingDown 20.6  28.0  65.8  64.5  60.2  60.4  60.6  

Smoking 21.1  26.6  47.1  47.4  45.4  46.3  44.2  

Photo 22.1  27.0  55.1  57.1  51.9  56.7  52.3  

Waiting 18.3  26.7  44.0  43.0  41.7  42.2  43.0  

Walking 21.5  35.8  32.8  33.0  31.5  31.7  30.0  

WalkDog 20.0  31.2  49.0  48.1  46.0  46.2  44.2  

WalkTogether 21.9  35.6  33.9  35.1  32.7  31.0  30.2  

Mean 20.1  28.6  46.8  46.6  44.1  44.5  43.7  

As shown in Table 6.13, the proposed method with Learnable Triangulation 

performs the best position estimation with other velocity considering methods except the 

action Walking and WalkTogether. One of the reasons for the great performance comes 

from the fine detection of Learnable Triangulation. But, as with the other velocity 

considering methods, the combination of the proposed method and Learnable 

Triangulation harms the position performance because of the trade-off between position 

and velocity. 



doi:10.6342/NTU202202468

203 

Table 6.14 

Comparison for Position Error (MPJPE) in mm 

with method not considering velocity errors Human3.6M 

Action 

R
aw

S
K

 

(L
earn

ab
le 

T
rian

g
u
latio

n
) 

P
o
stS

K
 

[6
5
: B

o
u
azizi 

et al. 2
0
2
1
] 

[6
6
: Q

iu
 et al. 

2
0
1
9
] 

[6
7
: G

o
rd

o
n
 et 

al. 2
0
2
2

] 

[4
2
: H

e et al. 

2
0
2
0
] 

[6
8
: R

ed
d
y
 et 

al. 2
0
2
1

] 

Directions 18.5  29.6  48.2  28.9  22.0  25.7  17.5  

Discussion 19.1  24.5  49.3  32.5  23.6  27.7  19.6  

Eating 19.8  25.0  46.5  26.6  24.9  23.7  17.2  

Greeting 18.8  25.7  48.4  28.1  26.7  24.8  18.3  

Phoning 21.2  28.7  52.4  28.3  30.6  26.9  18.2  

Posing 18.5  25.2  46.4  28.0  25.1  24.9  18.0  

Purchases 18.6  31.1  61.4  36.8  32.9  26.5  18.0  

Sitting 22.0  27.7  72.3  42.0  29.5  28.8  20.5  

SittingDown 20.6  28.0  51.0  30.5  32.5  31.7  20.3  

Smoking 21.1  26.6  59.8  35.6  32.6  28.2  19.4  

Photo 22.1  27.0  46.5  29.3  35.7  31.4  17.7  

Waiting 18.3  26.7  46.7  30.0  26.5  26.4  17.2  

Walking 21.5  35.8  52.1  30.0  26.0  28.3  18.9  

WalkDog 20.0  31.2  37.5  28.3  34.7  23.6  19.0  

WalkTogether 21.9  35.6  39.1  30.5  27.7  23.5  17.8  

Mean 20.1  28.6  50.6  31.2  30.2  26.9  18.7  

Compared with the works focusing on position performance shown in Table 6.14, 

the proposed method still has room to improve.  
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Table 6.15 

Velocity Error (MPJVE) in mm/𝑓𝑟𝑎𝑚𝑒 on Human3.6M 

Action 

R
aw

S
K

 

(L
earn

ab
le 

T
rian

g
u
latio

n
) 

P
o
stS

K
 

[6
0
: P

av
llo

 et 

al. 2
0
1
9

] 

[6
1
: L

in
 &

 L
ee 

2
0
1
9
] 

[6
2
: C

h
en

 et 

al. 2
0
2
2

] 

[6
3
: W

an
g
 et 

al. 2
0
2
0

] 

[6
4
: L

i et al. 

