Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8229
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何傳愷(Chuan-Kai Ho)
dc.contributor.authorI-Chen Wenen
dc.contributor.author温彝禎zh_TW
dc.date.accessioned2021-05-20T00:50:26Z-
dc.date.available2020-08-24
dc.date.available2021-05-20T00:50:26Z-
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-15
dc.identifier.citationAkbari, H., and L. S. Rose. 2008. Urban Surfaces and Heat Island Mitigation Potentials. Journal of the Human-Environment System 11:85-101.
Altermatt, F. 2012. Temperature-related shifts in butterfly phenology depend on the habitat. Global Change Biology 18:2429-2438.
Angilletta, J. M. J., and A. E. Dunham. 2003. The Temperature‐Size Rule in Ectotherms: Simple Evolutionary Explanations May Not Be General. The American Naturalist 162:332-342.
Angilletta Jr, M. J., and M. J. Angilletta. 2009. Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press.
Ashby, J. W. 1974. A Study of Arthropod Predation of Pieris rapae L. Using Serological and Exclusion Techniques. Journal of Applied Ecology 11:419-425.
Atkinson, D. 1994. Temperature and organism size: a biological law for ectotherms? Advances in ecological research 25:1-58.
Baker, R. R. 1970. Bird predation as a selective pressure on the immature stages of the cabbage butterflies, Pieris rapae and P. brassicae. Journal of Zoology 162:43-59.
Banahene, N., S. K. Salem, T. M. Faske, H. M. Byrne, M. Glackin, S. J. Agosta, A. J. Eckert, K. L. Grayson, and L. M. Thompson. 2018. Thermal Sensitivity of Gypsy Moth (Lepidoptera: Erebidae) During Larval and Pupal Development. Environmental entomology 47:1623-1631.
Bates, D., M. Mächler, B. Bolker, and S. Walker. 2014. Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823.
Bauerfeind, S. S., and K. Fischer. 2014. Simulating climate change: temperature extremes but not means diminish performance in a widespread butterfly. Population Ecology 56:239-250.
Bennett, A. F. 1991. Roads, roadsides and wildlife conservation: a review. Pages 99-117 Nature conservation 2: the role of corridors. Chipping Norton, NSW, Australia : Surrey Beatty.
Benrey, B., and R. F. Denno. 1997. The slow-growth-high-mortality hypothesis: a test using the cabbage butterfly. Ecology 78:987-999.
Benvenuti, S. 2004. Weed dynamics in the Mediterranean urban ecosystem: ecology, biodiversity and management. Weed Research 44:341-354.
Bissoondath, C. J., and C. Wiklund. 1997. Effect of male body size on sperm precedence in the polyandrous butterfly Pieris napi L. (Lepidoptera: Pieridae). Behavioral Ecology 8:518-523.
Brakefield Paul, M., and V. Mazzotta. 2002. Matching field and laboratory environments: effects of neglecting daily temperature variation on insect reaction norms. Journal of Evolutionary Biology 8:559-573.
Brooks, M. E., K. Kristensen, K. J. van Benthem, A. Magnusson, C. W. Berg, A. Nielsen, H. J. Skaug, M. Machler, and B. M. Bolker. 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R journal 9:378-400.
Bryant, S. R., J. S. Bale, and C. D. Thomas. 1999. Comparison of development and growth of nettle-feeding larvae of Nymphalidae (Lepidoptera) under constant and alternating temperature regimes. Eur. J. Entomol 96:143-148.
Chen, C., and W. Su. 1982. Influence of temperature on development and leaf consumption of three caterpillars on cauliflower. PLANT PROTECTION BULLETIN 24:131-141.
Chew, F., and J. Renwick. 1995. Host plant choice in Pieris butterflies. Pages 214-238 Chemical Ecology of Insects 2. Springer.
Ciach, M., B. Maślanka, A. Krzus, and T. Wojas. 2017. Watch your step: insect mortality on hiking trails. Insect Conservation and Diversity 10:129-140.
Collingham, Y. C., and B. Huntley. 2000. Impacts of habitat fragmentation and patch size upon migration rates. Ecological Applications 10:131-144.
Damos, P., and M. Savopoulou-Soultani. 2012. Temperature-Driven Models for Insect Development and Vital Thermal Requirements. Psyche 2012:123405.
Department of Budget Accounting and Statistics, T. C. G. 2015. 台北市政府主計處:台北市統計資料庫查詢系統 Taipei City PC-AXIS statistics database.
Department of Civil Affairs, T. C. G. 2019. 臺北市各區面積及里名一覽表.
Department of the Environment: Department of Transport. 1977. Design Bulletin 23: Residential Roads and Footpaths: Layout Considerations. The Stationery Office London.
Despland, E. 2017. Effects of phenological synchronization on caterpillar early-instar survival under a changing climate. Canadian Journal of Forest Research 48:247-254.
Eötvös, C. B., T. Magura, and G. L. Lövei. 2018. A meta-analysis indicates reduced predation pressure with increasing urbanization. Landscape and Urban Planning 180:54-59.
Esperk, T. 2006. Larval instar as a key element of insect growth schedules.
Eversham, B. C., D. B. Roy, and M. G. Telfer. 1996. Urban, industrial and other manmade sites as analogues of natural habitats for Carabidae. Annales Zoologici Fennici 33:149-156.
für Naturschutz, S. B. 1987. Tagfalter und ihre Lebensräume. Schweizer. Bund für Naturschutz.
Fantinou, A. A., D. C. Perdikis, and C. S. Chatzoglou. 2003. Development of Immature Stages of Sesamia nonagrioides (Lepidoptera : Noctuidae) Under Alternating and Constant Temperatures. Environmental entomology 32:1337-1342.
Feeny, P. 1976. Plant apparency and chemical defense. Pages 1-40 Biochemical interaction between plants and insects. Springer.
Folguera, G., J. Mensch, J. L. Muñoz, S. G. Ceballos, E. Hasson, and F. Bozinovic. 2010. Ontogenetic stage-dependent effect of temperature on developmental and metabolic rates in a holometabolous insect. Journal of Insect Physiology 56:1679-1684.
Forman, R. T. T. 1995. Land Mosaics: The ecology of landscapes and regions.
Gering, J. C., and R. B. Blair. 1999. Predation on artificial bird nests along an urban gradient: predatory risk or relaxation in urban environments? Ecography 22:532-541.
Gilbert, O. 2012. The ecology of urban habitats. Springer Science Business Media.
Gomi, T., M. Nagasaka, T. Fukuda, and H. Hagihara. 2007. Shifting of the life cycle and life‐history traits of the fall webworm in relation to climate change. Entomologia Experimentalis et Applicata 125:179-184.
Grimm, N. B., S. H. Faeth, N. E. Golubiewski, C. L. Redman, J. Wu, X. Bai, and J. M. Briggs. 2008. Global Change and the Ecology of Cities. Science 319:756-760.
Hagstrum, D. W., and G. A. Milliken. 1991. Modeling Differences in Insect Developmental times between Constant and Fluctuating Temperatures. Annals of the Entomological Society of America 84:369-379.
Hamilton, J. 1979. Seasonal abundance of Pieris rapae (L.), Plutella xylostella (L.) and their diseases and parasites. General and Applied Entomology: The Journal of the Entomological Society of New South Wales 11:59.
Harcourt, D. G. 2012. Major Factors in Survival of the Immature Stages of Pieris rapae (L.). The Canadian Entomologist 98:653-662.
Hardy, P. B., and R. L. Dennis. 2010. A butterfly exploiting the matrix: Pieris napi (Linnaeus, 1758)(Lepidoptera: Pieridae) ovipositing amongst mown grass in a city park. Entomologist's Gazette 61:155.
Hardy, P. B., and R. L. H. Dennis. 1999. The impact of urban development on butterflies within a city region. Biodiversity Conservation 8:1261-1279.
Heisler, G. M., and R. H. Grant. 2000. Ultraviolet radiation in urban ecosystems with consideration of effects on human health. Urban Ecosystems 4:193-229.
Hermann, S. L., C. Blackledge, N. L. Haan, A. T. Myers, and D. A. Landis. 2019. Predators of monarch butterfly eggs and neonate larvae are more diverse than previously recognised. Scientific Reports 9:14304.
Hill, J. K., Y. C. Collingham, C. D. Thomas, D. S. Blakeley, R. Fox, D. Moss, and B. Huntley. 2001. Impacts of landscape structure on butterfly range expansion. Ecology Letters 4:313-321.
Hothorn, T., K. Hornik, M. A. Van De Wiel, and A. Zeileis. 2006. A lego system for conditional inference. The American Statistician 60:257-263.
Huang, T.-c., ed. 2000. Flora of Taiwan (2nd ed.). Second Edition edition. Taipei, Taiwan: Editorial Committee of the Flora of Taiwan.
Ikemoto, T., and K. Takai. 2000. A new linearized formula for the law of total effective temperature and the evaluation of line-fitting methods with both variables subject to error. Environmental entomology 29:671-682.
Johnson, F. L., D. T. Bell, and S. K. Sipp. 1974. A comparison of urban and forest microclimates in the midwestern United States. Agricultural Meteorology 14:335-345.
Jokimäki, J., M.-L. Kaisanlahti-Jokimäki, A. Sorace, E. Fernández-Juricic, I. Rodriguez-Prieto, and M. D. Jimenez. 2005. Evaluation of the “safe nesting zone” hypothesis across an urban gradient: a multi-scale study. Ecography 28:59-70.
Jones, R., J. Hart, and G. Bull. 1982. Temperature, Size and Egg Production in the Cabbage Butterfly, Pieris Rapae L. Australian Journal of Zoology 30:223-231.
Jones, R. E. 1987. Ants, Parasitoids, and the Cabbage Butterfly Pieris rapae. Journal of Animal Ecology 56:739-749.
Jones, R. E., N. Gilbert, M. Guppy, and V. Nealis. 1980. Long-Distance Movement of Pieris rapae. Journal of Animal Ecology 49:629-642.
Kadlec, T., J. Benes, V. Jarosik, and M. Konvicka. 2008. Revisiting urban refuges: Changes of butterfly and burnet fauna in Prague reserves over three decades. Landscape and Urban Planning 85:1-11.
Kingsolver, J. G. 2000. Feeding, Growth, and the Thermal Environment of Cabbage White Caterpillars, Pieris rapae L. Physiological and Biochemical Zoology 73:621-628.
Kingsolver, J. G., and R. Gomulkiewicz. 2003. Environmental Variation and Selection on Performance Curves. Integrative and Comparative Biology 43:470-477.
Kiritani, K. 2006. Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan. Population Ecology 48:5-12.
Kozlov, M. V., V. Lanta, V. Zverev, K. Rainio, M. A. Kunavin, and E. L. Zvereva. 2017. Decreased losses of woody plant foliage to insects in large urban areas are explained by bird predation. Global Change Biology 23:4354-4364.
Lande, R. 1987. Extinction Thresholds in Demographic Models of Territorial Populations. The American Naturalist 130:624-635.
Matteson, K. C., and G. Langellotto. 2012. Evaluating community gardens as habitat for an urban butterfly. Cities and the Environment (CATE) 5:10.
McDermott Long, O., R. Warren, J. Price, T. M. Brereton, M. S. Botham, and A. M. A. Franco. 2017. Sensitivity of UK butterflies to local climatic extremes: which life stages are most at risk? Journal of Animal Ecology 86:108-116.
Mironidis, G. K. 2014. Development, survivorship and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) under fluctuating temperatures. Bulletin of Entomological Research 104:751-764.
Munguira, M. L., and J. A. Thomas. 1992. Use of Road Verges by Butterfly and Burnet Populations, and the Effect of Roads on Adult Dispersal and Mortality. Journal of Applied Ecology 29:316-329.
Niemelä, J. 1999. Ecology and urban planning. Biodiversity Conservation 8:119-131.
Noske, R. A. 1998. Breeding biology, demography and success of the rufous-banded honeyeater, Conopophila albogularis, in Darwin, a monsoonal tropical city. Wildlife Research 25:339-356.
Oberhauser, K., M. Anderson, S. Anderson, W. Caldwell, A. De Anda, M. Hunter, M. Kaiser, M. Solensky, A. De Anda, and M. Hunter. 2015. Lacewings, wasps, and flies—oh my: insect enemies take a bite out of monarchs. Monarchs in a changing world: biology and conservation of an iconic insect. Cornell University Press, Ithaca, NY:71-82.
Oke, T. R., J. M. Crowther, K. G. McNaughton, J. L. Monteith, B. Gardiner, P. G. Jarvis, J. L. Monteith, W. J. Shuttleworth, and M. H. Unsworth. 1989. The micrometeorology of the urban forest. Philosophical Transactions of the Royal Society of London. B, Biological Sciences 324:335-349.
Parker, F. D. 1970. Seasonal Mortality and Survival of Pieris rapae (Lepidoptera: Pieridae) in Missouri and the Effect of Introducing an Egg Parasite, Trichogramma evanescens. Annals of the Entomological Society of America 63:985-994.
Petersen, C. H. r., H. A. Woods, and J. O. E. L. G. Kingsolver. 2000. Stage-specific effects of temperature and dietary protein on growth and survival of Manduca sexta caterpillars. Physiological Entomology 25:35-40.
Philpott, S. M., J. Cotton, P. Bichier, R. L. Friedrich, L. C. Moorhead, S. Uno, and M. Valdez. 2014. Local and landscape drivers of arthropod abundance, richness, and trophic composition in urban habitats. Urban Ecosystems 17:513-532.
Pollard, E., and T. J. Yates. 1994. Monitoring butterflies for ecology and conservation: the British butterfly monitoring scheme. Springer Science Business Media.
Price, P. W., C. E. Bouton, P. Gross, B. A. McPheron, J. N. Thompson, and A. E. Weis. 1980. Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annual Review of Ecology and Systematics:41-65.
R Core Team. 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
R Core Team. 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Raupp, M. J., P. M. Shrewsbury, and D. A. Herms. 2010. Ecology of Herbivorous Arthropods in Urban Landscapes. Annual Review of Entomology 55:19-38.
Ricketts, T., and M. Imhoff. 2003. Biodiversity, Urban Areas, and Agriculture: Locating Priority Ecoregions for Conservation. Conservation Ecology 8.
Riemer, J., J. Whittaker, and E. Bernays. 1989. Insect–plant interaction. Pages 73-106. CRC Press Inc Boca Raton.
Roslin, T., B. Hardwick, V. Novotny, W. K. Petry, N. R. Andrew, A. Asmus, I. C. Barrio, Y. Basset, A. L. Boesing, T. C. Bonebrake, E. K. Cameron, W. Dáttilo, D. A. Donoso, P. Drozd, C. L. Gray, D. S. Hik, S. J. Hill, T. Hopkins, S. Huang, B. Koane, B. Laird-Hopkins, L. Laukkanen, O. T. Lewis, S. Milne, I. Mwesige, A. Nakamura, C. S. Nell, E. Nichols, A. Prokurat, K. Sam, N. M. Schmidt, A. Slade, V. Slade, A. Suchanková, T. Teder, S. van Nouhuys, V. Vandvik, A. Weissflog, V. Zhukovich, and E. M. Slade. 2017. Higher predation risk for insect prey at low latitudes and elevations. Science 356:742-744.
RStudio Team. 2016. RStudio: Integrated Development Environment for R. RStudio, Inc., Boston, MA.
Ruel, J. J., and M. P. Ayres. 1999. Jensen’s inequality predicts effects of environmental variation. Trends in Ecology Evolution 14:361-366.
Schmaedick, M. A., and A. M. Shelton. 2012. Arthropod predators in cabbage (Cruciferae) and their potential as naturally occurring biological control agents for Pieris rapae (Lepidoptera: Pieridae). The Canadian Entomologist 132:655-675.
Seiler, A. 2001. Ecological effects of roads: a review. Swedish University of Agricultural Sciences Uppsala.
Senzota, R. 2012. Wildlife mortality on foot paths of the University of Dar es Salaam, Tanzania. Tropical Ecology 53:81-92.
Seto, K. C., B. Güneralp, and L. R. Hutyra. 2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences 109:16083.
Sharpe, P., J. H., and De Michele. 1977. Reaction kinetics of poikilotherm development.
Sheldon, K. S., and M. E. Dillon. 2016. Beyond the Mean: Biological Impacts of Cryptic Temperature Change. Integrative and Comparative Biology 56:110-119.
Sorace, A. 2002. High density of bird and pest species in urban habitats and the role of predator abundance. Ornis Fennica 79:60-71.
Stjernholm, F., and B. Karlsson. 2000. Nuptial Gifts and the Use of Body Resources for Reproduction in the Green-Veined White Butterfly Pieris napi. Proceedings: Biological Sciences 267:807-811.
Svensson, M. K., and I. Eliasson. 2002. Diurnal air temperatures in built-up areas in relation to urban planning. Landscape and Urban Planning 61:37-54.
Taha, H. 1997. Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy and Buildings 25:99-103.
Taylor, P., and E. Shields. 1990. Development of the armyworm (Lepidoptera: Noctuidae) under fluctuating daily temperature regimes. Environmental entomology 19:1422-1431.
Therneau, T. M. 2015. A Package for Survival Analysis in S.
Thorington, K. K., and R. Bowman. 2003. Predation rate on artificial nests increases with human housing density in suburban habitats. Ecography 26:188-196.
Tomialojc, L. 1982. Synurbanization of birds and the prey-predator relations. Pages 131-137 in Animals in Urban Environment: Proceedings of Symposium Warszawa-Jablonna.
Travis, J. M. J. 2003. Climate change and habitat destruction: a deadly anthropogenic cocktail. Proceedings. Biological sciences 270:467-473.
Tsai, Y. I., and M. T. Cheng. 2004. Characterization of chemical species in atmospheric aerosols in a metropolitan basin. Chemosphere 54:1171-1181.
Uchida, T., J. Xue, D. Hayasaka, T. Arase, W. T. Haller, and L. A. Gettys. 2014. The relation between road crack vegetation and plant biodiversity in urban landscape. International Journal of GEOMATE 6:885+.
Valcarcel, A., and E. Fernández-Juricic. 2009. Antipredator strategies of house finches: are urban habitats safe spots from predators even when humans are around? Behavioral Ecology and Sociobiology 63:673.
van der Have, T. M., and G. de Jong. 1996. Adult Size in Ectotherms: Temperature Effects on Growth and Differentiation. Journal of Theoretical Biology 183:329-340.
Van der Sluijs, J., and H. Van Bohemen. 1991. Green elements of civil engineering works and their (potential) ecological importance. Nature engineering and Civil Engineering Works:21-32.
van Klink, R., D. E. Bowler, K. B. Gongalsky, A. B. Swengel, A. Gentile, and J. M. Chase. 2020. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368:417-420.
Virtanen, T., and S. Neuvonen. 1999. Climate change and macrolepidopteran biodiversity in Finland. Chemosphere-Global Change Science 1:439-448.
Wang, S., X. Yin, J. Tang, and J. D. Hansen. 2004. Thermal resistance of different life stages of codling moth (Lepidoptera: Tortricidae). Journal of Stored Products Research 40:565-574.
Warren, M. S., J. K. Hill, J. A. Thomas, J. Asher, R. Fox, B. Huntley, D. B. Roy, M. G. Telfer, S. Jeffcoate, P. Harding, G. Jeffcoate, S. G. Willis, J. N. Greatorex-Davies, D. Moss, and C. D. Thomas. 2001. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65-69.
Way, J. M. 1977. Roadside verges and conservation in Britain: A review. Biological Conservation 12:65-74.
Whitney-Johnson, A., M. Thompson, and E. Hon. 2005. Responses to predicted global warming in Pieris rapae L.(Lepidoptera): consequences of nocturnal versus diurnal temperature change on fitness components. Environmental entomology 34:535-540.
Wiklund, C., and A. Kaitala. 1995. Sexual selection for large male size in a polyandrous butterfly: the effect of body size on male versus female reproductive success in Pieris napi. Behavioral Ecology 6:6-13.
Worner, S. P. 1992. Performance of Phenological Models Under Variable Temperature Regimes: Consequences of the Kaufmann or Rate Summation Effect. Environmental entomology 21:689-699.
Yokohari, M., R. D. Brown, Y. Kato, and S. Yamamoto. 2001. The cooling effect of paddy fields on summertime air temperature in residential Tokyo, Japan. Landscape and Urban Planning 53:17-27.
李大維。2006。大坑蝴蝶生態教育區蝶相調查研究。特有生物研究 8:13-25。
李大維。2010。台中市大坑地區蝴蝶標本採集紀錄。台灣生物多樣性研究 12:309-326。
林正鴻。2015。暖化將如何影響本土及外來種紋白蝶於二種寄主植物上的競爭關係?。國立臺灣大學,臺北市。
林柏昌,林有義。2008。蝴蝶食草圖鑑。臺中市:晨星。
徐玲明,蔣慕炎。2009。台灣草坪雜草圖鑑。臺中市:晨星。
徐玲明,蔣慕炎。2019。台灣常見雜草圖鑑(標示有毒植物、外來種與防治方式,有效管理草坪雜草)。貓頭鷹。
陳家豪。2015。都市公園綠地景觀組成對蝴蝶多樣性之影響。中國文化大學。
鄭秋玪,許長漢。2003。日本紋白蝶(Pieris rapae crucivora)(鱗翅目:粉蝶科)之形態及溫度對其發育之影響。植物保護學會會刊 45:271-284。
鐘明哲。2011。都會野花野草圖鑑。臺中市:晨星。
Kvanli, A., R. Pavur, and K. Keeling. 2005. Concise managerial statistics. Cengage Learning.
Chernick, M. R. 2011. The essentials of biostatistics for physicians, nurses, and clinicians. John Wiley Sons.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8229-
dc.description.abstract現今都市佔地快速增加,評估其作為生物棲地的可能性漸趨重要。以往研究多關注公園等人為模擬自然之區域,較少探討更典型的都市環境(如人行道)。因此本研究想知道都市廣布的人行道(如臺北市人行道約940公里,佔近1%土地面積)所提供的生態棲地價值。我們探討:(1)人行道是否能作為野生生物(如紋白蝶屬蝴蝶)的合適棲地?(2)人行道上的生物與非生物環境如何影響野生生物的表現?我們的研究包含以下五個實驗:
(1) 為了解食草資源分布,每月調查人行道上可供紋白蝶幼蟲利用的食草量。
(2) 為比較紋白蝶利用人行道與自然棲地的情況,在蝶季中每日調查樣區食草上的卵與幼蟲族群量。
(3) 為瞭解人行道及自然棲地中非生物環境因素(如溫度)對紋白蝶幼蟲的影響,分別在人行道與自然棲地中飼養臺灣紋白蝶幼蟲,量測其存活率及發育速度。
(4) 為進一步了解人行道環境溫度(平均高溫及溫度起伏)對紋白蝶的影響,本研究利用實驗室生長箱模擬人行道與自然棲地環境(溫度設定分別模擬人行道日夜溫度變化、人行道固定日夜均溫、野外日夜溫度變化),並於各模擬環境下飼養臺灣紋白蝶幼蟲,量測其存活率及發育速度。
(5) 為比較人行道與自然棲地的生物因素(如捕食率與人類活動)對紋白蝶存活率之影響,本研究在人行道與自然環境放置蝶卵及假幼蟲,觀察其受干擾情形。
此外,本研究亦利用實地觀測資料,建立使用氣象資料預測人行道溫度的方法,以及使用人行道上臺灣紋白蝶幼蟲體長來推估齡期之轉換方法。
2016至2018年之研究結果顯示,人行道上具有紋白蝶的食草資源(實驗1與2),且紋白蝶在生長季節時的確利用人行道作為棲地。非生物環境因素實驗顯示,相較於野外棲地,人行道上的紋白蝶幼蟲有類似甚至較高的存活率,以及較快的發育速度,暗示人行道可以是比野外環境更好的棲地(實驗3)。在實驗室生長箱的溫度模擬實驗亦顯示相同結果,佐證人行道的高溫環境可以加速紋白蝶幼蟲的生長(實驗4),並且此加速現象主要因為人行道較高的平均溫度,而非較大的溫度起伏。生物因素部分,相比野外棲地,人行道上的蝶卵受到的捕食壓力較小,然而幼蟲受到較多人類活動干擾(實驗5)。綜合以上研究結果,我們認為都市環境如人行道,是被低估但重要的野生動物棲地(例如紋白蝶),因此我們建議都市管理者進行生態調查,並以更好的管理方式增進都市的生態價值。
zh_TW
dc.description.abstractGlobal urbanization has rapidly increased urban areas. Studies have evaluated urban environment (e.g., parks) as habitat for wildlife; however, few studies have examined the role of urban sidewalks as wildlife habitat. Given that sidewalks are a common component of cities worldwide (e.g., about 900 km long or 1% area in Taipei city), this study investigated (a) whether sidewalks in an international city (e.g., Taipei) can be suitable habitat for wildlife (e.g., Pieris butterflies), and (b) how the abiotic and biotic factors on sidewalks affect wildlife performance. Our study included these five experiments (Exp.):
(1) To evaluate the food resource on Taipei sidewalks, this study conducted monthly surveys on the host plants of Pieris in Taipei sidewalk vs. field habitats.
(2) To examine whether Pieris butterflies inhabit sidewalks, this study conducted daily surveys on Pieris density on sidewalks during Pieris seasons.
(3) To compare how the abiotic factors (mainly temperature) of sidewalks and field habitats affect Pieris performance, this study raised Pieris larvae on caged plants in both sidewalk and field habitats.
(4) To further examine the effect of average temperature, temperature fluctuation, and other abiotic factors on Pieris larval performance, this study raised Pieris larvae in laboratory cage experiments, which simulated sidewalk and field habitat temperatures (i.e., sidewalk-fluctuating, sidewalk-fixed and field-fluctuating temperature regime).
(5) To compare how the biotic factors (predation and human disturbance) of sidewalk and field habitats affect the survivorship of Pieris eggs and larvae, this study placed Pieris eggs and larval decoys in sidewalk and field habitats.
Furthermore, this study created conversion criterion of larval body length into larval stage, and of weather temperatures into sidewalk temperatures.
The results of year 2016 – 2018 showed that Pieris and host plants did inhabit sidewalks (Exp. 1 and 2). Pieris larvae had similar survivorship in sidewalk and field habitats. Pieris larvae developed faster in sidewalk than field habitats (Exp. 3). The results of survivorship and development rate suggest that sidewalk could be as good as or even better than field habitats in terms of Pieris larval performance. The faster development under sidewalk temperature regime was also confirmed in laboratory experiments (Exp. 4). Moreover, the accelerated development on sidewalks was mainly due to high average temperature instead of temperature fluctuation (Exp. 4). Finally, Pieris on sidewalks faced a lower predation pressure on eggs but higher human disturbance on larvae (decoys), compared to those in the field (Exp. 5). Taken together, our results suggest that urban sidewalks, while underappreciated, can serve as an important habitat for wildlife such as Pieris butterflies. Therefore, this study encourage city managers to investigate and improve the ecological value of urban areas.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T00:50:26Z (GMT). No. of bitstreams: 1
U0001-1308202001460000.pdf: 6895898 bytes, checksum: eb25882e7ec9a630945772ac9f9a2aa5 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents謝誌 i
摘要 iii
Abstract v
Content ix
Content of tables xiii
Content of figures xv
Introduction 1
Urban area has become an important habitat for wildlife under global urban expansion 1
The role of sidewalks as wildlife habitat is overlooked 2
Urban environmental trait: abiotic factors 3
Urban environmental trait: biotic factors 5
Study system: Pieris butterflies on urban sidewalk 7
Aims and hypothesis 8
Materials and methods 14
Study System 14
Pieris spp. 14
Rorippa Spp. 15
Taipei city sidewalk 15
Exp. 1 Field survey: host plant density 16
Experimental design 16
Procedure 16
Exp. 2 Field survey: Pieris egg and larval density 17
Experimental design 17
Procedure: Egg and larval density 17
Procedure: Proportion of host plant utilized by ovipositing females 18
Exp. 3 Sidewalk cage experiment: larval performance in sidewalk microenvironment 18
Experimental design 18
Procedure 19
Exp. 4 Laboratory cage experiment: larval performance under sidewalk temperature regimes 19
Experimental design 19
Procedure 20
Larval stage identification 22
Sidewalk microenvironment temperature measurement and prediction 22
Effective cumulative temperature (cumulative degree-days) 23
Exp. 5 Field manipulation experiment: survivorship on eggs and caterpillar decoys 24
Experimental design 24
Procedure 24
Statistical analysis 25
Exp. 2 Pieris egg and larva density 25
Exp. 3. Larval performance in sidewalks microenvironment Exp. 4. Larval performance under sidewalk temperature regime 26
Exp. 5. Mortality on caterpillar decoys and eggs 27
Results 28
Microenvironment on sidewalks habitat 28
Exp. 1 Field survey: host plant density 28
Exp. 2. Field survey: Pieris egg and larval density 29
Eggs and larvae 29
Larvae development stages 29
Oviposition rate 30
Exp. 3 Sidewalk cage experiment: larval performance in sidewalk microenvironment 30
Survivorship 30
Growth period 31
Pieris adults body size (weight and forewing length) 32
Exp. 4 Laboratory cage experiment: larval performance under sidewalk temperature regimes 33
Survivorship 33
Growth period 35
Pieris adults body size (weight and forewing length) 38
Exp. 5 Field manipulation experiment: survivorship on eggs and caterpillar decoys 38
Discussion 40
Summary 40
Pieris butterflies inhabit urban sidewalks 42
Sidewalks are overlooked but suitable habitat for Pieris 43
Abiotic factors on sidewalks 43
Similar or higher survivorship in sidewalk vs. field habitats (abiotic regime) 44
Higher development rate in sidewalks vs. field habitats (abiotic regime) 47
The biotic factors on sidewalks 52
The strength and weakness of this study 53
Conclusions 56
References 58
Figures and tables 68
Appendix 108
Appendix A: Larval stage identification 108
Data exploration 108
Criterion selection 109
Validation 110
Appendix B: Sidewalk temperature prediction 112
Data collection 112
Procedure 112
Formula 113
References of appendix 115
Figures and tables of appendix 116
dc.language.isoen
dc.title與蝶同行?城市人行道作為紋白蝶屬蝴蝶棲地之評估zh_TW
dc.titleWalk with butterflies? Evaluating urban sidewalks as habitat for Pieris butterfliesen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.advisor-orcid何傳愷(0000-0002-6437-0073)
dc.contributor.oralexamcommittee張智涵(Chih-Han Chang),王慧瑜(Hui-Yu wang),郭奇芊(Chi-Chien Kuo)
dc.contributor.oralexamcommittee-orcid,王慧瑜(0000-0002-9100-321X)
dc.subject.keyword都市生態系,人行道,棲地品質,鱗翅目,紋白蝶,白粉蝶,緣點白粉蝶,zh_TW
dc.subject.keywordurban ecosystem,sidewalk,Lepidoptera,habitat quality,Pieris,Pieris canidia,Pieris rapae,en
dc.relation.page127
dc.identifier.doi10.6342/NTU202003180
dc.rights.note同意授權(全球公開)
dc.date.accepted2020-08-17
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
U0001-1308202001460000.pdf6.73 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved