請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82084完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭錦龍(Chin-Lung Kuo) | |
| dc.contributor.author | Tsun Tang | en |
| dc.contributor.author | 唐存 | zh_TW |
| dc.date.accessioned | 2022-11-25T05:35:32Z | - |
| dc.date.available | 2022-10-27 | |
| dc.date.copyright | 2021-11-05 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-29 | |
| dc.identifier.citation | Tour, J. M., Kittrell, C., Colvin, V. L. (2010). Green carbon as a bridge to renewable energy. Nature materials, 9(11), 871-874. Dunn, S. (2002). Hydrogen futures: toward a sustainable energy system. International journal of hydrogen energy, 27(3), 235-264. Dresselhaus, M. S., Thomas, I. L. (2001). Alternative energy technologies. Nature, 414(6861), 332-337. Murray-Smith, D. (2019). A Review of Developments in Electrical Battery, Fuel Cell and Energy Recovery Systems for Railway Applications: a Report for the Scottish Association for Public Transport. von Helmolt, R., Eberle, U. (2007). Fuel cell vehicles: Status 2007. Journal of Power Sources, 165(2), 833-843. Ren, J., Musyoka, N. M., Langmi, H. W., Mathe, M., Liao, S. (2017). Current research trends and perspectives on materials-based hydrogen storage solutions: a critical review. International journal of hydrogen energy, 42(1), 289-311. Stroman, R. O., Schuette, M. W., Swider-Lyons, K., Rodgers, J. A., Edwards, D. J. (2014). Liquid hydrogen fuel system design and demonstration in a small long endurance air vehicle. International journal of hydrogen energy, 39(21), 11279-11290. Martínez-Mesa, A., Seifert, G. (2014). Adsorption of molecular hydrogen on nanostructured surfaces. Revista Cubana de Física, 31(1), 32-34. McWhorter, S., Read, C., Ordaz, G., Stetson, N. (2011). Materials-based hydrogen storage: attributes for near-term, early market PEM fuel cells. Current Opinion in Solid State and Materials Science, 15(2), 29-38. Züttel, A. (2003). Materials for hydrogen storage. Materials today, 6(9), 24-33. Fichtner, M. (2005). Nanotechnological aspects in materials for hydrogen storage. Advanced Engineering Materials, 7(6), 443-455. Ströbel, R., Garche, J., Moseley, P. T., Jörissen, L., Wolf, G. (2006). Hydrogen storage by carbon materials. Journal of power sources, 159(2), 781-801. Ströbel, R., Jörissen, L., Schliermann, T., Trapp, V., Schütz, W., Bohmhammel, K., ... Garche, J. (1999). Hydrogen adsorption on carbon materials. Journal of Power Sources, 84(2), 221-224. Dresselhaus, M. S., Williams, K. A., Eklund, P. C. (1999). Hydrogen adsorption in carbon materials. Mrs Bulletin, 24(11), 45-50. Panella, B., Hirscher, M., Roth, S. (2005). Hydrogen adsorption in different carbon nanostructures. Carbon, 43(10), 2209-2214. Anson, A., Jagiello, J., Parra, J. B., Sanjuan, M. L., Benito, A. M., Maser, W. K., Martínez, M. T. (2004). Porosity, surface area, surface energy, and hydrogen adsorption in nanostructured carbons. The Journal of Physical Chemistry B, 108(40), 15820-15826. Chambers, A., Park, C., Baker, R. T. K., Rodriguez, N. M. (1998). Hydrogen storage in graphite nanofibers. The journal of physical chemistry B, 102(22), 4253-4256. Hirscher, M., Becher, M., Haluska, M., Quintel, A., Skakalova, V., Choi, Y. M., ... Fink, J. (2002). Hydrogen storage in carbon nanostructures. Journal of alloys and compounds, 330, 654-658. van den Berg, A. W., Areán, C. O. (2008). Materials for hydrogen storage: current research trends and perspectives. Chemical Communications, (6), 668-681. Sculley, J., Yuan, D., Zhou, H. C. (2011). The current status of hydrogen storage in metal–organic frameworks—updated. Energy Environmental Science, 4(8), 2721-2735. Yang, S. J., Jung, H., Kim, T., Park, C. R. (2012). Recent advances in hydrogen storage technologies based on nanoporous carbon materials. Progress in Natural Science: Materials International, 22(6), 631-638. Somayajulu Rallapalli, P. B., Raj, M. C., Patil, D. V., Prasanth, K. P., Somani, R. S., Bajaj, H. C. (2013). Activated carbon@ MIL‐101 (Cr): a potential metal‐organic framework composite material for hydrogen storage. International journal of energy research, 37(7), 746-753. Lachawiec, A. J., Qi, G., Yang, R. T.(2005). Hydrogen storage in nanostructured carbons by spillover: bridge-building enhancement. Langmuir, 21(24), 11418-11424. Lueking, A. D., Yang, R. T. (2004). Hydrogen spillover to enhance hydrogen storage—study of the effect of carbon physicochemical properties. Applied Catalysis A: General, 265(2), 259-268. Lueking, A., Yang, R. T. (2002). Hydrogen spillover from a metal oxide catalyst onto carbon nanotubes—implications for hydrogen storage. Journal of Catalysis, 206(1), 165-168. Yang, F. H., Lachawiec, A. J., Yang, R. T. (2006). Adsorption of spillover hydrogen atoms on single-wall carbon nanotubes. The Journal of Physical Chemistry B, 110(12), 6236-6244. Li, Y., Yang, R. T., Liu, C. J., Wang, Z. (2007). Hydrogen storage on carbon doped with platinum nanoparticles using plasma reduction. Industrial Engineering Chemistry Research, 46(24), 8277-8281. Wang, L., Yang, R. T. (2008). New sorbents for hydrogen storage by hydrogen spillover–a review. Energy Environmental Science, 1(2), 268-279. Li, Y., Yang, R. T. (2007). Hydrogen storage on platinum nanoparticles doped on superactivated carbon. The Journal of Physical Chemistry C, 111(29), 11086-11094. Li, Y., Yang, R. T. (2008). Hydrogen storage in metal‐organic and covalent‐organic frameworks by spillover. AIChE Journal, 54(1), 269-279. Li, Y., Yang, R. T. (2006). Significantly enhanced hydrogen storage in metal− organic frameworks via spillover. Journal of the American Chemical Society, 128(3), 726-727. Li, Y., Yang, R. T. (2006). Hydrogen storage in metal− organic frameworks by bridged hydrogen spillover. Journal of the American Chemical Society, 128(25), 8136-8137. Khoobiar, S. (1964). Particle to particle migration of hydrogen atoms on platinum—alumina catalysts from particle to neighboring particles. The Journal of Physical Chemistry, 68(2), 411-412. Pyle, D. S., Gray, E. M., Webb, C. J. (2016). Hydrogen storage in carbon nanostructures via spillover. International Journal of Hydrogen Energy, 41(42), 19098-19113. Dillon, A. C., Parilla, P. A., Zhao, Y., Kim, Y. H., Gennett, T., Curtis, C., ... Heben, M. J. (2005). NREL activities in DOE Carbon-based Materials Center of Excellence. Proc. of US DOE, Hydrogen Program Review, 35. Singh, A. K., Ribas, M. A., Yakobson, B. I. (2009). H-spillover through the catalyst saturation: an ab initio thermodynamics study. Acs Nano,3(7), 1657-1662. Lin, Y., Ding, F., Yakobson, B. I. (2008). Hydrogen storage by spillover on graphene as a phase nucleation process. Physical Review B, 78(4), 041402. Sihag, A., Xie, Z. L., Thang, H. V., Kuo, C. L., Tseng, F. G., Dyer, M. S., Chen, H. Y. T. (2019). DFT Insights into Comparative Hydrogen Adsorption and Hydrogen Spillover Mechanisms of Pt4/Graphene and Pt4/Anatase (101) Surfaces. The Journal of Physical Chemistry C, 123(42), 25618-25627. Geng, Z., Wang, D., Zhang, C., Zhou, X., Xin, H., Liu, X., Cai, M. (2014). Spillover enhanced hydrogen uptake of Pt/Pd doped corncob-derived activated carbon with ultra-high surface area at high pressure. International journal of hydrogen energy, 39(25), 13643-13649. Wu, H. Y., Fan, X., Kuo, J. L., Deng, W. Q. (2011). DFT study of hydrogen storage by spillover on graphene with boron substitution. The Journal of Physical Chemistry C, 115(18), 9241-9249. Ariharan, A., Viswanathan, B., Nandhakumar, V. (2016). Hydrogen storage on boron substituted carbon materials. international journal of hydrogen energy, 41(5), 3527-3536. Sankaran, M., Viswanathan, B., Murthy, S. S. (2008). Boron substituted carbon nanotubes—How appropriate are they for hydrogen storage?. International journal of hydrogen energy, 33(1), 393-403. Wang, L., Yang, F. H., Yang, R. T. (2009). Hydrogen storage properties of B‐and N‐doped microporous carbon. AIChE journal, 55(7), 1823-1833. Miwa, R. H., Martins, T. B., Fazzio, A. (2008). Hydrogen adsorption on boron doped graphene: an ab initio study. Nanotechnology, 19(15), 155708. Zhu, Z. H., Lu, G. Q., Hatori, H. (2006). New insights into the interaction of hydrogen atoms with boron-substituted carbon. The Journal of Physical Chemistry B, 110(3), 1249-1255. Born, M., Oppenheimer, R. (1927). Zur quantentheorie der molekeln. Annalen der physik, 389(20), 457-484. Hohenberg, P., Kohn, W. (1964). Inhomogeneous electron gas. Physical review, 136(3B), B864. Kohn, W., Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical review, 140(4A), A1133. Thomas, L. H. (1927, January). The calculation of atomic fields. In Mathematical proceedings of the Cambridge philosophical society (Vol. 23, No. 5, pp. 542-548). Cambridge University Press. Fermi, E. (1927). Un metodo statistico per la determinazione di alcune priorieta dell’atome. Rend. Accad. Naz. Lincei, 6(602-607), 32. Dirac, P. A. (1930, July). Note on exchange phenomena in the Thomas atom. In Mathematical proceedings of the Cambridge philosophical society (Vol. 26, No. 3, pp. 376-385). Cambridge University Press. Ceperley, D. M., Alder, B. J. (1980). Ground state of the electron gas by a stochastic method. Physical review letters, 45(7), 566. Perdew, J. P., Zunger, A. (1981). Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B, 23(10), 5048. Perdew, J. P., Wang, Y. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical review B, 45(23), 13244. Perdew, J. P., Burke, K., Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical review letters, 77(18), 3865. Grimme, S. (2006). Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. Journal of computational chemistry, 27(15), 1787-1799. Grimme, S., Antony, J., Ehrlich, S., Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of chemical physics, 132(15), 154104. Nosé, S. (1984). A unified formulation of the constant temperature molecular dynamics methods. The Journal of chemical physics, 81(1), 511-519. Grimme, S., Ehrlich, S., Goerigk, L. (2011). Effect of the damping function in dispersion corrected density functional theory. Journal of computational chemistry, 32(7), 1456-1465. Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical review A, 31(3), 1695. Stuart, S. J., Tutein, A. B., Harrison, J. A. (2000). A reactive potential for hydrocarbons with intermolecular interactions. The Journal of chemical physics, 112(14), 6472-6486. Brenner, D. W. (1990). Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Physical review B, 42(15), 9458. Wang, X., Shi, G. (2015). An introduction to the chemistry of graphene. Physical Chemistry Chemical Physics, 17(43), 28484-28504. Kotakoski, J., Krasheninnikov, A. V., Kaiser, U., Meyer, J. C. (2011). From point defects in graphene to two-dimensional amorphous carbon. Physical review letters, 106(10), 105505. Meyer, J. C., Kisielowski, C., Erni, R., Rossell, M. D., Crommie, M. F., Zettl, A. (2008). Direct imaging of lattice atoms and topological defects in graphene membranes. Nano letters, 8(11), 3582-3586. Robertson, A. W., Warner, J. H. (2013). Atomic resolution imaging of graphene by transmission electron microscopy. Nanoscale, 5(10), 4079-4093. Robertson, A. W., Lee, G. D., He, K., Yoon, E., Kirkland, A. I., Warner, J. H. (2014). The role of the bridging atom in stabilizing odd numbered graphene vacancies. Nano letters, 14(7), 3972-3980. Robertson, A. W., Lee, G. D., He, K., Yoon, E., Kirkland, A. I., Warner, J. H. (2014). Stability and dynamics of the tetravacancy in graphene. Nano letters, 14(3), 1634-1642. Robertson, A. W., Allen, C. S., Wu, Y. A., He, K., Olivier, J., Neethling, J., ... Warner, J. H. (2012). Spatial control of defect creation in graphene at the nanoscale. Nature communications, 3(1), 1-7. Wu, X. J., Fei, Z. J., Liu, W. G., Tan, J., Wang, G. H., Xia, D. Q., ... Liu, W. (2019). Adsorption and desorption of hydrogen on/from single-vacancy and double-vacancy graphenes. Nuclear Science and Techniques, 30(4), 1-9. Lechner, C., Baranek, P., Vach, H. (2018). Adsorption of atomic hydrogen on defect sites of graphite: Influence of surface reconstruction and irradiation damage. Carbon, 127, 437-448. Yadav, S., Zhu, Z., Singh, C. V. (2014). Defect engineering of graphene for effective hydrogen storage. International journal of hydrogen energy, 39(10), 4981-4995. Kresse, G., Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational materials science, 6(1), 15-50. Kresse, G., Hafner, J. (1993). Ab initio molecular dynamics for liquid metals. Physical review B, 47(1), 558. Kresse, G., Hafner, J. (1994). Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B, 49(20), 14251. Kresse, G., Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B, 54(16), 11169. Kresse, G., Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical review b, 59(3), 1758. Blöchl, P. E. (1994). Projector augmented-wave method. Physical review B, 50(24), 17953. Perdew, J. P., Burke, K., Ernzerhof, M. (1997). Generalized gradient approximation made simple (vol 77, pg 3865, 1996). Physical review letters, 78(7), 1396-1396. Pei, Q. X., Zhang, Y. W., Shenoy, V. B. (2010). A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon, 48(3), 898-904. Liu, T. H., Pao, C. W., Chang, C. C. (2012). Effects of dislocation densities and distributions on graphene grain boundary failure strengths from atomistic simulations. Carbon, 50(10), 3465-3472. Trucano, P., Chen, R. (1975). Structure of graphite by neutron diffraction. Nature, 258(5531), 136-137. O’Malley, B., Snook, I., McCulloch, D. (1998). Reverse Monte Carlo analysis of the structure of glassy carbon using electron-microscopy data. Physical Review B, 57(22), 14148. Bhattarai, B., Drabold, D. A. (2017). Amorphous carbon at low densities: An ab initio study. Carbon, 115, 532-538. Tsai, Y. J., Kuo, C. L. (2020). Effect of Structural Disorders on the Li Storage Capacity of Graphene Nanomaterials: A First-Principles Study. ACS applied materials interfaces, 12(20), 22917-22929. Okazaki-Maeda, K., Morikawa, Y., Tanaka, S., Kohyama, M. (2010). Structures of Pt clusters on graphene by first-principles calculations. Surface Science, 604(2), 144-154. Shi, P., Wang, Y., Liang, X., Sun, Y., Cheng, S., Chen, C., Xiang, H. (2018). Simultaneously exfoliated boron-doped graphene sheets to encapsulate sulfur for applications in lithium–sulfur batteries. ACS Sustainable Chemistry Engineering, 6(8), 9661-9670. Zhao, L., Levendorf, M., Goncher, S., Schiros, T., Palova, L., Zabet-Khosousi, A., ... Pasupathy, A. N. (2013). Local atomic and electronic structure of boron chemical doping in monolayer graphene. Nano letters, 13(10), 4659-4665. Wang, L., Sofer, Z., Šimek, P., Tomandl, I., Pumera, M. (2013). Boron-doped graphene: scalable and tunable p-type carrier concentration doping. The Journal of Physical Chemistry C, 117(44), 23251-23257. Li, X., Fan, L., Li, Z., Wang, K., Zhong, M., Wei, J., ... Zhu, H. (2012). Boron doping of graphene for graphene–silicon p–n junction solar cells. Advanced Energy Materials, 2(4), 425-429. Kouvetakis, J., Kaner, R. B., Sattler, M. L., Bartlett, N. (1986). A novel graphite-like material of composition BC 3, and nitrogen–carbon graphites. Journal of the Chemical Society, Chemical Communications, (24), 1758-1759. Kotakoski, J., Brand, C., Lilach, Y., Cheshnovsky, O., Mangler, C., Arndt, M., Meyer, J. C. (2015). Toward two-dimensional all-carbon heterostructures via ion beam patterning of single-layer graphene. Nano letters, 15(9), 5944-5949. Usachov, D. Y., Fedorov, A. V., Vilkov, O. Y., Petukhov, A. E., Rybkin, A. G., Ernst, A., ... Vyalikh, D. V. (2016). Large-scale sublattice asymmetry in pure and boron-doped graphene. Nano letters, 16(7), 4535-4543. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82084 | - |
| dc.description.abstract | 發展氫能為全球先進國家重點發展的綠能科技之一,而氫能在使用上最重要的問題就在於儲存裝置的選擇。碳材料由於有成本較低、較為便宜等優異特性,已有許多研究利用碳材料來進行儲氫實驗,但物理吸附的方式在室溫下會難以達到較高的儲氫量。後來有許多研究提出,可以利用氫溢流機制來提升室溫下的儲氫量。而本研究會利用第一原理來探討碳材料系統的儲氫效果以及氫溢流機制。 在本研究的第一部分,我們建構含有不同缺陷結構的單層石墨烯以及非晶質石墨烯來探討這些系統的儲氫效果以及氫溢流行為。我們的結果顯示,在石墨烯系統中,缺陷對於氫分子的物理吸附沒有太大的影響。對於氫原子吸附而言,石墨烯中有缺陷存在則是可以增強碳材料跟氫之間的交互作用,但儲氫量並不一定會隨著空位缺陷尺寸越大而等比例上升。我們也發現當結構中存在越大尺寸的空位缺陷,尤其是八環以上的大環缺陷結構,能有效提升碳材料系統的儲氫效果,並且在這些缺陷結構中,若是有發生碳和碳的鍵結旋轉,則可以增加系統的可逆儲氫量。另外我們也發現對於碳材料系統,吸附氫原子會對結構產生應力的影響,而非晶質石墨烯的系統和含缺陷的石墨烯系統相比有較高的儲氫量,是因為非晶質石墨烯結構較軟,較能夠釋放因吸附氫原子而產生的應力,因此儲氫效果較佳。最後我們發現在純石墨烯系統沒辦法發生氫溢流的現象,並會有催化劑在儲氫過程中脫附的情形,而當有缺陷存在時,則能夠穩定催化劑在材料表面的鍵結,防止在儲氫過程中脫附,並也會使系統能夠發生氫溢流的現象。 在本研究的第二部分,我們利用純石墨烯、含缺陷石墨烯以及非晶質石墨烯來進行硼摻雜,並利用這些系統來探討儲氫效果以及氫溢流的行為。從研究結果顯示,在純石墨烯和非晶質石墨烯系統摻雜硼時,對於氫分子的物理吸附都沒有太大的影響。而當純石墨烯的結構中有硼摻雜時,能夠增強基材和氫原子之間的交互作用,此部分也利用不同濃度的硼以及相同濃度但不同的摻雜組態來探討儲氫行為,發現只有在特定的硼摻雜組態才能吸附氫原子,因此在純石墨烯的系統中,吸附氫原子會受到硼的組態所影響。並探討硼摻雜對於結構穩定性的影響,發現當硼摻雜的組態會破壞原先純石墨烯系統的π電子共振而讓電子態從延展態變為局域態時,在此狀況下就能吸附氫原子。而在含缺陷的石墨烯系統有硼摻雜時,則是可以減少不可逆的碳氫鍵結,讓系統的可逆儲氫量提升。在非晶質石墨烯系統摻雜硼時則是能夠有效提升系統的儲氫量,並且儲氫量會隨摻雜的硼原子數量越多而等比例上升。最後利用硼摻雜非晶質石墨烯系統來探討氫溢流行為,發現在非晶質石墨烯有硼摻雜時,和沒有摻雜硼的非晶質石墨烯相比,能夠更加穩定催化劑在基材上的鍵結,且也能夠更早發生氫溢流的現象,能更好地防止催化劑在儲氫的過程中發生脫附剝落的現象。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T05:35:32Z (GMT). No. of bitstreams: 1 U0001-2610202121014400.pdf: 9065033 bytes, checksum: 9d266cdeea19571283a57ce0f4210de6 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "致謝 i 中文摘要 ii Abstract iv 目錄 vi 圖目錄 ix 表目錄 xvii 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 4 第二章 研究方法與理論基礎 8 2.1 第一原理計算(First-principles calculations) 8 2.2 波恩-歐本海默近似法(Born-Oppenheimer Approximation) 8 2.3 密度泛函理論(Density Functional Theory, DFT) 9 2.3.1 Thomas-Fermi Model 9 2.3.2 Hohenberg-Kohn方程式 10 2.3.3 Kohn-Sham方程式 10 2.3.4 交換相干泛函(exchange-correlation functional) 13 2.3.5 贗勢法(pseudopotential method) 14 2.3.6 密度泛函理論的分散校正 15 2.4 分子動力學模擬 15 2.4.1 Verlet演算法(Verlet algorithm) 16 2.4.2 Nosé-Hoover調溫器(Nosé-Hoover thermostat) 17 2.5 古典力場(Classical force field) 17 第三章 缺陷石墨烯和非晶質碳的儲氫效果與氫溢流機制 20 3.1 簡介 20 3.2 研究方法 25 3.2.1 計算方法與條件 25 3.2.2 結構建立 26 3.3 結果與討論 29 3.3.1 純石墨烯和缺陷石墨烯系統的氫分子吸附 29 3.3.2 含缺陷石墨烯的氫原子吸附 32 3.3.3 非晶質石墨烯的氫原子吸附 43 3.3.4 缺陷石墨烯的分析 46 3.3.5 鉑金屬儲氫量 50 3.3.6 鉑金屬與基材的交互作用 52 3.3.7 不同基材上鉑金屬的儲氫量 56 3.3.8 純石墨烯和缺陷石墨烯系統的氫溢流機制 62 3.4 小結 68 第四章 硼摻雜石墨烯的儲氫效果與氫溢流機制 70 4.1 簡介 70 4.2 研究方法 73 4.2.1 計算方法與條件 73 4.2.2 結構建立 73 4.3 結果與討論 76 4.3.1 硼摻雜石墨烯的氫分子吸附 76 4.3.2 硼摻雜純石墨烯的氫原子吸附 79 4.3.3 硼摻雜含缺陷石墨烯的氫原子吸附 93 4.3.4 硼摻雜非晶質石墨烯的氫原子吸附 105 4.3.5 硼摻雜非晶質石墨烯的氫溢流機制 111 4.4 小結 117 第五章 結論 119 參考文獻 121 附錄 128" | |
| dc.language.iso | zh-TW | |
| dc.subject | 硼摻雜石墨烯 | zh_TW |
| dc.subject | 第一原理計算 | zh_TW |
| dc.subject | 非晶質碳 | zh_TW |
| dc.subject | 缺陷石墨烯 | zh_TW |
| dc.subject | 儲氫材料 | zh_TW |
| dc.subject | First-principles study | en |
| dc.subject | Hydrogen storage | en |
| dc.subject | Defective graphene | en |
| dc.subject | Boron doped graphene | en |
| dc.subject | Amorphous carbon | en |
| dc.title | 以第一原理計算探討缺陷、硼摻雜石墨烯和非晶質碳的儲氫效果和氫溢流機制 | zh_TW |
| dc.title | First-principles Study of the Hydrogen Storage Capacity and Hydrogen Spillover Mechanism on Defective and Boron Doped Graphene and Amorphous Carbon | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李明憲(Hsin-Tsai Liu),吳鉉忠(Chih-Yang Tseng),陳馨怡 | |
| dc.subject.keyword | 儲氫材料,缺陷石墨烯,硼摻雜石墨烯,非晶質碳,第一原理計算, | zh_TW |
| dc.subject.keyword | Hydrogen storage,Defective graphene,Boron doped graphene,Amorphous carbon,First-principles study, | en |
| dc.relation.page | 128 | |
| dc.identifier.doi | 10.6342/NTU202104274 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-10-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-10-29 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2610202121014400.pdf 未授權公開取用 | 8.85 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
