Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82802
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳信志(Shinn-Chih Wu)
dc.contributor.authorSheng-Chia Yuen
dc.contributor.author余晟嘉zh_TW
dc.date.accessioned2022-11-25T07:59:55Z-
dc.date.copyright2022-02-24
dc.date.issued2022
dc.date.submitted2022-01-25
dc.identifier.citationAnders, C., O. Niewoehner, A. Duerst, and M. Jinek. 2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513(7519):569-573. doi: 10.1038/nature13579 Anderzén, J., U. Samuelsson, S. Gudbjörnsdottir, L. Hanberger, and K. Åkesson. 2016. Teenagers with poor metabolic control already have a higher risk of microvascular complications as young adults. Journal of Diabetes and its Complications 30(3):533-536. doi: https://doi.org/10.1016/j.jdiacomp.2015.12.004 Anık, A., G. Çatlı, A. Abacı, E. Sarı, E. Yeşilkaya, H. A. Korkmaz, K. Demir, A. Altıncık, H. Ü. Tuhan, S. Kızıldağ, B. Özkan, S. Ceylaner, and E. Böber. 2015. Molecular diagnosis of maturity-onset diabetes of the young (MODY) in Turkish children by using targeted next-generation sequencing. Journal of Pediatric Endocrinology and Metabolism 28(11-12):1265-1271. doi: doi:10.1515/jpem-2014-0430 Atkinson, M. A., G. S. Eisenbarth, and A. W. Michels. 2014. Type 1 diabetes. The Lancet 383(9911):69-82. doi: 10.1016/s0140-6736(13)60591-7 Barrangou, R., C. Fremaux, H. Deveau, M. Richards, P. Boyaval, S. Moineau, D. A. Romero, and P. Horvath. 2007. CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. Science 315(5819):1709-1712. doi: doi:10.1126/science.1138140 Barrangou, R., and Luciano A. Marraffini. 2014. CRISPR-Cas Systems: Prokaryotes Upgrade to Adaptive Immunity. Molecular Cell 54(2):234-244. doi: https://doi.org/10.1016/j.molcel.2014.03.011 Biason-Lauber, A., B. Boehm, M. Lang-Muritano, B. R. Gauthier, T. Brun, C. B. Wollheim, and E. J. Schoenle. 2005. Association of childhood type 1 diabetes mellitus with a variant of PAX4: possible link to beta cell regenerative capacity. Diabetologia 48(5):900-905. doi: 10.1007/s00125-005-1723-5 Blyszczuk, P., J. Czyz, G. Kania, M. Wagner, U. Roll, L. St-Onge, and A. M. Wobus. 2003. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proceedings of the National Academy of Sciences 100(3):998. doi: 10.1073/pnas.0237371100 Brandsma, I., and D. C. van Gent. 2012. Pathway choice in DNA double strand break repair: observations of a balancing act. Genome Integrity 3(1):9. doi: 10.1186/2041-9414-3-9 Brun , T., I. Franklin , L. St-Onge , A. Biason-Lauber , E. J. Schoenle , C. B. Wollheim , and B. R. Gauthier 2004. The diabetes-linked transcription factor PAX4 promotes β-cell proliferation and survival in rat and human islets. Journal of Cell Biology 167(6):1123-1135. doi: 10.1083/jcb.200405148 Campbell-Thompson, M. 2015. Organ donor specimens: What can they tell us about type 1 diabetes? Pediatric Diabetes 16(5):320-330. doi: https://doi.org/10.1111/pedi.12286 Campbell-Thompson, M., A. Fu, J. S. Kaddis, C. Wasserfall, D. A. Schatz, A. Pugliese, and M. A. Atkinson. 2016. Insulitis and β-Cell Mass in the Natural History of Type 1 Diabetes. Diabetes 65(3):719. doi: 10.2337/db15-0779 Campbell, S. C., H. Cragg, L. J. Elrick, W. M. Macfarlane, K. I. J. Shennan, and K. Docherty. 