請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82473完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅世強(Shyh-Chyang Luo) | |
| dc.contributor.author | Yu-Lin Shih | en |
| dc.contributor.author | 施佑霖 | zh_TW |
| dc.date.accessioned | 2022-11-25T07:45:27Z | - |
| dc.date.available | 2024-09-16 | |
| dc.date.copyright | 2021-11-12 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-15 | |
| dc.identifier.citation | 1. Tao, F.; Valenzuela Garcia, A.; Xiao, T.; Zhang, Y.; Yin, Y.; Chen, X., Interfacial Solar Vapor Generation: Introducing Students to Experimental Procedures and Analysis for Efficiently Harvesting Energy and Generating Vapor at the Air–Water Interface. J. Chem. Educ. 2020, 97, 1093-1100. 2. Yang, Y.; Zhao, M.; Cao, Z.; Ge, Z.; Ma, Y. F.; Chen, Y. S., Low-Cost and Scalable Carbon Bread Used as an Efficient Solar Steam Generator with High Performance for Water Desalination and Purification. RSC Adv. 2021, 11, 8674-8681. 3. Chen, C. J.; Liu, H. Y.; Wang, H. T.; Zhao, Y. W.; Li, M., A Scalable Broadband Plasmonic Cuprous Telluride Nanowire-Based Hybrid Photothermal Membrane for Efficient Solar Vapor Generation. Nano Energy 2021, 84, 105868. 4. Wu, X.; Chen, G. Y.; Owens, G.; Chu, D. W.; Xu, H. L., Photothermal Materials: A Key Platform Enabling Highly Efficient Water Evaporation Driven by Solar Energy. Mater. Today Energy 2019, 12, 277-296. 5. Hall, N., Twenty-Five Years of Conducting Polymers. Chem. Commun. 2003, 1-4. 6. Le, T. H.; Kim, Y.; Yoon, H., Electrical and Electrochemical Properties of Conducting Polymers. Polymers 2017, 9, 150. 7. Nezakati, T.; Seifalian, A.; Tan, A.; Seifalian, A. M., Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chem. Rev. 2018, 118, 6766-6843. 8. Wang, Y.; Zhu, C.; Pfattner, R.; Yan, H.; Jin, L.; Chen, S.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N. I.; Chen, Z.; Chung, J. W.; Linder, C.; Toney, M. F.; Murmann, B.; Bao, Z., A Highly Stretchable, Transparent, and Conductive Polymer. Sci. Adv. 2017, 3, e1602076. 9. Zhou, K.; Dai, K.; Liu, C.; Shen, C., Flexible Conductive Polymer Composites for Smart Wearable Strain Sensors. SmartMat 2020, 1, e1010. 10. Nyholm, L.; Nystrom, G.; Mihranyan, A.; Stromme, M., Toward Flexible Polymer and Paper-Based Energy Storage Devices. Adv. Mater. 2011, 23, 3751-3769. 11. Namsheer, K.; Rout, C. S., Conducting Polymers: A Comprehensive Review on Recent Advances in Synthesis, Properties and Applications. RSC Adv. 2021, 11, 5659-5697. 12. Swager, T. M., 50th Anniversary Perspective: Conducting/Semiconducting Conjugated Polymers. A Personal Perspective on the Past and the Future. Macromolecules 2017, 50, 4867-4886. 13. Du, Y.; Shen, S. Z.; Cai, K. F.; Casey, P. S., Research Progress on Polymer-Inorganic Thermoelectric Nanocomposite Materials. Prog. Polym. Sci. 2012, 37, 820-841. 14. Awuzie, C. I., Conducting Polymers. Mater. Today: Proc. 2017, 4, 5721-5726. 