2
0
2
2
] 

Directions 2.4  2.3  3.0  2.7  2.7  2.3  2.4  

Discussion 2.6  2.2  3.1  2.8  2.8  2.5  2.5  

Eating 2.2  1.9  2.2  2.1  2.0  2.0  1.8  

Greeting 2.8  2.5  3.4  3.1  3.1  2.7  2.8  

Phoning 2.2  1.7  2.3  2.0  2.0  2.0  1.8  

Posing 2.1  2.1  2.7  2.5  2.4  2.2  2.2  

Purchases 2.5  2.9  3.1  2.9  2.8  2.5  2.5  

Sitting 2.4  1.2  2.1  1.8  1.8  1.8  1.5  

SittingDown 2.9  1.4  2.9  2.6  2.4  2.7  2.0  

Smoking 2.1  1.5  2.3  2.1  2.0  1.9  1.8  

Photo 2.5  2.1  2.7  2.5  2.4  2.3  2.2  

Waiting 2.0  1.6  2.4  2.3  2.1  2.0  1.9  

Walking 3.0  4.0  3.1  2.7  2.7  2.2  2.5  

WalkDog 3.0  3.5  3.7  3.7  3.4  3.1  3.2  

WalkTogether 2.7  3.0  2.8  3.1  2.4  2.5  2.1  

Mean 2.5  2.3  2.8  2.7  2.5  2.3  2.2  

For MPJVEs shown in Table 6.15, the proposed method has the best performance 

for most of the cases. However, its MPJVE is relatively high for some actions, such as 

Walking, WalkDog, and WalkTogether. In the three actions, the trajectories of the targets 

are continuously circling. The keypoints are also doing the accelerated movement, which 

is detrimental to the proposed method during the actions. As the result, it seems to be the 

reason for the poor performance in those actions. 
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Table 6.16 

Acceleration Error (MPJAE) in mm/𝑓𝑟𝑎𝑚𝑒2 on Human3.6M 

Action 

R
aw

S
K

 

(L
earn

ab
le 

T
rian

g
u
latio

n
) 

P
o
stS

K
 

[6
0
: P

av
llo

 et 

al. 2
0
1
9

] 

[6
9
: G

u
p
ta 

2
0
2
0
] 

Directions 3.3  0.8  2.3 2.1 

Discussion 3.6  0.9  2.6 2.4 

Eating 3.1  0.7  1.8 1.7 

Greeting 3.9  0.9  2.7 2.4 

Phoning 3.1  0.7  2.0 1.9 

Posing 2.8  0.8  2.1 1.9 

Purchases 3.5  1.2  2.5 2.3 

Sitting 3.6  0.5  2.1 1.9 

SittingDown 4.3  0.8  2.1 2.5 

Smoking 3.0  0.6  2.3 1.9 

Photo 3.6  0.9  2.3 2.0 

Waiting 2.8  0.6  2.1 1.9 

Walking 4.0  1.5  2.8 2.4 

WalkDog 4.1  1.4  2.1 2.6 

WalkTogether 3.7  1.0  2.6 2.2 

Mean 3.5  0.9  2.4 2.1 

Last, the acceleration errors for different methods are listed in Table 6.16. Compared 

to MPJVE, there are fewer papers that discussed acceleration errors (MPJAE). Among 

the four estimation results, the proposed method outperforms all the others in every action. 

It also demonstrates the advantage of the motion smoother. 
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Chapter 7  

Conclusions and Future Works 

7.1 Conclusions 

People have been researching how to capture 3D human motion accurately for the 

past two decades. With the advancement of sensing technology, more and more high-

accuracy motion capture equipment, such as VICON, has been invented. However, the 

high accurate equipment often encounters high costs and few applicable environments. 

In recent years, though many vision-based 3D human motion estimation methods have 

been developed with deep learning techniques, they still can’t get rid of the demand for 

the 3D labeled data which are hard to access in outdoor environments. 

In this thesis, a portable multi-view motion capture system is proposed to overcome 

the environment constraints with the light capture devices and the simple calibration 

method. The 3D keypoint detection is achieved without 3D labeled data while using the 

2D keypoint detection by AlphaPose and the 3D reconstruction method. Since the loss of 

3D labeled data, the reconstructed results are usually worse than the pure deep learning-

based methods. Therefore, a 3D skeleton modification method is proposed as a solution 

to this problem. By considering the skeleton kinematics and the proposed outlier 

component rejecting mechanism, the position estimation has significant improvement. 
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Besides, the iterative LQR motion smoother is also presented in this thesis to further 

enhance the velocity and acceleration performance. 

With the proposed method, the performance has significant improvement in both 

simulation and experiment. Furthermore, to compare with the pure deep learning-based 

works in recent years, Learnable Triangulation is regarded as the detector for the proposed 

method on Human3.6M. The results also show the outstanding performance among the 

dynamic considering methods in the low-speed actions. 

7.2 Future Works 

Although the proposed work demonstrates great performance for the single-person 

single-track 3D human motion estimation, there are still some opportunities to improve 

the current method.  

For increasing the performance, the information of the subject IDs may be useful to 

estimate the more accurate body parameters when there are many tested cases for the 

same persons. Furthermore, while the tested motions are highly repeated and have few 

modes, such as pitching, the dynamic probability model may fit to estimate the current 

motion with the information in previous cases. 

For the application, online implementation is a potential topic. Since the proposed 

method is offline due to the iterative LQR motion smoother and body parameter 
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estimation, the user may not get the most immediate information. The proposed method 

has the potential to be turned into an online method using the model-predictive approach. 

Last, as the proposed method is designed for single-person scenarios, the estimation 

result may be poor when the target is not isolated from other persons. However, with high 

discernment of human-ID models, the proposed method can work even in a crowded area. 

Moreover, since the proposed method has the ability to handle the missing data problem 

coming from occlusion, multi-person 3D human motion estimation is also a feasible topic 

with the proposed method. 
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Appendix A  

Optimal rigid body point solution 

Assume there are 𝑁  frames, 𝑛  points in a rigid body static in {𝑤𝑜𝑟𝑙𝑑}. The 

position of the 𝑖-th point with noise is denoted as 𝒑 . The vector from 𝒑𝑗  to 𝒑  at 

frame 𝑡 is denoted as (𝒑 − 𝒑𝑗)𝑡. The optimal rigid body point estimation of the 𝑖-th 

point position is denoted as 𝒑̂ . 

For a rigid body, the vector between any two points in it should be constant. 

Therefore, we define the optimization problem to estimate the point positions except 𝒑̂  

on the rigid body with minimizing squared sum of the vector differences in different 

frames as: 

𝑚𝑖𝑛
𝒑̂1 ... 𝒑̂𝒏−𝟏

∑∑ ∑ (‖(𝒑 − 𝒑𝑗)𝑡 − (𝒑̂ − 𝒑̂𝑗)‖)
2

𝑛−1

𝑗= +1

𝑛−2

 = 

𝑁−1

𝑡= 

 (A.1) 

Define a cost function as 𝐽: 

𝐽 = ∑∑ ∑ (‖(𝒑 − 𝒑𝑗)𝑡 − (𝒑̂ − 𝒑̂𝑗)‖)
2

𝑛−1

𝑗= +1

𝑛−2

 = 

𝑁−1

𝑡= 

 (A.2) 

While setting 𝒅 𝑗 𝑡 and 𝒅̂ 𝑗 as: 

𝒅 𝑗 𝑡 = (𝒑 − 𝒑𝑗)𝑡 (A.3) 

𝒅̂ 𝑗 = 𝒑̂ − 𝒑̂𝑗 (A.4) 
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The cost 𝐽𝑡 at time t is equal: 

𝐽𝑡 = ∑ ∑ (‖(𝒑 − 𝒑𝑗)𝑡 − (𝒑̂ − 𝒑̂𝑗)‖)
2

𝑛−1

𝑗= +1

𝑛−2

 = 

 

= ∑ ∑ (‖𝒅 𝑗 𝑡 − 𝒅̂ 𝑗‖)
2

𝑛−1

𝑗= +1

𝑛−2

 = 

 

= ∑ ∑ (𝒅 𝑗 𝑡 − 𝒅̂ 𝑗)
𝑇
(𝒅 𝑗 𝑡 − 𝒅̂ 𝑗)

𝑛−1

𝑗= +1

𝑛−2

 = 

 

= ∑ ∑ 𝒅̂ 𝑗
𝑇
𝒅̂ 𝑗 − 2𝒅 𝑗 𝑡

𝑇𝒅̂ 𝑗 + 𝒅 𝑗 𝑡
𝑇𝒅 𝑗 𝑡

𝑛−1

𝑗= +1

𝑛−2

 = 

 

= ∑ ∑ (𝒑̂ − 𝒑̂𝑗)
𝑇
(𝒑̂ − 𝒑̂𝑗) − 2𝒅 𝑗 𝑡

𝑇(𝒑̂ − 𝒑̂𝑗) + 𝒅 𝑗 𝑡
𝑇𝒅 𝑗 𝑡

𝑛−1

𝑗= +1

𝑛−2

 = 

 

= (𝑛 − 1)∑ 𝒑̂ 
𝑇𝒑̂ 

𝑛−1

 = 

− 2 [∑ ∑ (𝒑̂ 
𝑇𝒑̂𝑗) + 𝒅 𝑗 𝑡

𝑇(𝒑̂ − 𝒑̂𝑗)

𝑛−1

𝑗= +1

𝑛−2

 = 

]

+∑ ∑ 𝒅 𝑗 𝑡
𝑇𝒅 𝑗 𝑡

𝑛−1

𝑗= +1

𝑛−2

 = 

 

(A.5) 

Then, take the partial derivative for 𝐽𝑡 with respect to the estimated point position 

𝒑̂     ∀𝑘 = 1 . . .  𝑛 − 1: 

𝜕𝐽𝑡
𝜕𝒑̂ 

= 2(𝑛 − 1)𝒑̂ − 2 [∑(𝒑̂ − 𝒅   𝑡)

 −1

 = 

+ ∑ (𝒑̂ + 𝒅   𝑡)

𝑛−1

 = +1

] (A.6) 
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Next, get the partial derivative for 𝐽 with summation: 

𝜕𝐽

𝜕𝒑̂ 
=
𝜕(∑ 𝐽𝑡𝑡 )

𝜕𝒑̂ 
= 𝑁 {2(𝑛 − 1)𝒑̂ − 2 [∑(𝒑̂ − 𝒅̅  )

 −1

 = 

+ ∑ (𝒑̂ + 𝒅̅  )

𝑛−1

 = +1

]} (A.7) 

𝒅̅  =
1

𝑁
∑ 𝒅   𝑡

𝑁−1

𝑡= 

= −𝒅̅   (A.8) 

To get the optimal 𝒑̂ , 
𝜕𝐽

𝜕𝒑̂𝑘
= 𝟎 should be satisfied. Therefore, 

𝑁 {2(𝑛 − 1)𝒑̂ − 2 [∑(𝒑̂ − 𝒅̅  )

 −1

 = 

+ ∑ (𝒑̂ + 𝒅̅  )

𝑛−1

 = +1

]} = 𝟎 (A.9) 

 (𝑛 − 1)𝒑̂ − [∑(𝒑̂ − 𝒅̅  )

 −1

 = 

+ ∑ (𝒑̂ + 𝒅̅  )

𝑛−1

 = +1

] = 𝟎 (A.10) 

 𝑛𝒑̂ −∑ 𝒑̂ 

𝑛−1

 = 

+ (∑𝒅̅  

 −1

 = 

) − ( ∑ 𝒅̅  

𝑛−1

 = +1

) + 𝒅̅  = 𝟎 

where 𝒅̅  = 𝟎          

(A.11) 

 𝑛𝒑̂ −∑ 𝒑̂ 

𝑛−1

 = 

+ (∑ 𝒅̅  

𝑛−1

 = 

) = 𝟎 (A.12) 

 𝑛𝒑̂ −∑ 𝒑̂ 

𝑛−1

 = 

= −∑ 𝒅̅  

𝑛−1

 = 

 (A.13) 
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Take the summation of Equation (A.13) for 𝑘 = 1 . . .  𝑛 − 1: 

𝑛∑ 𝒑̂ 

𝑛−1

 =1

− (𝑛 − 1)∑ 𝒑̂ 

𝑛−1

 = 

= −∑∑𝒅̅  

𝑛−1

 = 

𝑛−1

 =1

 

= −∑∑𝒅̅  

𝑛−1

 = 

𝑛−1

 =1

−∑ 𝒅̅  

𝑛−1

 = 

+∑ 𝒅̅  

𝑛−1

 = 

 

= −∑∑𝒅̅  

𝑛−1

 = 

𝑛−1

 = 

+∑ 𝒅̅  

𝑛−1

 = 

 

= 𝟎 +∑ 𝒅̅  

𝑛−1

 = 

= ∑ 𝒅̅  

𝑛−1

 = 

 

(A.14) 

The equation ∑ ∑ 𝒅̅  
𝑛−1
 = 

𝑛−1
 = = 𝟎 is because both 𝒅̅   and 𝒅̅   would be added 

and canceled in the summation. Then, it can be derived as following equation. 

 ∑𝒑̂ 

𝑛−1

 =1

− 𝑛𝒑̂ =∑ 𝒅̅  

𝑛−1

 = 

 (A.15) 

 ∑𝒑̂ 

𝑛−1

 =1

= 𝑛𝒑̂ +∑ 𝒅̅  

𝑛−1

 = 

 (A.16) 

With Equation (A.13) and Equation (A.16), we get obtain the optimal rigid body 

point solution as: 

𝒑̂ =
1

𝑛
(∑ 𝒑̂ 

𝑛−1

 = 

−∑ 𝒅̅  

𝑛−1

 = 

) 

= 𝒑̂ +
1

𝑛
(∑ 𝒅̅  − 𝒅̅  

𝑛−1

 = 

) 

= 𝒑̂ + 𝒅̅   

(A.17) 

while 𝒑̂  is defined as the anchor of the rigid body and can be set arbitrarily. 
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Appendix B  

KKT condition for state constraints 

with Kalman gain 

As the original Kalman gain 𝑲𝑡  is determined to minimize the trace of state 

covariance 𝑷𝑡|𝑡. Considering the state constraints with lower bound 𝒙 𝑜𝑤 𝑟 and upper 

bound 𝒙𝑢𝑝𝑝 𝑟, the Kalman gain can be obtained by solving Equation (B.1). 

𝑚𝑖𝑛
𝑲𝑡
𝑡𝑟(𝑷𝑡|𝑡) 

𝑠. 𝑡. 𝒙 𝑜𝑤 𝑟  𝒙̂𝑡   𝒙̂𝑡  𝒙𝑢𝑝𝑝 𝑟 

(B.1) 

With the state measurement update equation 𝒙̂𝑡 = 𝒙̂𝑡|𝑡−1 +𝑲𝑡𝜺𝑡 , the inequality 

constraints can be rewritten as: 

{
𝒙 𝑜𝑤 𝑟 − 𝒙̂𝑡|𝑡−1 −𝑲𝑡𝜺𝑡  0

𝒙𝑡|𝑡−1 +𝑲𝑡𝜺𝑡 − 𝒙𝑢𝑝𝑝 𝑟  0
 (B.2) 

Then, the Lagrangian 𝐿 is calculated by Equation (B.3) with Lagrange multipliers 

𝝁1 and 𝝁2: 

𝐿 = 𝑡𝑟(𝑷𝑡|𝑡) + 𝝁1
𝑇(𝒙 𝑜𝑤 𝑟 − 𝒙𝑡|𝑡−1 −𝑲𝑡𝜺𝑡) + 𝝁2

𝑇(𝒙̂𝑡|𝑡−1 +𝑲𝑡𝜺𝑡 − 𝒙𝑢𝑝𝑝 𝑟) (B.3) 
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With the update equation of 𝑷𝑡|𝑡  with arbitrary Kalman gain 𝑲𝑡  mentioned in 

Equation (5.59), 𝐿 is rewritten as: 

𝐿 = 𝑡𝑟(𝑷𝑡|𝑡−1 −𝑲𝑡𝑯𝑡𝑷𝑡|𝑡−1 − 𝑷𝑡|𝑡−1𝑯𝑡
𝑇𝑲𝑡

𝑇 +𝑲𝑡𝑷𝒛̂ 𝑡|𝑡−1𝑲𝑡
𝑇)

+ 𝝁1
𝑇(𝒙 𝑜𝑤 𝑟 − 𝒙̂𝑡|𝑡−1 −𝑲𝑡𝜺𝑡)

+ 𝝁2
𝑇(𝒙𝑡|𝑡−1 +𝑲𝑡𝜺𝑡 − 𝒙𝑢𝑝𝑝 𝑟) 

(B.4) 

Taking the partial derivative with respect to 𝑲𝑡 equal to zero matrix: 

𝜕𝐿

𝜕𝑲𝑡
= 𝟎  −2(𝑯𝑡𝑷𝑡|𝑡−1)

𝑇
+ 2𝑲𝑡𝑷𝒛̂ 𝑡|𝑡−1 + (𝝁2 − 𝝁1)𝜺𝑡

𝑇 = 𝟎 (B.5) 

Then, the Kalman gain with KKT condition is calculated as Equation (B.6) with the 

condition in Equation (B.7) and Equation (B.8): 

𝑲𝑡 = 𝑷𝑡|𝑡−1𝑯𝑡
𝑇𝑷𝒛̂ 𝑡|𝑡−1

−1 + (𝝁1 − 𝝁2)𝜺𝑡
𝑇𝑷𝒛̂ 𝑡|𝑡−1

−1  (B.6) 

{
𝝁1 ≥ 𝟎
𝝁2 ≥ 𝟎

 {
𝒙 𝑜𝑤 𝑟 − 𝒙̂𝑡|𝑡−1 −𝑲𝑡𝜺𝑡  𝟎

𝒙̂𝑡|𝑡−1 +𝑲𝑡𝜺𝑡 − 𝒙𝑢𝑝𝑝 𝑟  𝟎
 (B.7) 

{
𝜇1  (𝒙 𝑜𝑤 𝑟 − 𝒙̂𝑡|𝑡−1 −𝑲𝑡𝜺𝑡) 

= 0

𝜇2  (𝒙̂𝑡|𝑡−1 +𝑲𝑡𝜺𝑡 − 𝒙𝑢𝑝𝑝 𝑟) 
= 0

   ∀𝑖 (B.8) 

where 𝜇1   is the 𝑖-th element in 𝝁1, 𝜇2   is the 𝑖-th element in 𝝁2, and (∙)  is the 𝑖-

th element in the vector. 
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With Equation (B.6), we can write the following equation: 

𝒂𝑡 = 𝒙 𝑜𝑤 𝑟 − 𝒙𝑡|𝑡−1 − 𝑷𝑡|𝑡−1𝑯𝑡
𝑇𝑷𝒛̂ 𝑡|𝑡−1

−1 𝜺𝑡 (B.9) 

𝒃𝑡 = 𝒙𝑡|𝑡−1 − 𝒙𝑢𝑝𝑝 𝑟 + 𝑷𝑡|𝑡−1𝑯𝑡
𝑇𝑷𝒛̂ 𝑡|𝑡−1

−1 𝜺𝑡 (B.10) 

𝑐𝑡 = 𝜺𝑡
𝑇𝑷𝒛̂ 𝑡|𝑡−1

−1 𝜺𝑡 ≥ 0 ∈ ℝ (B.11) 

{
𝒙 𝑜𝑤 𝑟 − 𝒙𝑡|𝑡−1 −𝑲𝑡𝜺𝑡 = 𝒂𝑡 − 𝑐𝑡(𝝁1 − 𝝁2)

𝒙𝑡|𝑡−1 +𝑲𝑡𝜺𝑡 − 𝒙𝑢𝑝𝑝 𝑟 = 𝒃𝑡 + 𝑐𝑡(𝝁1 − 𝝁2)
  (B.12) 

Therefore, Equation (B.8) can be rewritten as: 

{
𝜇1  (𝒂𝑡 − 𝑐𝑡(𝝁1 − 𝝁2)) = 0

𝜇2  (𝒃𝑡 + 𝑐𝑡(𝝁1 − 𝝁2)) = 0
   ∀𝑖 (B.13) 

 {
𝜇1  [𝑎𝑡  − 𝑐𝑡(𝜇1  − 𝜇2  )] = 0

𝜇2  [𝑏𝑡  + 𝑐𝑡(𝜇1  − 𝜇2  )] = 0
   ∀𝑖 (B.14) 

 {
𝜇1  = 0   𝑜𝑟   𝑎𝑡  − 𝑐𝑡(𝜇1  − 𝜇2  ) = 0 

𝜇2  = 0   𝑜𝑟   𝑏𝑡  + 𝑐𝑡(𝜇1  − 𝜇2  ) = 0
   ∀𝑖 (B.15) 

There are 4 situations determined by if 𝜇1   equal 0 or not and 𝜇2   equal 0 or not.  

First, we consider the situation 𝑎𝑡  − 𝑐𝑡(𝜇1  − 𝜇2  ) = 0, 𝜇2  = 0. In the situation, 

there are two condition to check for Equation (B.7): 

{
𝜇1  =

1

𝑐𝑡
𝑎𝑡  ≥ 0  

(𝒙̂𝑡|𝑡−1 +𝑲𝑡𝜺𝑡 − 𝒙𝑢𝑝𝑝 𝑟) 
= 𝑏𝑡  + 𝑐𝑡𝜇1  = 𝑥 𝑜𝑤 𝑟  − 𝑥𝑢𝑝𝑝 𝑟   0

 (B.16) 

The second condition is trivial. Since 𝑐𝑡  is always nonnegative, the situation is 

satisfied if 𝑎𝑡  ≥ 0. 
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Next, we consider the situation 𝜇1  = 0, 𝜇2  = 0. In the situation, there are two 

condition to check for Equation (B.7): 

{
(𝒙 𝑜𝑤 𝑟 − 𝒙̂𝑡|𝑡−1 −𝑲𝑡𝜺𝑡) 

= 𝑎𝑡   0  

(𝒙𝑡|𝑡−1 +𝑲𝑡𝜺𝑡 − 𝒙𝑢𝑝𝑝 𝑟) 
= 𝑏𝑡   0

 (B.17) 

Therefore, if 𝑎𝑡   0 and 𝑏𝑡   0, the situation will be satisfied. 

Third, we consider the situation 𝜇1  = 0, 𝑏𝑡  + 𝑐𝑡(𝜇1  − 𝜇2  ) = 0. In the situation, 

there are two condition to check for Equation (B.7): 

{

(𝒙 𝑜𝑤 𝑟 − 𝒙̂𝑡|𝑡−1 −𝑲𝑡𝜺𝑡) 
= 𝑎𝑡  + 𝑐𝑡𝜇2  = 𝑥 𝑜𝑤 𝑟  − 𝑥𝑢𝑝𝑝 𝑟   0 

𝜇2  =
1

𝑐𝑡
𝑏𝑡  ≥ 0 

 (B.18) 

Because the first condition is trivial, if 𝑏𝑡  ≥ 0, this situation can be satisfied. 

Last, for the situation 𝑎𝑡  − 𝑐𝑡(𝜇1  − 𝜇2  ) = 0 , 𝑏𝑡  + 𝑐𝑡(𝜇1  − 𝜇2  ) = 0 , the 

upper bound and lower bound coincide as Equation (B.19) shown: 

0 =  𝑎𝑡  − 𝑐𝑡(𝜇1  − 𝜇2  ) + 𝑏𝑡  + 𝑐𝑡(𝜇1  − 𝜇2  ) 

= 𝑎𝑡  + 𝑏𝑡   

= (𝒙 𝑜𝑤 𝑟 − 𝒙𝑢𝑝𝑝 𝑟)  

(B.19) 

For the situation, the element (𝝁1 − 𝝁2)  used to calculate Kalman gain is: 

(𝝁1 − 𝝁2) = 𝜇1  − 𝜇2   

=
1

𝑐𝑡
𝑎𝑡   

= −
1

𝑐𝑡
𝑏𝑡   

(B.20) 

 