1999. Inhibitory effect of Pax4 on the human insulin and islet amyloid polypeptide (IAPP) promoters. FEBS Letters 463(1-2):53-57. doi: https://doi.org/10.1016/S0014-5793(99)01584-7 Capecchi, M. R. 1989. Altering the genome by homologous recombination. Science 244(4910):1288-1292. Chatterjee, S., K. Khunti, and M. J. Davies. 2017. Type 2 diabetes. The Lancet 389(10085):2239-2251. doi: 10.1016/s0140-6736(17)30058-2 Chi, N., and J. A. Epstein. 2002. Getting your Pax straight: Pax proteins in development and disease. Trends in Genetics 18(1):41-47. doi: https://doi.org/10.1016/S0168-9525(01)02594-X Cho, Y. S., C.-H. Chen, C. Hu, J. Long, R. T. Hee Ong, X. Sim, F. Takeuchi, Y. Wu, M. J. Go, T. Yamauchi, Y.-C. Chang, S. H. Kwak, R. C. W. Ma, K. Yamamoto, L. S. Adair, T. Aung, Q. Cai, L.-C. Chang, Y.-T. Chen, Y. Gao, F. B. Hu, H.-L. Kim, S. Kim, Y. J. Kim, J. J.-M. Lee, N. R. Lee, Y. Li, J. J. Liu, W. Lu, J. Nakamura, E. Nakashima, D. P.-K. Ng, W. T. Tay, F.-J. Tsai, T. Y. Wong, M. Yokota, W. Zheng, R. Zhang, C. Wang, W. Y. So, K. Ohnaka, H. Ikegami, K. Hara, Y. M. Cho, N. H. Cho, T.-J. Chang, Y. Bao, Å. K. Hedman, A. P. Morris, M. I. McCarthy, R. Takayanagi, K. S. Park, W. Jia, L.-M. Chuang, J. C. N. Chan, S. Maeda, T. Kadowaki, J.-Y. Lee, J.-Y. Wu, Y. Y. Teo, E. S. Tai, X. O. Shu, K. L. Mohlke, N. Kato, B.-G. Han, M. Seielstad, D. Consortium, and T. C. Mu. 2012. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nature Genetics 44(1):67-72. doi: 10.1038/ng.1019 Christian, M., T. Cermak, E. L. Doyle, C. Schmidt, F. Zhang, A. Hummel, A. J. Bogdanove, and D. F. Voytas. 2010. Targeting DNA Double-Strand Breaks with TAL Effector Nucleases. Genetics 186(2):757-761. doi: 10.1534/genetics.110.120717 Collombat, P., J. Hecksher-Sørensen, V. Broccoli, J. Krull, I. Ponte, T. Mundiger, J. Smith, P. Gruss, P. Serup, and A. Mansouri. 2005. The simultaneous loss of Arx and Pax4 genes promotes a somatostatin-producing cell fate specification at the expense of the α-and β-cell lineages in the mouse endocrine pancreas. Development 132(13):2969-2980. doi: 10.1242/dev.01870 Collombat, P., X. Xu, P. Ravassard, B. Sosa-Pineda, S. Dussaud, N. Billestrup, O. D. Madsen, P. Serup, H. Heimberg, and A. Mansouri. 2009. The Ectopic Expression of Pax4 in the Mouse Pancreas Converts Progenitor Cells into α and Subsequently β Cells. Cell 138(3):449-462. doi: https://doi.org/10.1016/j.cell.2009.05.035 Cooper, J., J. Howson, D. Smyth, N. Walker, H. Stevens, J. Yang, J.-X. She, G. Eisenbarth, M. Rewers, and J. Todd. 2012. Confirmation of novel type 1 diabetes risk loci in families. Diabetologia 55(4):996-1000. Cucca, F., R. Lampis, F. Frau, D. Macis, E. Angius, P. Masile, M. Chessa, P. Frongia, M. Silvetti, A. Cao, S. D. Virgiliis, and M. Congia. 1995. The distribution of DR4 haplotypes in sardinia suggests a primary association of type I diabetes with DRB1 and DQB1 loci. Human Immunology 43(4):301-308. doi: https://doi.org/10.1016/0198-8859(95)00042-3 Da Silva Xavier, G. 2018. The Cells of the Islets of Langerhans. Journal of Clinical Medicine 7(3):54. Dabelea, D., G. Kinney, J. K. Snell-Bergeon, J. E. Hokanson, R. H. Eckel, J. Ehrlich, S. Garg, R. F. Hamman, and M. Rewers. 2003. Effect of Type 1 Diabetes on the Gender Difference in Coronary Artery Calcification: a Role for Insulin Resistance? Diabetes 52(11):2833. doi: 10.2337/diabetes.52.11.2833 Deltcheva, E., K. Chylinski, C. M. Sharma, K. Gonzales, Y. Chao, Z. A. Pirzada, M. R. Eckert, J. Vogel, and E. Charpentier. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602-607. Deng, D., C. Yan, X. Pan, M. Mahfouz, J. Wang, J.-K. Zhu, Y. Shi, and N. Yan. 2012. Structural Basis for Sequence-Specific Recognition of DNA by TAL Effectors. Science 335(6069):720-723. doi: doi:10.1126/science.1215670 Diaz-Valencia, P. A., P. Bougneres, and A. J. Valleron. 2015. Global epidemiology of type 1 diabetes in young adults and adults: a systematic review. BMC Public Health 15:255. doi: 10.1186/s12889-015-1591-y DiMeglio, L. A., C. Evans-Molina, and R. A. Oram. 2018. Type 1 diabetes. The Lancet 391(10138):2449-2462. doi: 10.1016/s0140-6736(18)31320-5 Doudna, J. A., and E. Charpentier. 2014. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096. doi: doi:10.1126/science.1258096 Ferranti, S. D. d., I. H. d. Boer, V. Fonseca, C. S. Fox, S. H. Golden, C. J. Lavie, S. N. Magge, N. Marx, D. K. McGuire, T. J. Orchard, B. Zinman, and R. H. Eckel. 2014. Type 1 Diabetes Mellitus and Cardiovascular Disease. Circulation 130(13):1110-1130. doi: doi:10.1161/CIR.0000000000000034 Frank, R. N. 2004. Diabetic Retinopathy. New England Journal of Medicine 350(1):48-58. doi: 10.1056/NEJMra021678 Gaj, T., C. A. Gersbach, and C. F. Barbas. 2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology 31(7):397-405. doi: https://doi.org/10.1016/j.tibtech.2013.04.004 Gelling, R. W., X. Q. Du, D. S. Dichmann, J. Rømer, H. Huang, L. Cui, S. Obici, B. Tang, J. J. Holst, C. Fledelius, P. B. Johansen, L. Rossetti, L. A. Jelicks, P. Serup, E. Nishimura, and M. J. Charron. 2003. Lower blood glucose, hyperglucagonemia, and pancreatic α cell hyperplasia in glucagon receptor knockout mice. Proceedings of the National Academy of Sciences 100(3):1438. doi: 10.1073/pnas.0237106100 Gu, J., H. Lu, A. G. Tsai, K. Schwarz, and M. R. Lieber. 2007. Single-stranded DNA ligation and XLF-stimulated incompatible DNA end ligation by the XRCC4-DNA ligase IV complex: influence of terminal DNA sequence. Nucleic Acids Research 35(17):5755-5762. doi: 10.1093/nar/gkm579 He, K. H. H., P. I. Lorenzo, T. Brun, C. M. Jimenez Moreno, D. Aeberhard, J. V. Ortega, M. Cornu, F. Thorel, A. Gjinovci, B. Thorens, P. L. Herrera, P. Meda, C. B. Wollheim, and B. R. Gauthier. 2011. In Vivo Conditional Pax4 Overexpression in Mature Islet β-Cells Prevents Stress-Induced Hyperglycemia in Mice. Diabetes 60(6):1705-1715. doi: 10.2337/db10-1102 Hyöty, H. 2016. Viruses in type 1 diabetes. Pediatric diabetes 17:56-64. Insel, R. A., J. L. Dunne, M. A. Atkinson, J. L. Chiang, D. Dabelea, P. A. Gottlieb, C. J. Greenbaum, K. C. Herold, J. P. Krischer, Å. Lernmark, R. E. Ratner, M. J. Rewers, D. A. Schatz, J. S. Skyler, J. M. Sosenko, and A.-G. Ziegler. 2015. Staging Presymptomatic Type 1 Diabetes: A Scientific Statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care 38(10):1964. doi: 10.2337/dc15-1419 Ionescu-Tirgoviste, C., P. A. Gagniuc, E. Gubceac, L. Mardare, I. Popescu, S. Dima, and M. Militaru. 2015. A 3D map of the islet routes throughout the healthy human pancreas. Scientific Reports 5(1):14634. doi: 10.1038/srep14634 Jinek, M., K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna, and E. Charpentier. 2012. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. science 337(6096):816-821. Jinek, M., F. Jiang, D. W. Taylor, S. H. Sternberg, E. Kaya, E. Ma, C. Anders, M. Hauer, K. Zhou, S. Lin, M. Kaplan, A. T. Iavarone, E. Charpentier, E. Nogales, and J. A. Doudna. 2014. Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation. Science 343(6176):1247997. doi: doi:10.1126/science.1247997 Johansson, K. A., U. Dursun, N. Jordan, G. Gu, F. Beermann, G. Gradwohl, and A. Grapin-Botton. 2007. Temporal Control of Neurogenin3 Activity in Pancreas Progenitors Reveals Competence Windows for the Generation of Different Endocrine Cell Types. Developmental Cell 12(3):457-465. doi: https://doi.org/10.1016/j.devcel.2007.02.010 Järvisalo, M. J., A. Putto-Laurila, L. Jartti, T. Lehtimäki, T. Solakivi, T. Rönnemaa, and O. T. Raitakari. 2002. Carotid Artery Intima-Media Thickness in Children With Type 1 Diabetes. Diabetes 51(2):493. doi: 10.2337/diabetes.51.2.493 Jun, S., and C. Desplan. 1996. Cooperative interactions between paired domain and homeodomain. Development 122(9):2639-2650. Katsarou, A., S. Gudbjornsdottir, A. Rawshani, D. Dabelea, E. Bonifacio, B. J. Anderson, L. M. Jacobsen, D. A. Schatz, and A. Lernmark. 2017. Type 1 diabetes mellitus. Nat Rev Dis Primers 3:17016. doi: 10.1038/nrdp.2017.16 Kim, H., and J.-S. Kim. 2014. A guide to genome engineering with programmable nucleases. Nature Reviews Genetics 15(5):321-334. doi: 10.1038/nrg3686 Kim, J.-S., T. B. Krasieva, H. Kurumizaka, D. J. Chen, A. M. R. Taylor, and K. Yokomori. 2005. Independent and sequential recruitment of NHEJ and HR factors to DNA damage sites in mammalian cells. The Journal of cell biology 170(3):341-347. Kim, Y. G., J. Cha, and S. Chandrasegaran. 1996. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences 93(3):1156. doi: 10.1073/pnas.93.3.1156 Knip, M., S. M. Virtanen, and H. K. Åkerblom. 2010. Infant feeding and the risk of type 1 diabetes. The American journal of clinical nutrition 91(5):1506S-1513S. Krejci, L., V. Altmannova, M. Spirek, and X. Zhao. 2012. Homologous recombination and its regulation. Nucleic Acids Research 40(13):5795-5818. doi: 10.1093/nar/gks270 Labun, K., T. G. Montague, M. Krause, Y. N. Torres Cleuren, H. Tjeldnes, and E. Valen. 2019. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Research 47(W1):W171-W174. doi: 10.1093/nar/gkz365 Larsen, H. L., and A. Grapin-Botton. 2017. The molecular and morphogenetic basis of pancreas organogenesis. Seminars in Cell Developmental Biology 66:51-68. doi: https://doi.org/10.1016/j.semcdb.2017.01.005 Liang, X., J. Potter, S. Kumar, Y. Zou, R. Quintanilla, M. Sridharan, J. Carte, W. Chen, N. Roark, and S. Ranganathan. 2015. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. Journal of biotechnology 208:44-53. Lieber, M. R. 2008. The Mechanism of Human Nonhomologous DNA End Joining. Journal of Biological Chemistry 283(1):1-5. doi: 10.1074/jbc.R700039200 Liew, C. G., N. N. Shah, S. J. Briston, R. M. Shepherd, C. P. Khoo, M. J. Dunne, H. D. Moore, K. E. Cosgrove, and P. W. Andrews. 2008. PAX4 Enhances Beta-Cell Differentiation of Human Embryonic Stem Cells. PLOS ONE 3(3):e1783. doi: 10.1371/journal.pone.0001783 Lima, M. J., H. M. Docherty, Y. Chen, and K. Docherty. 2012. Efficient differentiation of AR42J cells towards insulin-producing cells using pancreatic transcription factors in combination with growth factors. Molecular and Cellular Endocrinology 358(1):69-80. doi: https://doi.org/10.1016/j.mce.2012.02.024 Lind, M., A.