15. Kim, B.; Han, M.; Kim, E., Photothermally Powered Conductive Films for Absorber-Free Solar Thermoelectric Harvesting. J. Mater. Chem. A 2019, 7, 2066-2074. 16. Rahimzadeh, Z.; Naghib, S. M.; Zare, Y.; Rhee, K. Y., An Overview on the Synthesis and Recent Applications of Conducting Poly(3,4-ethylenedioxythiophene) (PEDOT) in Industry and Biomedicine. J. Mater. Sci. 2020, 55, 7575-7611. 17. Yoo, D.; Kim, J.; Kim, J. H., Direct Synthesis of Highly Conductive Poly(3,4-ethylenedioxythiophene):Poly(4-styrenesulfonate) (PEDOT:PSS)/Graphene Composites and Their Applications in Energy Harvesting Systems. Nano Res. 2014, 7, 717-730. 18. Minudri, D.; Mantione, D.; Dominguez-Alfaro, A.; Moya, S.; Maza, E.; Bellacanzone, C.; Antognazza, M. R.; Mecerreyes, D., Water Soluble Cationic Poly(3,4-Ethylenedioxythiophene) PEDOT-N as a Versatile Conducting Polymer for Bioelectronics. Adv. Electron. Mater. 2020, 6, 2000510. 19. Iijima, S., Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56-58. 20. Abu Al-Rub, R. K.; Ashour, A. I.; Tyson, B. M., On the Aspect Ratio Effect of Multi-Walled Carbon Nanotube Reinforcements on the Mechanical Properties of Cementitious Nanocomposites. Constr. Build. Mater. 2012, 35, 647-655. 21. Ribeiro, B.; Botelho, E. C.; Costa, M. L.; Bandeira, C. F., Carbon Nanotube Buckypaper Reinforced Polymer Composites: A Review. Polim.: Cienc. Tecnol. 2017, 27, 247-255. 22. Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Joo, S. W., Carbon Nanotubes: Properties, Synthesis, Purification, and Medical Applications. Nanoscale Res. Lett. 2014, 9, 393. 23. Pop, E.; Mann, D.; Wang, Q.; Goodson, K.; Dai, H., Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature. Nano Lett. 2006, 6, 96-100. 24. Negri, V.; Pacheco-Torres, J.; Calle, D.; Lopez-Larrubia, P., Carbon Nanotubes in Biomedicine. Top. Curr. Chem. 2020, 378, 15. 25. Alshehri, S. M.; Almuqati, T.; Almuqati, N.; Al-Farraj, E.; Alhokbany, N.; Ahamad, T., Chitosan Based Polymer Matrix With Silver Nanoparticles Decorated Multiwalled Carbon Nanotubes for Catalytic Reduction of 4-Nitrophenol. Carbohydr. Polym. 2016, 151, 135-143. 26. Rodriguez-Padron, D.; Puente-Santiago, A. R.; Balu, A. M.; Munoz-Batista, M. J.; Luque, R., Environmental Catalysis: Present and Future. ChemCatChem 2019, 11, 18-38. 27. Dillon, A. C., Carbon Nanotubes for Photoconversion and Electrical Energy Storage. Chem. Rev. 2010, 110, 6856-6872. 28. Su, D. S.; Schlogl, R., Nanostructured Carbon and Carbon Nanocomposites for Electrochemical Energy Storage Applications. ChemSusChem 2010, 3, 136-168. 29. Sun, X. M.; Sun, H.; Li, H. P.; Peng, H. S., Developing Polymer Composite Materials: Carbon Nanotubes or Graphene? Adv. Mater. 2013, 25, 5153-5176. 30. Ma, P. C.; Siddiqui, N. A.; Marom, G.; Kim, J. K., Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review. Compos. - A: Appl. Sci. Manuf. 2010, 41, 1345-1367. 31. Li, Z. H.; Wang, L.; Li, Y.; Feng, Y. Y.; Feng, W., Carbon-Based Functional Nanomaterials: Preparation, Properties and Applications. Compos. Sci. Technol. 2019, 179, 10-40. 32. Park, S. K.; Mahmood, Q.; Park, H. S., Surface Functional Groups of Carbon Nanotubes to Manipulate Capacitive Behaviors. Nanoscale 2013, 5, 12304-12309. 33. Shin, S. R.; Lee, C. K.; So, I.; Jeon, J. H.; Kang, T. M.; Kee, C.; Kim, S. I.; Spinks, G. M.; Wallace, G. G.; Kim, S. J., DNA-Wrapped Single-Walled Carbon Nanotube Hybrid Fibers for Supercapacitors and Artificial Muscles. Adv. Mater. 2008, 20, 466-470. 34. Guldi, D. M.; Rahman, G. M. A.; Jux, N.; Tagmatarchis, N.; Prato, M., Integrating Single-Wall Carbon Nanotubes into Donor-Acceptor Nanohybrids. Angew. Chem. Int. Ed. 2004, 43, 5526-5530. 35. Yano, H.; Kudo, K.; Marumo, K.; Okuzaki, H., Fully Soluble Self-Doped Poly(3,4-ethylenedioxythiophene) With an Electrical Conductivity Greater than 1000 S cm(-1). Sci. Adv. 2019, 5, eaav9492. 36. Li, Z. Y.; Ma, X.; Chen, D. K.; Wan, X. Y.; Wang, X. B.; Fang, Z.; Peng, X. S., Polyaniline-Coated MOFs Nanorod Arrays for Efficient Evaporation-Driven Electricity Generation and Solar Steam Desalination. Adv. Sci. 2021, 8, 2004552. 37. Karlsson, R. H.; Herland, A.; Hamedi, M.; Wigenius, J. A.; Aslund, A.; Liu, X. J.; Fahlman, M.; Inganas, O.; Konradsson, P., Iron-Catalyzed Polymerization of Alkoxysulfonate-Functionalized 3,4-Ethylenedioxythiophene Gives Water-Soluble Poly(3,4-ethylenedioxythiophene) of High Conductivity. Chem. Mater. 2009, 21, 1815-1821. 38. Bhagwat, N.; Kiick, K. L.; Martin, D. C., Electrochemical Deposition and Characterization of Carboxylic Acid Functionalized PEDOT Copolymers. J. Mater. Res. 2014, 29, 2835-2844. 39. Paradee, N.; Sirivat, A., Synthesis of Poly(3,4-ethylenedioxythiophene) Nanoparticles via Chemical Oxidation Polymerization. Polym. Int. 2014, 63, 106-113. 40. Yemata, T. A.; Zheng, Y.; Kyaw, A. K. K.; Wang, X. Z.; Song, J.; Chin, W. S.; Xu, J. W., Modulation of the Doping Level of PEDOT:PSS Film by Treatment with Hydrazine to Improve the Seebeck Coefficient. RSC Adv. 2020, 10, 1786-1792. 41. Rausch, J.; Zhuang, R.-C.; Mäder, E., Surfactant Assisted Dispersion of Functionalized Multi-Walled Carbon Nanotubes in Aqueous Media. Compos. - A: Appl. Sci. Manuf. 2010, 41, 1038-1046. 42. Scarselli, M.; Castrucci, P.; De Crescenzi, M., Electronic and Optoelectronic Nano-Devices Based on Carbon Nanotubes. J. Condens. Matter Phys. 2012, 24, 313202. 43. Mazzio, K. A.; Luscombe, C. K., The Future of Organic Photovoltaics. Chem. Soc. Rev. 2015, 44, 78-90. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82473 | - |
| dc.description.abstract | "隨著地球人口的增長,城市人口用水及工業生產用淡水的需求也日益增加。儘管地球有70%的面積被水所覆蓋,但其中約有97%是無法直接使用的海水,剩下3%的淡水大多也是在南北極以冰山的形式存在。因此事實上,我們能夠直接取用的水資源是少之又少。在這種水資源短缺的情況下,水純化就成為了一個十分重要的課題。介面太陽能蒸餾法(interfacial solar vapor generation)基於傳統的太陽能蒸餾法將吸收的太陽能累積在製備的薄膜上以避免熱量散失到整個水體,以實現更高的太陽能轉換效率。本實驗以尼龍濾膜為基底,藉由氧化聚合的方式,合成具不同比例兩種親水性官能基羧基(-COOH)和 磺酸鈉(-SO3Na)之聚3,4-乙烯二氧噻吩(poly(3,4-ethylenedioxythiophene), PEDOT)高分子,並混和奈米碳管製作成太陽能蒸餾海水淡化所需要之吸光膜,並測量其對於水蒸發效率影響。本實驗結果顯示,使用之吸光膜確實對於水的蒸發效率有顯著的提升,其中又以純羧基之聚3,4-乙烯二氧噻吩與奈米碳管有著最好的混和效果,其水蒸發效率更是高出了未添加任何高分子之尼龍吸光膜兩倍以上。本實驗成功共聚出一種新的聚3,4-乙烯二氧噻吩高分子,結合奈米碳管所製成之吸光膜,為從太陽中收集能量來生產淡水提供了一種新的材料。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T07:45:27Z (GMT). No. of bitstreams: 1 U0001-1409202116551500.pdf: 3362287 bytes, checksum: 04d1b35f889c05b19ac82971122747ea (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | CONTENTS 口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES vii LIST OF TABLES ix Chapter 1 Introduction 1 1.1 Solar Steam Desalination 1 1.2 Conductive Polymer 3 1.3 Dispersion of Carbon Nanotube 6 Chapter 2 Materials and Methods 9 2.1 Materials and Instruments 9 2.1.1 Materials 9 2.1.2 Instruments 9 2.2 Synthesis of Poly(EDOT-SuNa-co-EDOT-COOH) Copolymer 10 2.2.1 Polymerization Steps 10 2.2.2 X-Ray Photoelectron Spectroscopy (XPS) 12 2.3 Dispersion of Carbon Nanotubes 13 2.3.1 Quantification of Dispersed Carbon Nanotube 13 2.3.2 Electricity Characterization 15 2.4 Water Evaporation Test 16 2.4.1 Device Design 16 2.4.2 Scanning Electron Microscope (SEM) 17 2.4.3 Water Evaporation Test 18 Chapter 3 Results and Discussion 19 3.1 Characterization of PEDOT Copolymers 19 3.1.1 Chemical Composition 19 3.1.2 UV-Vis Absorption Spectroscopy of PEDOT Copolymer 26 3.2 Dispersion of MWCNTs in Poly(EDOT-COOH-co- EDOT-SuNa) Copolymers 29 3.2.1 The UV-Vis spectrum of MWCNTs dispersion 29 3.2.2 Sheet Resistance of PEDOT Copolymer 30 3.3 Water Evaporation Efficiency 32 3.3.1 Morphology of PEDOT Copolymer 32 3.3.2 Water Evaporation Efficiency 36 Chapter 4 Conclusion 45 Chapter 5 Future Work 46 REFERENCE 47 | |
| dc.language.iso | en | |
| dc.subject | 聚3 | zh_TW |
| dc.subject | 奈米碳管 | zh_TW |
| dc.subject | 奈米複合材 | zh_TW |
| dc.subject | 太陽能蒸餾法 | zh_TW |
| dc.subject | 4-乙烯二氧噻吩 | zh_TW |
| dc.subject | 氧化聚合 | zh_TW |
| dc.subject | poly(3 | en |
| dc.subject | nanocomposite | en |
| dc.subject | 4-ethylenedioxythiophene) | en |
| dc.subject | carbon nanotube | en |
| dc.subject | oxidative polymerization | en |
| dc.subject | solar vapor generation | en |
| dc.title | "聚3,4-乙烯二氧噻吩之奈米複合材料在太陽能蒸餾海水淡化之應用" | zh_TW |
| dc.title | "Poly(3,4-ethylenedioxythiophene)-Based Nanocomposites for Solar Steam Desalination" | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 何美霖(Hsin-Tsai Liu),李介仁(Chih-Yang Tseng) | |
| dc.subject.keyword | 太陽能蒸餾法,氧化聚合,奈米碳管,聚3,4-乙烯二氧噻吩,奈米複合材, | zh_TW |
| dc.subject.keyword | solar vapor generation,oxidative polymerization,carbon nanotube,poly(3,4-ethylenedioxythiophene),nanocomposite, | en |
| dc.relation.page | 49 | |
| dc.identifier.doi | 10.6342/NTU202103179 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-09-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-09-16 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1409202116551500.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