-M. Svensson, M. Kosiborod, S. Gudbjörnsdottir, A. Pivodic, H. Wedel, S. Dahlqvist, M. Clements, and A. Rosengren. 2014. Glycemic Control and Excess Mortality in Type 1 Diabetes. New England Journal of Medicine 371(21):1972-1982. doi: 10.1056/NEJMoa1408214 Livingstone, S. J., D. Levin, H. C. Looker, R. S. Lindsay, S. H. Wild, N. Joss, G. Leese, P. Leslie, R. J. McCrimmon, W. Metcalfe, J. A. McKnight, A. D. Morris, D. W. M. Pearson, J. R. Petrie, S. Philip, N. A. Sattar, J. P. Traynor, H. M. Colhoun, f. t. S. D. R. N. e. group, and t. S. R. Registry. 2015. Estimated Life Expectancy in a Scottish Cohort With Type 1 Diabetes, 2008-2010. JAMA 313(1):37-44. doi: 10.1001/jama.2014.16425 Lorenzo, P. I., E. Fuente-Martín, T. Brun, N. Cobo-Vuilleumier, C. M. Jimenez-Moreno, I. G. H. Gomez, L. L. Noriega, J. M. Mellado-Gil, A. Martin-Montalvo, and B. Soria. 2015. PAX4 defines an expandable β-cell subpopulation in the adult pancreatic islet. Scientific reports 5(1):1-14. Lorenzo, P. I., F. Juárez-Vicente, N. Cobo-Vuilleumier, M. García-Domínguez, and B. R. Gauthier. 2017. The Diabetes-Linked Transcription Factor PAX4: From Gene to Functional Consequences. Genes 8(3):101. Makarova, K. S., D. H. Haft, R. Barrangou, S. J. J. Brouns, E. Charpentier, P. Horvath, S. Moineau, F. J. M. Mojica, Y. I. Wolf, A. F. Yakunin, J. van der Oost, and E. V. Koonin. 2011. Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology 9(6):467-477. doi: 10.1038/nrmicro2577 Mauvais-Jarvis, F., S. B. Smith, C. L. May, S. M. Leal, J.-F. Gautier, M. Molokhia, J.-P. Riveline, A. S. Rajan, J.-P. Kevorkian, S. Zhang, P. Vexiau, M. S. German, and C. Vaisse. 2004. PAX4 gene variations predispose to ketosis-prone diabetes. Human Molecular Genetics 13(24):3151-3159. doi: 10.1093/hmg/ddh341 Meyerovich, K., F. Ortis, F. Allagnat, and A. K. Cardozo. 2016. Endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation. J Mol Endocrinol 57(1):R1-r17. doi: 10.1530/jme-15-0306 Miki, T., S. Yuda, H. Kouzu, and T. Miura. 2013. Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Failure Reviews 18(2):149-166. doi: 10.1007/s10741-012-9313-3 Napolitano, T., F. Avolio, M. Courtney, A. Vieira, N. Druelle, N. Ben-Othman, B. Hadzic, S. Navarro, and P. Collombat. 2015. Pax4 acts as a key player in pancreas development and plasticity. Seminars in Cell Developmental Biology 44:107-114. doi: https://doi.org/10.1016/j.semcdb.2015.08.013 Nathan, D. M. 2014. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study at 30 Years: Overview. Diabetes Care 37(1):9. doi: 10.2337/dc13-2112 Nishimasu, H., and O. Nureki. 2017. Structures and mechanisms of CRISPR RNA-guided effector nucleases. Current Opinion in Structural Biology 43:68-78. doi: https://doi.org/10.1016/j.sbi.2016.11.013 Nishimasu, H., F. A. Ran, Patrick D. Hsu, S. Konermann, Soraya I. Shehata, N. Dohmae, R. Ishitani, F. Zhang, and O. Nureki. 2014. Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA. Cell 156(5):935-949. doi: https://doi.org/10.1016/j.cell.2014.02.001 Noble, J. A. 2015. Immunogenetics of type 1 diabetes: A comprehensive review. Journal of Autoimmunity 64:101-112. doi: https://doi.org/10.1016/j.jaut.2015.07.014 Öling, V., H. Reijonen, O. Simell, M. Knip, and J. Ilonen. 2012. Autoantigen-specific memory CD4+ T cells are prevalent early in progression to Type 1 diabetes. Cellular Immunology 273(2):133-139. doi: https://doi.org/10.1016/j.cellimm.2011.12.008 Orr-Weaver, T. L., J. W. Szostak, and R. J. Rothstein. 1981. Yeast transformation: a model system for the study of recombination. Proceedings of the National Academy of Sciences 78(10):6354. doi: 10.1073/pnas.78.10.6354 Palermo, G., J. S. Chen, C. G. Ricci, I. Rivalta, M. Jinek, V. S. Batista, J. A. Doudna, and J. A. McCammon. 2018. Key role of the REC lobe during CRISPR–Cas9 activation by ‘sensing’, ‘regulating’, and ‘locking’ the catalytic HNH domain. Quarterly Reviews of Biophysics 51:e9. doi: 10.1017/S0033583518000070 Röder, P. V., B. Wu, Y. Liu, and W. Han. 2016. Pancreatic regulation of glucose homeostasis. Experimental Molecular Medicine 48(3):e219-e219. doi: 10.1038/emm.2016.6 Raile, K., A. Galler, S. Hofer, A. Herbst, D. Dunstheimer, P. Busch, and R. W. Holl. 2007. Diabetic Nephropathy in 27,805 Children, Adolescents, and Adults With Type 1 Diabetes. Diabetes Care 30(10):2523. doi: 10.2337/dc07-0282 Rawshani, A., M. Landin-Olsson, A.-M. Svensson, L. Nyström, H. J. Arnqvist, J. Bolinder, and S. Gudbjörnsdottir. 2014. The incidence of diabetes among 0–34 year olds in Sweden: new data and better methods. Diabetologia 57(7):1375-1381. Rešić Lindehammer, S., H. Honkanen, W. A. Nix, M. Oikarinen, K. F. Lynch, I. Jönsson, K. Marsal, S. Oberste, H. Hyöty, and Å. Lernmark. 2012. Seroconversion to islet autoantibodies after enterovirus infection in early pregnancy. Viral immunology 25(4):254-261. Ritz-Laser, B., A. Estreicher, B. R. Gauthier, A. Mamin, H. Edlund, and J. Philippe. 2002. The pancreatic beta-cell-specific transcription factor Pax-4 inhibits glucagon gene expression through Pax-6. Diabetologia 45(1):97-107. (Article) doi: 10.1007/s125-002-8249-9 Russell, J. W., and L. A. Zilliox. 2014. Diabetic neuropathies. Continuum (Minneap Minn) 20(5 Peripheral Nervous System Disorders):1226-1240. doi: 10.1212/01.CON.0000455884.29545.d2 Smith, J., M. Bibikova, F. G. Whitby, A. R. Reddy, S. Chandrasegaran, and D. Carroll. 2000. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Research 28(17):3361-3369. doi: 10.1093/nar/28.17.3361 Smith, S. B., H. C. Ee, J. R. Conners, and M. S. German. 1999. Paired-Homeodomain Transcription Factor PAX4 Acts as a Transcriptional Repressor in Early Pancreatic Development. Molecular and Cellular Biology 19(12):8272-8280. doi: doi:10.1128/MCB.19.12.8272 Sosa-Pineda, B. 2004. The gene Pax4 is an essential regulator of pancreatic β-cell development. Molecules Cells (Springer Science Business Media BV) 18(3) Sosa-Pineda, B., K. Chowdhury, M. Torres, G. Oliver, and P. Gruss. 1997. The Pax4 gene is essential for differentiation of insulin-producing β cells in the mammalian pancreas. Nature 386(6623):399-402. doi: 10.1038/386399a0 Spallone, V., D. Ziegler, R. Freeman, L. Bernardi, S. Frontoni, R. Pop‐Busui, M. Stevens, P. Kempler, J. Hilsted, and S. Tesfaye. 2011. Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes/metabolism research and reviews 27(7):639-653. Sternberg, S. H., S. Redding, M. Jinek, E. C. Greene, and J. A. Doudna. 2014. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507(7490):62-67. doi: 10.1038/nature13011 Svensson, J., B. Carstensen, H. B. Mortensen, K. Borch-Johnsen, and D. S. G. o. C. Diabetes. 2005. Early childhood risk factors associated with type 1 diabetes–is gender important? European journal of epidemiology 20(5):429-434. Törn, C., D. Hadley, H.-S. Lee, W. Hagopian, Å. Lernmark, O. Simell, M. Rewers, A. Ziegler, D. Schatz, B. Akolkar, S. Onengut-Gumuscu, W.-M. Chen, J. Toppari, J. Mykkänen, J. Ilonen, S. S. Rich, J.-X. She, A. K. Steck, J. Krischer, and T. S. G. the. 2015. Role of Type 1 Diabetes–Associated SNPs on Risk of Autoantibody Positivity in the TEDDY Study. Diabetes 64(5):1818. doi: 10.2337/db14-1497 Wang, H., H. Yang, C. S. Shivalila, M. M. Dawlaty, A. W. Cheng, F. Zhang, and R. Jaenisch. 2013. One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering. Cell 153(4):910-918. doi: 10.1016/j.cell.2013.04.025 Wang, J., L. Elghazi, S. E. Parker, H. Kizilocak, M. Asano, L. Sussel, and B. Sosa-Pineda. 2004. The concerted activities of Pax4 and Nkx2.2 are essential to initiate pancreatic β-cell differentiation. Developmental Biology 266(1):178-189. doi: https://doi.org/10.1016/j.ydbio.2003.10.018 Wang, Q., L. Elghazi, S. Martin, I. Martins, R. S. Srinivasan, X. Geng, M. Sleeman, P. Collombat, J. Houghton, and B. Sosa-Pineda. 2008. ghrelin is a novel target of Pax4 in endocrine progenitors of the pancreas and duodenum. Developmental Dynamics 237(1):51-61. doi: https://doi.org/10.1002/dvdy.21379 Wenzlau, J. M., and J. C. Hutton. 2013. Novel diabetes autoantibodies and prediction of type 1 diabetes. Current diabetes reports 13(5):608-615. Wester, A., H. Skärstrand, A. Lind, A. Ramelius, A. Carlsson, E. Cedervall, B. Jönsson, S. A. Ivarsson, H. Elding Larsson, K. Larsson, B. Lindberg, J. Neiderud, M. Fex, C. Törn, and Å. Lernmark. 2017. An Increased Diagnostic Sensitivity of Truncated GAD65 Autoantibodies in Type 1 Diabetes May Be Related to HLA-DQ8. Diabetes 66(3):735. doi: 10.2337/db16-0891 WHO. 2019. Classification of diabetes mellitus. Wong, F. S. 2014. How Does B-Cell Tolerance Contribute to the Protective Effects of Diabetes Following Induced Mixed Chimerism in Autoimmune Diabetes? Diabetes 63(6):1855. doi: 10.2337/db14-0327 Yamada, T., C. Cavelti-Weder, F. Caballero, P. A. Lysy, L. Guo, A. Sharma, W. Li, Q. Zhou, S. Bonner-Weir, and G. C. Weir. 2015. Reprogramming Mouse Cells With a Pancreatic Duct Phenotype to Insulin-Producing β-Like Cells. Endocrinology 156(6):2029-2038. doi: 10.1210/en.2014-1987 Zhang, Y., C. Long, R. Bassel-Duby, and E. N. Olson. 2018. Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. Physiological Reviews 98(3):1205-1240. doi: 10.1152/physrev.00046.2017 Ziegler, A. G., M. Rewers, O. Simell, T. Simell, J. Lempainen, A. Steck, C. Winkler, J. Ilonen, R. Veijola, and M. Knip. 2013. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. Jama 309(23):2473-2479.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82802-
dc.description.abstract糖尿病為近年來相當常見的慢性代謝性疾病,造成患者眾多不適,並威脅到患者壽命。國際糖尿病聯合會於2021年的報告中,全球有約5.37億糖尿病患者,臺灣則有245萬人患有糖尿病,占總人口約9.7%。第一型糖尿病為慢性自體免疫性疾病,因免疫反應導致患者缺乏β細胞,其對患者之影響不容忽視,而在相關研究中發現Pax4基因的變異與第一型糖尿病的風險有關。而Pax4基因對於胚胎發育中之胰臟β細胞分化作用有重大影響,若失去功能則會造成β細胞缺失,與第一型糖尿病相似。CRISPR-Cas9系統為近年經常被使用的工具,可對目標序列進行辨識並造成雙股斷裂,引發修復機制進而造成缺失突變或修改為特定序列。本試驗欲使用CRISPR-Cas9系統對於小鼠的Pax4基因進行剔除,使其失去功能並影響β細胞分化,藉此模擬第一型糖尿病患者胰島中缺乏β細胞的現象。體外試驗部分,將可表現sgRNA與Cas9的質體轉染至細胞株中,並以流式細胞儀分選成功轉染之細胞,而後檢測不同組別sgRNA的編輯作用效率,結果於體外試驗中挑選出兩組效率較高的sgRNA。體內試驗部分,將兩組sgRNA及Cas9蛋白以顯微注射的方式送入一細胞期的小鼠胚中,並進行胚移置,合計產下155隻小鼠,後續分析結果顯示其中100隻小鼠的基因組出現編輯現象;在DNA序列定序結果中發現部分小鼠出現大片段序列剔除的現象;而在小鼠表現性狀中發現Pax4-/-小鼠出現生長表現異常的現象,並與野生型及Pax+/-小鼠有顯著差異(出生48小時體重,Pax4-/-:1.44±0.24g;Pax4+/-:2.46±0.41g;野生型:2.31±0.31g) (a=0.05) ;同時在血糖數值方面也顯著高於其他兩種基因型小鼠(出生後60小時,Pax4-/-:538.24±65.00 mg/dl;Pax4+/-:103.20±20.61 mg/dl;野生型:96.57±12.12mg/dl) (a=0.01)。為探究造成此差異的原因,進一步執行胰臟組織切片染色及免疫螢光染色,結果發現Pax4-/-小鼠胰島出現型態改變的情形,並且其胰島並無分泌胰島素之現象,由此推論在Pax4基因受到突變後確實影響到β細胞的分化,導致小鼠無法正常分泌胰島素,進而影響生長並處於高血糖的狀態。本試驗藉由CRISPR-Cas9系統成功編輯小鼠之Pax4基因,使其序列產生突變並失去功能,使Pax4-/-小鼠出現體重降低以及高血糖的狀態,並得知原因為與第一型糖尿病相似之胰島中缺乏β細胞的現象。希望以此Pax4基因編輯小鼠模擬第一型糖尿病以作為其模式動物,並可作為未來研究者欲進行相關研究的動物材料,以增進對第一型糖尿病之相關研究。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T07:59:55Z (GMT). No. of bitstreams: 1
U0001-2301202214343200.pdf: 4736908 bytes, checksum: 50be3a123e508e17cb57b5c43ddc3b4b (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 I 中文摘要 II ABSTRACT IV 目錄 VI 圖次 VIII 表次 X 第一章 緒論 1 第二章 文獻探討 2 第一節 基因編輯技術 2 1-1 基因編輯技術演進 2 1-2 ZFN、TALEN 及CRISPR-Cas9 3 1-3 CRISPR-Cas9系統組成以及作用機制 7 第二節 Type 1 diabetes Mellitus 12 2-1-1 Diabetes Mellitus 概況 12 2-1-2 DM類型 12 2-2-1 Type 1 Diabetes Mellitus 13 第三節 Pax4 gene 18 3-1 胰臟構成 18 3-2-1 Pax4 gene 18 3-2-2 Pax4 KO animal model 21 3-2-3 The effect of Pax4 ectopic expression 21 第三章 試驗研究 24 前言 24 第一節 細胞體外試驗 25 1-1 試驗背景 25 1-2 試驗流程 25 1-3 材料方法 26 1-4 試驗結果與討論 35 第二節 以CRISPR-Cas9系統產製基因編輯小鼠 39 2-1 試驗背景 39 2-2 試驗流程 39 2-3 材料方法 40 2-4 試驗結果與討論 52 第四章 綜合討論 62 參考文獻 64 圖次 圖 1.可編輯核酸酶及其辨識目標序列方式。 5 圖 2. CRISPR-Cas系統基因座及系統作用過程。 6 圖 3. Cas9蛋白質結構及其與sgRNA結合後之構型。 9 圖 4. 添加核苷酸將crRNA與tracrRNA結合形成sgRNA。 9 圖 5. NHEJ以及HDR之DNA雙股斷裂修復機制。 11 圖 6. 第一型糖尿病(T1DM)疾病進程。 15 圖 7. 第一型糖尿病慢性自體免疫作用機制。 15 圖 8. Pax家族成員序列依照區塊有無及完整性分組。 20 圖 9. 胰臟內分泌性前驅細胞受到Pax4與Arx調控而走向不同分化細胞群。 20 圖 10. 利用同源重組的方式剔除Pax4基因後,小鼠胰島中的胰島素(b、e)以及升糖素 (c、f) 表現。 22 圖 11於α細胞異位表現Pax4以β-galactosidase追蹤。 23 圖 12. α細胞數量下降誘發epithelial-to-mesenchymal transition (EMT) 示意圖。 23 圖 13. 試驗流程示意圖。 24 圖 14. Modified pU6-(BbsI)_CBh-Cas9-T2A-Cherry質體構築。 31 圖 15. sgRNA目標序列與Pax4基因序列結構對應圖。 35 圖 16. 以CRISPR-Cas9表現質體轉染NIH-3T3細胞圖。 38 圖 17. 細胞試驗之sgRNA編輯效率圖。 38 圖 18. 利用PCR產製sgRNA之DNA序列。 42 圖 19. 同合子基因剔除仔鼠與野生型小鼠的Pax4基因序列對照圖。 55 圖 20. 基因編輯仔小鼠之出生後存活率。 55 圖 21. 基因編輯仔小鼠出生後36小時之外觀。 55 圖 22. 基因編輯仔小鼠出生後體重變化圖。 56 圖 23. 基因編輯仔小鼠血糖變化圖。 56 圖 24. 基因編輯仔小鼠胰臟位置與取下之胰臟圖。 58 圖 25. 基因編輯仔小鼠胰臟切片H E染色圖。 58 圖 26. 基因編輯仔小鼠胰臟切片免疫螢光染色。 59 圖 27. 基因編輯仔小鼠胰臟切片免疫螢光染色。 59 圖 28. 基因編輯小鼠之子代PCR產物膠體電泳圖。 61 圖 29. 親代子代DNA序列比較圖 62 表次 表 1. 挑選出具有潛力的sgRNA序列表 28 表 2. sgRNA辨識序列之單股寡核苷酸序列片段 30 表 3. 細胞試驗中所使用之引子序列表 34 表 4. 細胞轉染效率表 36 表 5. PCR中所使用之引子 42 表 6. 仔鼠基因組檢測與TOPO® Cloning使用之引子序列 47 表 7. 脫靶效應使用之引子 51 表 8. 小鼠顯微注射總表 53 表 9. 脫靶效應效率檢測 60 表 10. 性腺傳承試驗總表 61
dc.language.isozh-TW
dc.title利用CRISPR-Cas9系統產製Pax4基因剔除之第一型糖尿病小鼠zh_TW
dc.titleGeneration of Pax4 gene knockout T1DM mouse model by CRISPR-Cas9 systemen
dc.date.schoolyear110-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳銘正(Wen-Hsin Hsu),陳全木
dc.subject.keyword第一型糖尿病,CRISPR-Cas9系統,Pax4,基因編輯,動物模式,zh_TW
dc.subject.keywordType 1 diabetes mellitus (T1DM),CRISPR-Cas9,Pax4,gene editing,animal model,en
dc.relation.page77
dc.identifier.doi10.6342/NTU202200159
dc.rights.note未授權
dc.date.accepted2022-01-27
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
dc.date.embargo-lift2025-01-17-
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
U0001-2301202214343200.pdf
  目前未授權公開取用
4.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved